

LONG-TERM MONITORING SYSTEM DESIGN REPORT

Pantex Plant Amarillo, Texas

February 2009

AL-PX-SW-006992

Long-Term Monitoring System Design Report for the U.S. Department of Energy/ National Nuclear Security Administration Pantex Plant, Amarillo, Texas

February 2009

Prepared by: B&W Pantex P.O. Box 30020 Amarillo, Texas 79120 and Espey Consultants, Inc. P.O. Box 31870 Amarillo, Texas 79120

Jeff Stovall, Ph.D., P.E., P.M.P. Project Engineer, Espey Consultants, Inc.

2/09

Date

arrett

Michelle Jarrett B&W Pantex

TABLE OF CONTENTS

1.	Introd	luction	1-1			
	1.1.	Regulatory Requirements	1-2			
	1.2.	Design Strategy	1-2			
	1.3.	Long-Term Monitoring Network Objectives	1-2			
		1.3.1 Perched Groundwater.	1-2			
		1.3.2 Ogallala Aquifer	1-3			
2.	Perch	ed Groundwater	2-1			
	2.1.	Monitoring Objectives	2-1			
	2.2.	Evaluation of Existing Well Network				
	2.3.	Summary of Long-Term Monitoring Optimization Recommendations	2-2			
		2.3.1 Project Goals and Objectives	2-2			
		2.3.2 Results	2-2			
	2.4.	Long-Term Monitoring Network for Perched Groundwater	2-3			
		2.4.1 Incorporation of LTMO Recommendations				
		2.4.2 Monitoring of Soil Release Units	2-4			
3.	Ogalla	Ogallala Aquifer				
	3.1.	Summary of Monitoring Well Placement Optimization	3-1			
		3.1.1 Analysis Methods				
		3.1.2 Results	3-2			
	3.2.	Evaluation of Existing Well Network	3-2			
	3.3.	Long-Term Monitoring Network for the Ogallala Aquifer	3-3			
		3.3.1 Final Network Recommendations	3-3			
		3.3.2 Monitoring of Soil Release Units	3-4			
4.	Monit	toring well construction				
	4.1.	Perched Well Construction and Screened Intervals	4-1			
	4.2.	Perched Sample Intake Placement	4-1			
	4.3.	Ogallala well construction and screened intervals	4-1			
	4.4.	Ogallala Sample Intake placement	4-2			
5.	Evalu	Evaluation of Monitoring Data				
	5.1.	Progress Report Evaluation	5-1			
	5.2.	5-Year Review	5-1			
	5.3.	Evaluation Metrics	5-3			
	5.4.	Expected Conditions	5-8			
6.	Sumn	nary and Conclusions	6-1			
7.	Refer	ences	7-1			

FIGURES

Figure 1-1. Pantex Plant Location Map	1-5
Figure 2-1. Perched Groundwater RDX Isoconcentrations	
Figure 2-2. Perched Groundwater Hexavalent Chromium Isoconcentrations	2-17
Figure 2-3. Perched Groundwater Perchlorate Isoconcentrations	2-19
Figure 2-4. Well Location Map	2-21
Figure 2-5. Perched Groundwater Long-Term Monitoring Network	2-23
Figure 2-6. Indicator Constituent Areas for Perched Groundwater	2-25
Figure 2-7. Sampling Frequency for Perched Groundwater	2-27
Figure 2-8. Monitoring of Soil Release Units for Perched Groundwater	2-29
Figure 3-1. Ogallala Aquifer Long-Term Monitoring Network	3-11
Figure 3-2. Indicator Constituent Areas for the Ogallala Aquifer	3-13
Figure 3-3. Ogallala LTM Network Sampling Frequency	3-15
Figure 3-4. Monitoring of RRS 3 Soil Release Units for the Ogallala Aquifer	3-17
Figure 4-1. Sample Intake Depths for Ogallala Aquifer Wells	4-9

TABLES

Table 2-1. Summary of LTMO Recommendations	2-5
Table 2-2. Proposed New Long-Term Monitoring Wells for Perched Groundwater	
Table 2-3. Proposed Long-Term Monitoring Network for Perched Groundwater	2-7
Table 2-4. Monitoring of Soil Release Units for Perched Groundwater	2-11
Table 3-1. Proposed New Long-Term Monitoring Wells for the Ogallala Aquifer	3-5
Table 3-2. Proposed Long-Term Monitoring Network for the Ogallala Aquifer	3-7
Table 3-3. Monitoring of Soil Release Units for the Ogallala Aquifer	3-9
Table 4-1. Sample Intake Information for Perched Groundwater Wells	4-3
Table 4-2. Sample Intake Information for Ogallala Aquifer Wells	4-7
Table 5-1. Groundwater Monitoring Data Evaluation Matrix	5-2
Table 5-2. MAROS Mann-Kendall Analysis Decision Matrix	5-9
Table 5-3. MAROS Linear Regression Analysis Decision Matrix	

APPENDICES

Appendix A	Hydrogeologic Description of Pantex Plant
Appendix B	Groundwater Monitoring Network Optimization (GSI, 2008) Optimization of Monitoring Well Placement for Breakthrough Detection in the Ogallala Aquifer (SAIC, 2008) Analysis of Vertical Flow During Ambient and Pumping Conditions in Four Monitoring Wells at the Pantex Plant, Carson County, Texas, July—September 2008 (USGS, 2009)
Appendix C	Chromium in Perched Groundwater Wells
Appendix D	Table of Wells and Coordinates
Appendix E	Modified Compliance Plan Attachment B Well Specifications
Appendix F	Well Construction Diagrams and Approach to Construction of New Ogallala Aquifer Wells

4ADNT	4-amino,2,6-dinitrotoluene
B&W Pantex	Babcock & Wilcox Technical Services, Pantex, LLC
CERCLA	Comprehensive Environmental Response Compensation and Liability Act
CMS/FS	Corrective Measure Study/Feasibility Study
COPC	Constituents of potential concern
COV	Coefficient of variation
Cr(VI)	Hexavalent chromium
EPA	United States Environmental Protection Agency
FCT	Former Cooling Tower
FGZ	Fine-grained zone
GSI	Groundwater Services, Incorporated
GWPS	Groundwater Protection Standard
HE	High explosive
HSU	Hydrostratigraphic unit
LTMO	Long-term monitoring optimization
MAROS	Monitoring and Remediation Optimization System
NNSA	National Nuclear Security Administration
NWS	National Weather Service
OSTP	Old Sewage Treatment Plant
PTC	Princeton Transport Code
PQL	Practical quantitation limit
RAO	Remedial Action Objective
RCRA	Resource Conservation and Recovery Act
RDX	Research Development Explosive (cyclo-trimethylene trinitramine)
RFI	RCRA Facility Investigation
ROD	Record of Decision
RRS	Risk Reduction Standard
SWMU	Solid Waste Management Unit
TCE	Trichloroethene
TCEQ	Texas Commission on Environmental Quality
TTU	Texas Tech University
USDOE	U.S. Department of Energy
WMG	Waste management group
WWTF	Wastewater Treatment Facility

ACRONYMS

1. INTRODUCTION

This report presents the proposed long-term groundwater monitoring (LTM) well network that was developed using statistical methods, fate and transport modeling, and site-specific knowledge for the evaluation of response actions (corrective/remedial actions) for Pantex Plant and monitoring uncertainties near source areas. This report also presents the methods for evaluation of the response actions based on the monitoring well network for Pantex Plant. Collected data are evaluated against expected conditions for each well. Contingency actions for unexpected conditions are provided in the *Pantex Plant Ogallala Aquifer and Perched Groundwater Contingency Plan*.

Pantex Plant is located on the plains of the Texas Panhandle, 17 miles northeast of Amarillo as shown in Figure 1-1. The Ogallala Aquifer, part of the High Plains aquifer system, is the principal water-bearing unit and provides a primary source of water for the region. Additionally, bodies of perched groundwater above the Ogallala Aquifer occur beneath much of Pantex Plant. Areas of this perched groundwater zone have been contaminated as a result of past wastewater discharges from legacy operations at the facility. Contaminated sites at the surface are separated from groundwater in either the perched zone or the Ogallala Aquifer by a 200- to 500-ft (61- to 153-m) thick unsaturated zone. In areas where perched groundwater is present, a second vadose zone occurs above the Ogallala Aquifer. A full description of the hydrogeology for Pantex is provided in Appendix A.

The primary purpose of the LTM network is to ensure that Remedial Action Objectives (RAOs) are being achieved. The data collected from the LTM network will be evaluated in annual and semi-annual progress reports, with a full evaluation of the effectiveness of the response actions in a 5-year review. The LTM network will also be reevaluated during the 5-year review to determine if changes are required to the network or the remedies to meet remedial action objectives presented in the Record of Decision (ROD) (B&W Pantex and Sapere Consulting, 2008).

The perched groundwater monitoring network is designed to monitor plume stability, response action effectiveness, and uncertainty management, as described in greater detail in Section 1.3. The many components of the selected remedy for perched groundwater are intended to work together to create conditions that both stabilize and cleanup the contaminants. The pump and treat systems in the southeast perched groundwater and the Playa 1 area focus on affecting the hydraulics of the system, that is groundwater removal as a means of reducing the potential for both vertical and lateral migration of contaminants. With this understanding, the primary metric for success of the pump and treat systems is perched groundwater thickness, as determined through periodic water level measurements. Routine monitoring for this parameter will provide the basis for determining flow direction, gradient, and thickness. These determinations will aid the prediction of plume movement and rate, as well as vertical flux of contaminants. A secondary benefit of the pump and treat systems is contaminant mass removal. Therefore, chemical analysis is also important as it allows the risk posed by the contaminant plumes to be evaluated periodically.

The southeast and Zone 11 *in situ* treatment systems target contaminant mass removal as a means of cleaning up the perched groundwater and protecting the underlying Ogallala Aquifer from future degradation that could affect its use as a drinking water source. These systems are down gradient of the perched groundwater plumes, in the areas that pose the greatest potential for vertical migration to the Ogallala Aquifer. Chemical analysis and parameters associated with redox potential of the perched groundwater will provide the most important information for determining the effectiveness of these systems. Evaluation of downgradient wells will provide information regarding the effectiveness of the treatment on the perched groundwater.

1.1. REGULATORY REQUIREMENTS

Long-term monitoring (LTM) is required to confirm future expected conditions within the perched groundwater and the Ogallala Aquifer at the Pantex Plant site. This plan is being provided in accordance with Article 8.5 of the Interagency Agreement, as part of the Remedial Design Submittal Package, Section VIII.F of Compliance Plan No. 50284, as part of the Corrective Measures Implementation Work Plan, and as part of the Compliance Plan Application to modify the Compliance Plan (CP-50284) to include the response (corrective) action provisions.

Uncertainty management objectives are included in the development of the plan to fulfill conditions of approval for the Resource Conservation and Recovery Act (RCRA) Facility Investigation Reports presented by Texas Commission on Environmental Quality (TCEQ) and United States Environmental Protection Agency (EPA). Long-term monitoring of perched groundwater and the Ogallala Aquifer will result in obtaining data to identify any unknown contaminant migration pathways. Should data be acquired that confirms an unexpected condition, the conceptual site model assumptions would be evaluated to determine the cause and mitigation measures would be assessed and implemented, as necessary, to maintain protection of human health and the environment. Contingency actions for unexpected conditions are presented in the *Pantex Plant Ogallala Aquifer and Perched Groundwater Contingency Plan*.

1.2. DESIGN STRATEGY

A LTM design strategy was formulated by the Pantex Core Team, a four-member committee established to facilitate better communication and streamline decision-making through the integrated RCRA-Comprehensive Environmental Response Compensation and Liability Act (CERCLA) cleanup process at Pantex Plant. The Core Team includes one member each from EPA, TCEQ, U.S. Department of Energy (USDOE)/ National Nuclear Security Administration (NNSA), and Babcock & Wilcox Technical Services, Pantex, LLC (B&W Pantex). The following steps outline the LTM network design strategy:

- 1. Develop monitoring objectives for each water-bearing unit.
- 2. Evaluate the existing well network in each water-bearing unit (Ogallala Aquifer and perched groundwater) with respect to each objective to identify areas where additional monitoring is needed.
- 3. Use statistical or mathematical monitoring network optimization tools to evaluate the existing well network and optimize the spatial distribution and frequency of monitoring.
- 4. Combine the results of the different evaluation methods to develop the final LTM network.

This design strategy was applied separately to perched groundwater and the Ogallala Aquifer to develop a LTM network for each aquifer. The monitoring objectives are described in the following section. The combined results of the different evaluations and final network designs are presented in Section 2 for perched groundwater and in Section 3 for the Ogallala Aquifer.

1.3. LONG-TERM MONITORING NETWORK OBJECTIVES

1.3.1 Perched Groundwater

Three objectives were identified for monitoring wells in perched groundwater: Plume Stability, Response Action Effectiveness, and Uncertainty Management. Some of the Response Action Effectiveness wells will be used to satisfy requirements under the Compliance Plan for Point of Compliance with the

Groundwater Protection Standards (GWPS). Some of the Uncertainty Management Wells will be used to satisfy requirements in the Compliance Plan for periodic evaluation of the closest water bearing unit near sources of contamination.

1.3.1.1 Plume Stability

The purpose of plume stability wells is to determine if impacted areas (plumes) of perched groundwater are expanding and affecting clean perched groundwater and to monitor the changes occurring within the perched plumes. Plume stability wells are located along the edges of the perched plumes where GWPSs are currently being met (note that some areas of perched groundwater are currently impacted above GWPSs to the extent of perched saturation and should show a decline in concentrations over time) and within perched plumes in areas where plumes may be expanding. The focus of monitoring in plume stability wells will be on constituents specific to the plume, Zone, waste management group (WMG), or unit where the well is located. The expected conditions for the plume stability wells are that changes in concentrations of constituents can be identified over time at various locations within and around the plumes.

1.3.1.2 Response Action Effectiveness

The purpose of response action effectiveness wells is to determine the effectiveness of response measures, indicate when RAOs for perched groundwater have been achieved, and validate modeling results or provide data that can be used to refine modeling. The focus of monitoring in response action effectiveness wells will be on constituents specific to the plume, Zone, WMG, or unit where the well is located. The expected conditions for the response action effectiveness wells are that, over time, indicators of the reduction in volume, toxicity and mobility of constituents will be observed. These indicators may include stable or decreasing concentrations of constituents or declining water levels in areas where response measures have been implemented.

1.3.1.3 Uncertainty Management

The purpose of uncertainty management wells in perched groundwater is to confirm expected conditions identified in the RCRA Facility Investigations (RFIs) and ensure there are not any deviations, fill potential data gaps, and fulfill LTM requirements for soil units evaluated in a baseline risk assessment. Uncertainty management wells are located downgradient of risk assessment units, using a Zone or WMG approach, in areas where perched groundwater is the underlying groundwater or downgradient of known source areas, such as the ditches and playas that contributed much of the constituent mass currently found in perched groundwater. Uncertainty management wells will be used to confirm expected conditions for each Zone, WMG, or unit through monitoring.

Some of the Uncertainty Management Wells will also be used to satisfy requirements in the Compliance Plan for periodic evaluation of wells near sources of contamination to ensure that new contamination is not found over time. Pantex recommends this sampling be conducted every 5 years to correspond to the 5-year review and will focus on wells near the source areas.

1.3.2 Ogallala Aquifer

Two objectives were identified for monitoring wells in the Ogallala Aquifer: Early Detection and Uncertainty Management. Specific wells in the Ogallala Aquifer serve as Point of Exposure wells to also satisfy requirements in the Compliance Plan. Some of the Uncertainty Management Wells were used to satisfy requirements in the Compliance Plan for periodic evaluation of the closest water bearing unit near sources of contamination.

1.3.2.1 Early Detection

The purpose of early detection wells is to identify breakthrough of constituents to the Ogallala Aquifer from overlying perched groundwater, if present, or potential source areas in the unsaturated zone before potential points of exposure have been impacted. Early detection wells are located downgradient of potential source areas, such as impacted areas of perched groundwater, along the edge of the known extent of impacted perched groundwater, and upgradient of potential points of exposure (i.e., the Pantex property boundary). Wells downgradient of potential source areas are located as close to the source area as possible; in some cases these wells must be moved further downgradient because of the risk of creating a migration pathway to the Ogallala Aquifer by drilling through impacted perched groundwater. The focus of monitoring in early detection wells will be on indicator constituents, such as conservative species and degradation products that will most likely be detected following breakthrough to the aquifer. Because of the cleanup actions that have been implemented to protect the Ogallala Aquifer, the expected conditions for the early detection wells are that constituents are not detected above background, the practical quantitation limit (PQL), or GWPSs and that constituents do not reach potential points of exposure above GWPSs.

1.3.2.2 Uncertainty Management

The purpose of uncertainty management wells in the Ogallala Aquifer is to confirm expected conditions identified in the RFIs and ensure there are not any deviations, fill potential data gaps, and fulfill LTM requirements for soil units closed to RRS 3. Uncertainty management wells will be located downgradient of RRS 3 units, using a Zone or WMG approach, in areas where perched groundwater is not present, or downgradient of potential source areas, such as impacted areas of perched groundwater and along the edge of the known extent of impacted perched groundwater.

Some of the Uncertainty Management Wells were also used to satisfy requirements in the Compliance Plan for periodic evaluation of wells near sources of contamination to ensure that new contamination is not found over time. Pantex recommends this sampling be conducted every 5 years to correspond to the 5-year review and will focus on wells near the source areas.

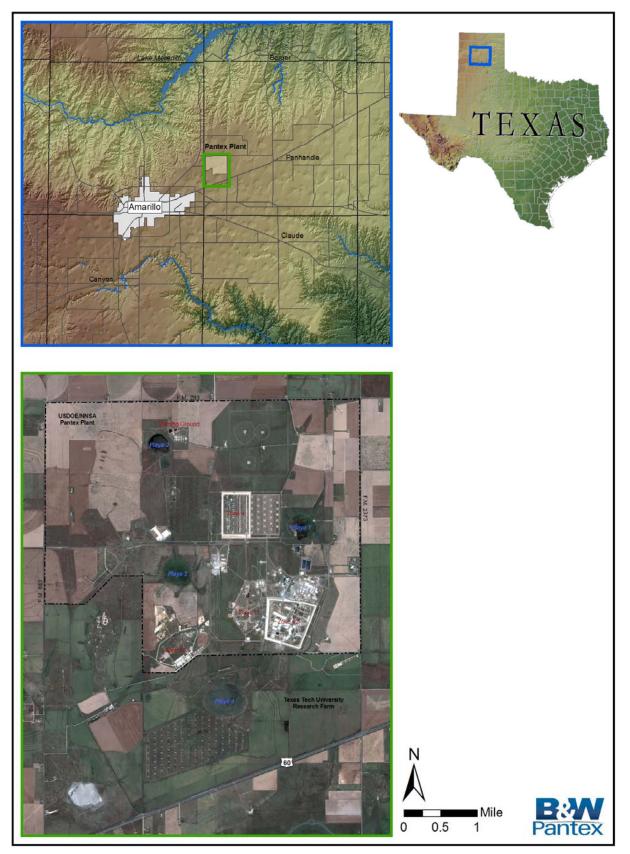


Figure 1-1. Pantex Plant Location Map

2. PERCHED GROUNDWATER

This section summarizes the development of the LTM network for perched groundwater beneath Pantex Plant and presents the final LTM network. The strategy used to develop the monitoring network is presented in Section 1.2 and comprised the following steps:

- 1. Develop monitoring objectives.
- 2. Evaluate the existing well network with respect to each objective to identify areas where additional monitoring is needed.
- 3. Use statistical or mathematical monitoring network optimization tools to evaluate the existing well network and optimize the spatial distribution and frequency of monitoring.
- 4. Combine the results of the different evaluation methods to develop the final LTM network.

The monitoring objectives developed for perched groundwater are described in Section 2.1, the evaluation of the existing well network with respect to each objective is discussed in Section 2.2, and a summary of the statistical monitoring network optimization is provided in Section 2.3. The final LTM network is presented in Section 2.4 with a justification for each proposed new well.

2.1. MONITORING OBJECTIVES

The monitoring objectives developed for perched groundwater, described in Section 1.3.1, are plume stability, response action effectiveness, and uncertainty management. Plume stability wells are intended to determine if constituent plumes in perched groundwater are expanding and to monitor the changes occurring within the plumes. Monitoring in plume stability wells will be focused on constituents specific to the plume, Zone, WMG, or unit where the well is located. Two major plumes, defined by spatial extent, are found in perched groundwater. The southeast plume occurs beneath the eastern side of Pantex Plant and extends southeast beneath TTU property and across FM 2373. The extent of the southeast plume is defined primarily by the extents of RDX and hexavalent chromium, but high explosives, volatiles, and inorganics comprise the plume. The RDX and hexavalent chromium plumes are shown in Figure 2-1 and Figure 2-2. The Zone 11 plume occurs beneath Zone 11 and extends northeast to Playa 1 and south beneath TTU property. Perchlorate defines the extent of the Zone 11 plume, but TCE and other volatiles and high explosives are also found within the plume. The perchlorate plume is shown in Figure 2-3.

Response action effectiveness wells are used to determine the effectiveness of response measures, indicate when RAOs for perched groundwater have been achieved, and validate modeling results or provide data that can be used to refine modeling. Remediation of perched groundwater in the two major plumes will be accomplished through the use of four response action systems. The Southeast Pump and Treat System, Playa 1 Pump and Treat System, and Southeast In Situ Bioremediation System have been installed for the southeast plume. The locations of these systems are shown on Figure 2-1 and Figure 2-2. The Zone 11 In Situ Bioremediation System, designed to intercept the Zone 11 plume, is currently under construction south of Zone 11, as depicted in Figure 2-3.

Uncertainty management wells in perched groundwater provide information to confirm expected conditions identified in the RFIs and ensure there are not any deviations, fill potential data gaps, and fulfill LTM requirements for soil units closed to RRS 3. These wells are discussed further in Section 2.4.2.

2.2. EVALUATION OF EXISTING WELL NETWORK

The existing (as of May 2008) perched groundwater monitoring network, shown in Figure 2-4, was evaluated with respect to each objective to identify areas where additional monitoring is needed. This evaluation resulted in the proposed addition of six wells (PTX06-1130, PTX06-1131, PTX06-1133, PTX06-1146, PTX06-1147, and PTX06-1150) to the network to satisfy the monitoring objectives. Two additional wells (PTX06-1148 and PTX06-1149) were added to provide information for the design and to monitor effectiveness of the Zone 11 ISB response action.

Based on evaluation of the existing network, PTX-BEG3 is recommended for removal from the LTM system. This well was drilled to a depth of 434 ft by the Bureau of Economic Geology in 1992 to gather geologic information as part of the initial investigation. The lower part of the boring was plugged, but the completed well was screened 28 ft into the FGZ. Analytical data from PTX-BEG3 collected since 1992 do not indicate the presence of contamination. However, because this well is in the northeastern corner of Pantex where constituents have been detected in perched groundwater at nonactionable levels, it will be plugged and abandoned as a precaution against providing a pathway through the FGZ.

The proposed perched groundwater LTM network as well as the monitoring objectives satisfied by each existing and proposed well is shown on Figure 2-5.

2.3. SUMMARY OF LONG-TERM MONITORING OPTIMIZATION RECOMMENDATIONS

The current groundwater monitoring network was evaluated by Dr. Mindy Vanderford of GSI Environmental, Inc. using a formal qualitative approach as well as using statistical tools found in the Monitoring and Remediation Optimization System (MAROS) software. MAROS was developed by Groundwater Services, Inc. for the Air Force Center for Engineering and the Environment. Dr. Vanderford made recommendations for perched groundwater sampling frequency and location based on current hydrogeologic conditions and articulated LTM goals for the system. The recommendations for the monitoring network are based on a technical review, balancing both the statistical results with goals of the monitoring system and anticipated site management decisions. The summary presented below was taken from the *Groundwater Monitoring Network Optimization* report (GSI, 2008) included in Appendix B.

2.3.1 Project Goals and Objectives

The goal of the long-term monitoring optimization (LTMO) process is to review the current groundwater monitoring program and provide recommendations for improving the efficiency and accuracy of the network in supporting monitoring objectives. Specifically, the LTMO process provides information on site characterization, plume stability, sufficiency and redundancy of monitoring locations, and the appropriate frequency of network sampling. The end product of the LTMO process at Pantex Plant is a recommendation for specific sampling locations and frequencies that best address site monitoring goals and objectives.

2.3.2 Results

The monitoring system for perched groundwater was evaluated using analytical and hydrogeologic data from sampling events conducted between January 2000 and May 2007. Perched groundwater was divided into three sectors for analysis based on the direction of groundwater flow, source areas, and major constituents associated with each sector. Investigation wells were grouped into networks according to the defined sectors. The Southeast Sector monitoring network consists of wells in perched groundwater extending south from Playa 1 to the eastern and southern extent of perched groundwater including Zone 12. The Southwest Sector monitoring network includes and extends west and south of Zone 11.

Investigation wells south of Zone 12 were included in both the Southwest and Southeast Sector spatial analyses to account for possible variability in groundwater flow. The North Sector includes groundwater north of Zones 11 and 12 in the vicinity of Playa 1. Pantex Plant perched groundwater analytical data were evaluated using a combination of statistical analyses for priority COCs and consideration of qualitative issues such as hydrogeology, potential receptors, and monitoring goals to produce general recommendations for monitoring. The recommended network reduces monitoring effort and cost in some areas, but includes the addition of new wells in areas where further characterization would support sitemonitoring goals and also increases data collection effort in some areas to provide a dataset that fulfills statistical requirements for evaluating the effects of the remedies discussed in the Corrective Measure Study/Feasibility Study (CMS/FS) (BWXT, 2007b). A summary of the recommended changes to the monitoring network is presented in Table 2-1.

2.4. LONG-TERM MONITORING NETWORK FOR PERCHED GROUNDWATER

The recommendations from the LTMO analysis were combined with the results of the evaluation against monitoring objectives to develop the final proposed well network shown in Figure 2-5. The following section describes how the recommendations from the LTMO analysis were incorporated into the final proposed well network. Section 2.4.2 provides an analysis of how the proposed well network satisfies the requirement for LTM to address uncertainties regarding the vertical extent of constituents beneath soil release units.

2.4.1 Incorporation of LTMO Recommendations

As described in Section 2.3.2, the perched groundwater was divided into three sectors for analysis based on the direction of groundwater flow, source areas, and major constituents associated with each sector. These sectors were further refined according to the extents of constituent plumes, as shown in Figure 2-6, to allow a list of specific indicator constituents to be developed for each area for the Compliance Plan. The most widespread and mobile contaminants at Pantex, such as high explosives and VOCs, will be included on the indicator lists for all areas. Additional contaminants identified only in specific areas of perched groundwater (e.g., hexavalent chromium or perchlorate) will only be included in the indicator lists for certain areas.

The Southeast sector was extended to include several wells on the western side of Zone 12. In the Southwest sector, the extent of perched groundwater underlying Zone 10, Playa 2, and southwest of Zone 4 in the western portion of the sector was removed from the sector. The remainder of the Southwest sector, encompassing the area affected by migration of perchlorate from Zone 11, was renamed the Zone 11 sector. In the North sector, the area surrounding the Burning Ground and Playa 3 was defined as the Burning Ground area. The area north and northwest of Playa 1 encompassing the northern portion of the RDX plume was retained as the North sector, while the remaining portions of the North and Southwest sectors were grouped into a Miscellaneous area. The Miscellaneous area includes wells near Zone 10, Playa 2, Pantex Lake, and the Old Sewage Treatment Plant.

The proposed LTM network for perched groundwater is shown in Figure 2-5. The final network includes a total of 107 perched wells. New wells proposed for addition to the network are explained in Table 2-2. All seven new wells recommended in the LTMO analysis were included in the final network.

Four of the seven wells recommended in the LTMO analysis for elimination from the network based on the spatial redundancy analysis were retained because these wells fulfill one or more of the monitoring objectives. The other three wells (PTX06-1087, PTX07-1P03, and PTX10-1008) monitor unaffected groundwater and were removed. None of these wells will be plugged and abandoned because all wells are

useful for obtaining water level measurements. Additionally, several wells in the Miscellaneous Area were recommended for 5-year sampling intervals.

Table 2-3 provides a complete list of all wells in the proposed long-term monitoring network for perched groundwater. The table includes the LTM objectives to be satisfied by each proposed well, the metrics to be used in evaluating data collected from the well, the expected condition, and proposed monitoring frequency. Evaluation metrics include water level trends, comparison of concentrations to the GWPS, and concentration trends; these metrics and the expected conditions are discussed in Section 5. Additional details on monitoring, including analyte lists, sampling procedures, and analysis methods, are provided in the *Sampling and Analysis Plan* (B&W Pantex, 2009).

The final perched LTM network consists of:

- 108 perched wells 19 of those wells will be monitored for continued dry conditions, with 89 sampled for laboratory analysis.
- 51 wells recommended to be sampled semi-annually, 31 wells recommended for annual sampling, and 7 wells recommended for 5-year sampling of indicator constituents. Corrosion parameters will also be collected to evaluate potential corrosion influence in stainless steel wells that are sampled for chromium.
- Wells near the *in situ* bioremediation systems will be sampled as needed to evaluate system performance. This sampling will be specific to the type of contaminants that are being treated and to verify required water quality conditions in the aquifer.
- A subset of the wells in the Southeast, North, and Zone 11 monitoring areas will be sampled for natural attenuation parameters to evaluate the natural breakdown of RDX and chlorinated solvents.
- All wells will have water levels checked semi-annually.
- 41 wells are recommended for 5-year sampling of a modified 40 CFR Part 264 Appendix IX groundwater list to satisfy uncertainty management requirements. Corrosion parameters will also be collected at stainless steel wells.

A table listing all wells and their coordinates (northings and eastings) is included in Appendix D.

2.4.2 Monitoring of Soil Release Units

TCEQ and EPA conditionally approved the investigations of soil release units with a requirement for LTM downgradient of release units to address uncertainties regarding the vertical extent of constituents. For purposes of monitoring the soil release units, the units were grouped by Zone or Waste Management Group and downgradient wells were identified in the first groundwater encountered. The perched LTM network contains an adequate number of wells to monitor soil units across the plant where the perched groundwater is the first groundwater encountered. Landfill areas to the west have adequate cover material and results of investigations indicate that soil contamination is limited, so downward migration of contamination is unlikely. Additionally, downgradient Ogallala Aquifer wells will be used to monitor for those units.

Soil release units and perched groundwater monitoring wells are shown in Figure 2-8. A listing of the soil release units and the associated downgradient monitoring wells is provided in Table 2-4. This list contains all units that were evaluated in a baseline risk assessment. In addition to monitoring for indicator

contaminants in perched groundwater, these wells will also be monitored for a larger list of analytes (based on a modified 40 CFR Part 264 Appendix IX list provided in the Sampling and Analysis Plan) on a 5-year sampling interval.

Sector	Recommended Well Additions		or Recommended Well Additions Recommended Well Remov			Recommended Well Removals
Southeast	2	PTX06-1130, PTX06-1135	1	PTX06-1014		
Southwest	4	PTX06-1126, PTX06-1127, PTX06-1131, PTX06-1134	6	PTX06-1006, PTX06-1087, PTX07-1P02, PTX07-1P03, PTX07-1Q02, and PTX10-1008		
North	1	PTX06-1136	No	ne		

Table 2-2. Proposed New Long-Term Monitoring Wells for Perched Groundwater

Well Identifier	Location	Purpose
PTX06-1130 PTX06-1146 PTX06-1147	East of FM 2373	Provide information regarding the effects of the Southeast Pump and Treat System and help characterize the nature and extent of perched groundwater impacts east of FM 2373.
PTX06-1131	Southwest of Zone 10	Monitor for the potential migration of constituents from release units in Zone 10. No perched groundwater impacts have been identified associated with Zone 10 in the three existing wells in this area, but these wells were installed to monitor the landfills northwest of Zone 10.
PTX06-1133	Near the southeastern extent of perched groundwater	Monitor the stability of the southeast plume fringe where plume has migrated beyond the existing wells.
PTX06-1126 PTX06-1127 PTX06-1148 PTX06-1149 PTX06-1150	TTU property south of Zone 11	Monitor the stability of the Zone 11 plume and effectiveness of Zone 11 ISB corrective action. Wells PTX06-1126 and PTX06-1127 were installed in early 2008 to monitor the stability of the Zone 11 plume on USDOE property and to provide information about the distribution of concentrations within the plume.
PTX06-1134	TTU property southwest of Zone 11	Delineate perchlorate plume downgradient of PTX06-1012.
PTX06-1135	TTU property south of Zone 11	Reduce spatial uncertainty in the vicinity of PTX06-1036, PTX06-1052, and PTX06-1053. A new well in this area may be beneficial for monitoring concentrations of hexavalent chromium and RDX and other high explosives.
PTX06-1136	North of Zone 4	Delineate RDX in perched groundwater downgradient of PTX06-1050.

Table 2-3. Proposed Long-Term Monitoring Network for Perched Groundwater	
--	--

Indicator Area ¹	Well ID	LTM Objectives	Progress Report Metrics	Expected Condition	Indicator List ² Monitoring Frequency	Appendix IX Monitoring List ³	Appendix IX Monitoring Frequency
Burning Ground	PTX01-1001	Uncertainty Management	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Semi-Annual	Y	5 Yrs
Burning Ground	PTX01-1002	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Annual	Y	5 Yrs
Burning Ground	PTX01-1004	Plume Stability	Dry	Remain dry	NA	N	NA
Burning Ground	PTX01-1008	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	Y	5 Yrs
Burning Ground	PTX01-1009	Plume Stability	Dry	Remain dry	NA	Ν	NA
Miscellaneous	PTX04-1001	Uncertainty Management	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	5 Yrs	Y	5 Yrs
Miscellaneous	PTX04-1002	Uncertainty Management	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Annual	Y	5 Yrs
Miscellaneous	PTX06-1049	Plume Stability, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Annual	Ν	NA
Miscellaneous	PTX06-1055	Plume Stability	Dry	Remain dry	NA	N	NA
Miscellaneous	PTX06-1071	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	5 Yrs	Y	5 Yrs
Miscellaneous	PTX06-1080	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	5 Yrs	N	NA
Miscellaneous	PTX06-1081	Uncertainty Management	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Annual	N	NA
Miscellaneous	PTX06-1082	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	5 Yrs	Y	5 Yrs
Miscellaneous	PTX06-1083	Uncertainty Management	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	5 Yrs	Y	5 Yrs
Miscellaneous	PTX06-1085	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Annual	Y	5 Yrs
Miscellaneous	PTX06-1086	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Annual	Y	5 Yrs
Miscellaneous	PTX06-1096A	Plume Stability, Uncertainty Management	Dry	Remain dry	NA	N	NA
Miscellaneous	PTX06-1097	Plume Stability, Uncertainty Management	Dry	Remain dry	NA	N	NA
Miscellaneous	PTX06-1131	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	Y	5 Yrs
Miscellaneous	PTX07-1Q01	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Annual	Y	5 Yrs
Miscellaneous	PTX07-1Q02	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Annual	Y	5 Yrs
Miscellaneous	PTX07-1Q03	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Annual	Y	5 Yrs
Miscellaneous	PTX07-1R03	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	5 Yrs	Y	5 Yrs
Miscellaneous	PTX08-1010	Uncertainty Management	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	5 Yrs	Y	5 Yrs
North	OW-WR-38	Uncertainty Management, Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Annual	Y	5 Yrs
North	PTX06-1048A	Plume Stability, Response Action Effectiveness	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Annual	N	NA
North	PTX06-1050	Uncertainty Management, Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA
North	PTX06-1136	Plume Stability	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	Ν	NA
North	PTX07-1001	Plume Stability, Uncertainty Management, Response Action Effectiveness	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	Y	5 Yrs
North	PTX07-1002	Plume Stability, Uncertainty Management, Response Action Effectiveness	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	Y	5 Yrs
North	PTX07-1003	Plume Stability, Uncertainty Management, Response Action Effectiveness Plume Stability, Uncertainty Management, Response Action	Trend/Compare to GWPS	Long-term decreasing trend	Annual	Y	5 Yrs
North	PTX07-1006	Effectiveness	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Annual	Ν	NA
Southeast	PTX06-1002A	Uncertainty Management, Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	Y	5 Yrs
Southeast	PTX06-1003	Uncertainty Management, Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Annual	Y	5 Yrs
Southeast	PTX06-1010	Uncertainty Management	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	Ŷ	5 Yrs
Southeast	PTX06-1013	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA

Indicator Area ¹	Well ID	LTM Objectives	Progress Report Metrics	Expected Condition	Indicator List ² Monitoring Frequency	Appendix IX Monitoring List ³	Appendix IX Monitoring Frequency
Southeast	PTX06-1014	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Annual	N	NA
Southeast	PTX06-1015	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1023	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1030	Response Action Effectiveness	Trend/Compare to GWPS	Long-term stabilization of concentrations	Semi-Annual	Ν	NA
Southeast	PTX06-1031	Response Action Effectiveness	Trend/Compare to GWPS	Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1034	Response Action Effectiveness	Trend/Compare to GWPS	Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1036	Plume Stability	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Annual	Ν	NA
Southeast	PTX06-1037	Response Action Effectiveness	Trend/Compare to GWPS	Below GWPS in 2–5 years	Semi-Annual	N	NA
Southeast	PTX06-1038	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1039A	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1040	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1041	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1042	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1045	Response Action Effectiveness	Trend/Compare to GWPS	Below GWPS in 2–5 years	Semi-Annual	N	NA
Southeast	PTX06-1046	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1047A	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1051	Plume Stability	Dry	Remain dry	NA	N	NA
Southeast	PTX06-1052	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1069	Plume Stability	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Annual	N	NA
Southeast	PTX06-1088	Uncertainty Management, Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	Y	5 Yrs
Southeast	PTX06-1089	Plume Stability	Dry	Remain dry	NA	Ν	NA
Southeast	PTX06-1090	Plume Stability	Dry	Remain dry	NA	Ν	NA
Southeast	PTX06-1091	Plume Stability	Dry	Remain dry	NA	N	NA
Southeast	PTX06-1093	Plume Stability	Dry	Remain dry	NA	Ν	NA
Southeast	PTX06-1094	Plume Stability	Dry	Remain dry	NA	Ν	NA
Southeast	PTX06-1095A	Uncertainty Management, Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA
Southeast	PTX06-1098	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Long-term stabilization of concentrations	Semi-Annual	Ν	NA
Southeast	PTX06-1100	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Long-term stabilization of concentrations	Annual	N	NA
Southeast	PTX06-1101	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Long-term stabilization of concentrations	Annual	N	NA
Southeast	PTX06-1102	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Annual	N	NA
Southeast	PTX06-1103	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Long-term stabilization of concentrations	Semi-Annual	Ν	NA
Southeast	PTX06-1118	Response Action Effectiveness	Trend/Compare to GWPS	Long-term stabilization of concentrations	Annual	Ν	NA
Southeast	PTX06-1119	Plume Stability	Dry	Remain dry	NA	Ν	NA
Southeast	PTX06-1120	Plume Stability	Dry	Remain dry	NA	Ν	NA
Southeast	PTX06-1121	Plume Stability	Dry	Remain dry	NA	Ν	NA
Southeast	PTX06-1122	Plume Stability	Dry	Remain dry	NA	Ν	NA
Southeast	PTX06-1123	Response Action Effectiveness	Trend/Compare to GWPS	Below GWPS in 2–5 years	Semi-Annual	N	NA
Southeast	PTX06-1124	Plume Stability	Dry	Remain dry	NA	Ν	NA
Southeast	PTX06-1125	Plume Stability	Dry	Remain dry	NA	Ν	NA
Southeast	PTX06-1130	Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	N	NA

Indicator Area ¹	Well ID	LTM Objectives	Progress Report Metrics	Expected Condition	Indicator List ² Monitoring Frequency	Appendix IX Monitoring List ³	Appendix IX Monitoring Frequency
Southeast	PTX06-1133	Plume Stability	Dry	Remain dry	NA	N	NA
Southeast	PTX06-1135	Plume Stability	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	N	NA
Southeast	PTX06-1146	Plume Stability	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	N	NA
Southeast	PTX06-1147	Plume Stability	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	N	NA
Southeast	PTX08-1002	Uncertainty Management, Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	Y	5 Yrs
Southeast	PTX08-1009	Uncertainty Management, Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	Y	5 Yrs
Southeast, Zone 11	PTX06-1008	Uncertainty Management	Trend/Compare to GWPS	Long-term decreasing trend	Annual	Y	5 Yrs
Southeast, Zone 11	PTX06-1011	Uncertainty Management	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Annual	Y	5 Yrs
Southeast, Zone 11	PTX06-1053	Plume Stability, Uncertainty Management	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Semi-Annual	N	NA
Southeast, Zone 11	PTX08-1007	Uncertainty Management	Trend/Compare to GWPS	Long-term decreasing trend	Annual	Y	5 Yrs
Southeast, Zone 11	PTX08-1008	Uncertainty Management, Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	Y	5 Yrs
Southeast, Zone 11	PTX10-1013	Uncertainty Management	Trend/Compare to GWPS	Long-term decreasing trend	Annual	Y	5 Yrs
Zone 11	PTX06-1005	Uncertainty Management, Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Semi-Annual	Y	5 Yrs
Zone 11	1114-MW4	Uncertainty Management	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	Y	5 Yrs
Zone 11	PTX06-1006	Plume Stability	Trend/Compare to GWPS	Long-term decreasing trend	Annual	N	NA
Zone 11	PTX06-1007	Uncertainty Management	Trend/Compare to GWPS	Long-term decreasing trend	Annual	Y	5 Yrs
Zone 11	PTX06-1012	Plume Stability, Response Action Effectiveness	Trend/Compare to GWPS	Below GWPS in 2–5 years	Semi-Annual	N	NA
Zone 11	PTX06-1035	Plume Stability	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Semi-Annual	Ν	NA
Zone 11	PTX06-1073A	Plume Stability	Dry	Remain dry	NA	Ν	NA
Zone 11	PTX06-1077A	Uncertainty Management	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Annual	Y	5 Yrs
Zone 11	PTX06-1126	Plume Stability, Uncertainty Management	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	Y	5 Yrs
Zone 11	PTX06-1127	Plume Stability, Uncertainty Management	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	Y	5 Yrs
Zone 11	PTX06-1134	Plume Stability	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	Ν	NA
Zone 11	PTX06-1148	Plume Stability, Response Action Effectiveness	Trend/Compare to GWPS	Below GWPS in 2–5 years	Semi-Annual	Ν	NA
Zone 11	PTX06-1149	Plume Stability	Trend/Compare to GWPS	Below GWPS in 2–5 years	Semi-Annual	Ν	NA
Zone 11	PTX06-1150	Plume Stability, Response Action Effectiveness	Trend/Compare to GWPS	Below GWPS in 2–5 years	Semi-Annual	N	NA
Zone 11	PTX07-1P02	Uncertainty Management	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Semi Annual	Y	5 Yrs
Zone 11	PTX07-1P05	Uncertainty Management	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Annual	Y	5 Yrs
Zone 11	PTX08-1001	Uncertainty Management, Response Action Effectiveness	Water Level, Trend/Compare to GWPS	Decreasing water levels, Long-term stabilization of concentrations	Annual	Y	5 Yrs
Zone 11	PTX08-1003	Plume Stability	Trend/Compare to GWPS	Stable or decreasing trend below GWPS	Annual	N	NA
Zone 11	PTX08-1005	Uncertainty Management	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	Y	5 Yrs
Zone 11	PTX08-1006	Uncertainty Management	Trend/Compare to GWPS	Long-term decreasing trend	Semi-Annual	Y	5 Yrs

1

The indicator monitoring lists are set according to the monitoring areas. The indicator monitoring lists can be found in the Pantex Sampling and Analysis Plan, Table IIIA of the Corrective Action Compliance Plan, and are shown on Figure 2-6. Refer to the latest approved Pantex Sampling and Analysis Plan (B&W Pantex) or the Corrective Action Compliance Plan Table IIIA for the indicator monitoring lists. A full list of constituents to be monitored is required for uncertainty management. A modified Appendix IX has been recommended for the Corrective Action Compliance Plan Application (Table III) and in the Pantex Sampling and Analysis Plan. 2 3

Grouping	Release Units	Perched Wells
Zone 10		
WMG 12	AOC 3a: Former Boiler House Areas, Zone 10 AOC 14: Battery Storage Area, Scrap/Salvage Yard, (10-9) SVS 3: Carbon Black Burial Area-Zone 10 (Duplicate of SWMU 67) SVS 8: Abandoned Zone 10 Landfill Construction Debris Landfill SWMU 68d: Active Sanitary Landfill SWMU 84: Scrap and Salvage Yard, Bldg 10-9 SWMU 143a: Former Waste Drum Storage Areas/Bldg 10-9 SWMU 143b: Former Waste Drum Storage Areas/Bldg 10-7 SWMU 144: Zone 10 TNT Settling Pit (10-13) SWMU 145: Zone 10 TNT Settling Pit (10-17) SWMU 146: Zone 10 TNT Settling Pit (10-26) Zone 10 Building Construction Debris Landfills (5)	PTX07-1Q01 PTX07-1Q02 PTX07-1Q03 PTX06-1131
	Zone 10 Construction Debris Berms (A-I)	
Zone 11		
WMG 1	AOC 8b: Solvent Leaks (Pad 11-13) SVS 2: Zone 11 Parallel Depression Near Bldg 11-26 SVS 5: Landfill East of 11-13 Pad (Construction Debris from Bldgs 11- 12,11-13) SWMU 60: Landfill 9 (Group III) Building Demolition Debris Landfill SWMU 61: Landfill 10 (Group III) Building Demolition Debris Landfill SWMU 147: Zone 11 TNT Settling Pit (11-13) SWMU 149: Zone 11 TNT Settling Pit (11-26) SWMU 150: Building 11-12	
WMG 2	AOC 1: Transformer Leak Near 11-14A AOC 8c: Solvent Leaks (PAD 11-17) SWMU 3: Bldg 11-44 Drainage Ditch SWMU 12: Drainage Ditch Near 11-14 Pond & Pipeline SWMU 86: Waste Accumulation Area 11-14 Solvent Storage Shed SWMU 117: 11-44 HE Settling Tank SWMU 118: Bldg 11-44 HE particulate Filters SWMU 119a: Bldg 11-44 HE Particulate Filters SWMU 120a: Bldg 11-44 Activated Carbon Filters SWMU 148: Zone 11 TNT Settling Pit (11-17)	1114-MW4 PTX08-1005 PTX08-1006 PTX06-1126 PTX06-1127
WMG 3	AOC 7a: Sulfuric Acid Spills (11-36) AOC 8d: Solvent Leaks (Pad 11-22) AOC 8e: Solvent Leaks (Bldg 11-36) SWMU 5/08: Drainage Ditch 11-36 SWMU 113: Overflows From 11-36 Collection System/Sump Unassigned Former Leaching Bed N of Bldg 11-50 & W of Bldg 11-36	
WMG 4	SWMU 5-09a: Building 11-17 Drainage Ditch SWMU 5/09b: Drainage Ditch 11-20 SWMU 5/11: Zone 11 Main Drainage Ditch SWMU 13: Surface Impoundment Solar Evaporation Pits at Bldg 11-51 SWMU 87: Building 11-20 Solvent Storage Shed Unassigned Evaporation Pit, East of Bay 3, Bldg 11-20 Unassigned Evaporation Pit, South of Bay 11, West of Bay 6, Bldg 11-20 Unassigned - Former 11-15 Pond	

Table 2-4. Monitoring	of Soil Release	Units for Perch	ed Groundwater
Table 2-4. Wollitoring	of Soll Kelease	Units for Terci	ieu Grounuwater

Grouping	Release Units	Perched Wells
Zone 12		
WMG 5	AOC 7c: Sulfuric Acid Spills (12-64)	
	SWMU 5/06a: Drainage Ditch 12-44	
	SWMU 5/06b: Drainage Ditch 12-81	
	SWMU 56: Landfill 5 (Group III) Building Construction Debris Landfill	PTX08-1008
	SWMU 57: Landfill 6 (Group III) Building Construction Debris Landfill	PTX08-1009
	SWMU 68a North: Original Misc Purpose Sanitary Landfill	
	SWMU 103: Former Battery Storage Area, Bldg 12-81	
N/A	SWMU 135: Subsurface Leach Beds, Bldg 12-44 SWMU 5-12b: Perimeter Drainage Ditch from Zone 12 to SWMU 5-143c	-
IN/A	AOC 10a: Building 12-43A Pesticide Rinse Area	
	AOC 13a: Former Cooling Tower in Zone 12 (Pad)	
	AOC 13b: Former Cooling Tower in Zone 12 (Piping/Soil)	
	SWMU 1: Bldg 12-17 Drainage Ditch	
	SWMU 2: Bldg 12-43 Drainage Ditch	
	SWMU 5/04a: Drainage Ditch 12-19	PTX06-1002A
	SWMU 5/04b: Drainage Ditch 12-73	PTX06-1003
	SWMU 5/05: Drainage Ditch Between Bldgs 12-21 & 12-24	PTX06-1005
WMG 6/7	SWMU 5/07: Drainage Ditch 12-41	PTX06-1010 PTX06-1011
wivid 0//	SWMU 5/12a: Zone 12 Main Drainage Ditch	PTX06-1011 PTX06-1088
	SWMU 54: Landfill 3	PTX06-1095A
	SWMU 55: Landfill 4	PTX08-1007
	SWMU 119b: High Explosives Filters	PTX08-1009
	SWMU 120b: Carbon Filters	
	SWMU 121: High Explosives Settling Tank	
	SWMU 122a: Bldg 12-43 Equalization Tank/Soil	
	SWMU 122b: Bldg 12-24N/12-43 Vicinity Soil	
	SWMU 123: Concrete Sump & Waste Water Treatment Unit	
	AOC 5: Electrical Equipment Bone Yard near Building 12-5	
	AOC 10b: Pesticide Rinse Area (Bldg 12-51)	
WMG 9	AOC 12: Bldg 12-5D Paint Shop Area/ Solvent Pit	PTX06-1002A
WING 9	SWMU 5-02a: Building 12-51 Drainage Ditch SWMU 5/02b: Drainage Ditch 12-67	PTX06-1003
	SWMU 5-02c: Building 12-110 Drainage Ditch	
	Capacitor Bank Rupture Zone 12	
	AOC 15: DDT Release at Bldg 12-35	
	SWMU 5/01a: Drainage Ditch Bldg 12-5	
WMG 10	SWMU 5/01b: Drainage Ditch Bldg 12-5B	PTX10-1013
	Bldg 12-5 Concrete Sump	
N/A	SWMU 136: Subsurface Leaching Systems, Bldg 12-59	PTX06-1008
Burning G	round	
WMG 13	SWMU 8: Playa 3	PTX01-1001
	SWMU 14-24: Burning Ground-Explosive Burn Pads	PTX01-1002
	SWMU 25: Burning Ground-Explosive Burn Pad 11	PTX01-1008
	SWMU 26: Burning Ground-Explosive Burn Pad 12	
	SWMU 27 Burning Ground-Explosive Burn Pad 13	
	SWMU 37: Burning Ground-Landfill 1	
	SWMU 38: Burning Ground-Landfill 2	
	SWMU 39: Burning Ground-Landfill 3	
	SWMU 40: Burning Ground-Landfill 4	

Grouping	Release Units	Perched Wells
	SWMU 41: Burning Ground-Landfill 5	
	SWMU 42: Burning Ground-Landfill 6	
	SWMU 43: Burning Ground-Landfill 7	
	SWMU 44: Burning Ground-Landfill 8	
	SWMU 45: Explosive Burn Cage	
	SWMU 46: Explosive Burn Cage	
	SWMU 47: Burning Ground-Evaporation Pit	
	SWMU 48: Burning Ground Solvent Evaporation Pans	
	SWMU 49: Burning Ground Solvent Evaporation Pans	
	SWMU 50: Burning Ground Solvent Evaporation Pans	
	SWMU 51: Burning Ground Solvent Evaporation Pans	
	SWMU 52: Burn Racks and Flashing Pits	
	Unassigned Burning Ground-Explosive Burn Pad 16	
	Unassigned: Demonstration Facilities	
Other Unit	8	
WMG 11	SWMU 6: Playa 1	OW-WR-38
North		PTX08-1001
North		PTX08-1002
		PTX07-1O01
WMG 11	SWMU 68b: General Purpose Sanitary Landfill 1	PTX07-1002
North	Swinto 660. General Pulpose Santary Landini I	PTX07-1003
		PTX07-1006
WMG 11 North	SWMU 82: Nuclear Weapon Accident Residue Storage	PTX06-1050
	SWMU 5/13 (a, b, and c): Drainage Ditch to Playa 1	PTX06-1002A
WMG 11		PTX06-1007
South		PTX08-1001
South		PTX08-1002
		PTX10-1013
WMG 11 South	SWMU 68c: General Purpose Sanitary Landfill 2	PTX07-1P05
N/A	AOC 11: Fire Training Area Burn Pits	PTX06-1077A
N/A	SWMU 4: Building 11-50 Drainage Ditch	PTX08-1005
N/A	SWMU 5 150 % h. Drainage Ditch to Diana 4	PTX06-1053
N/A	SWMU 5-15a & b: Drainage Ditch to Playa 4	PTX06-1134
N T/ 4	SWALL 7. Disco 2	PTX06-1085
N/A	SWMU 7: Playa 2	PTX06-1086
N/A	SWMU 9: Playa 4	PTX06-1053
N/A	SWMU 10: Pantex Lake	PTX06-1082
		PTX06-1083
N/A	SWMU 58: Landfill 7	PTX06-1077A
N/A	SWMU 64: Landfill 13	PTX07-1R03
N/A	SVS 7a and 7b: Igloo Demolition Debris Landfills Zone 4 (SVS 7a)	PTX06-1049
	and Zone 5 (SVS 7b)	PTX06-1096A
		PTX06-1097

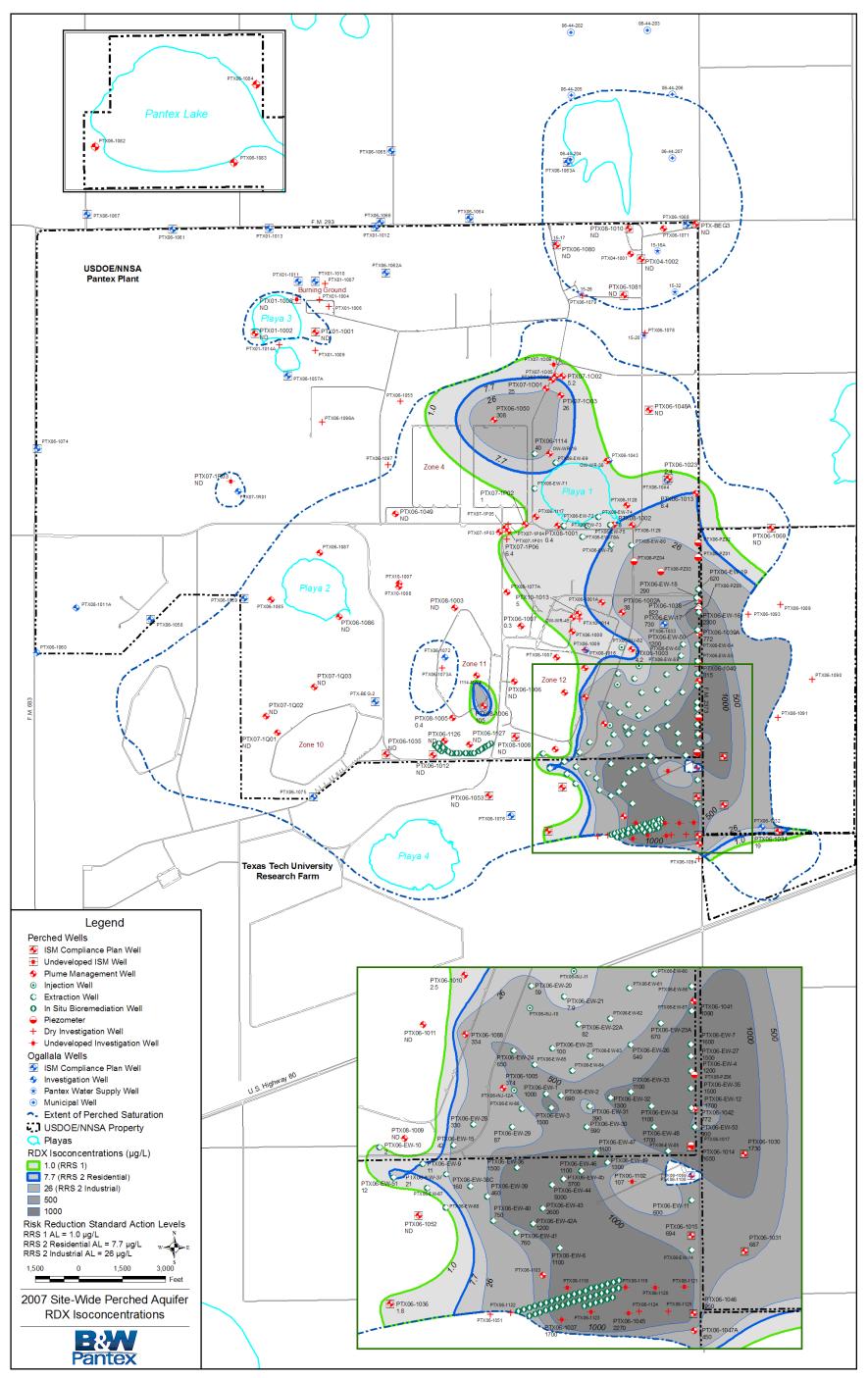


Figure 2-1. Perched Groundwater RDX Isoconcentrations

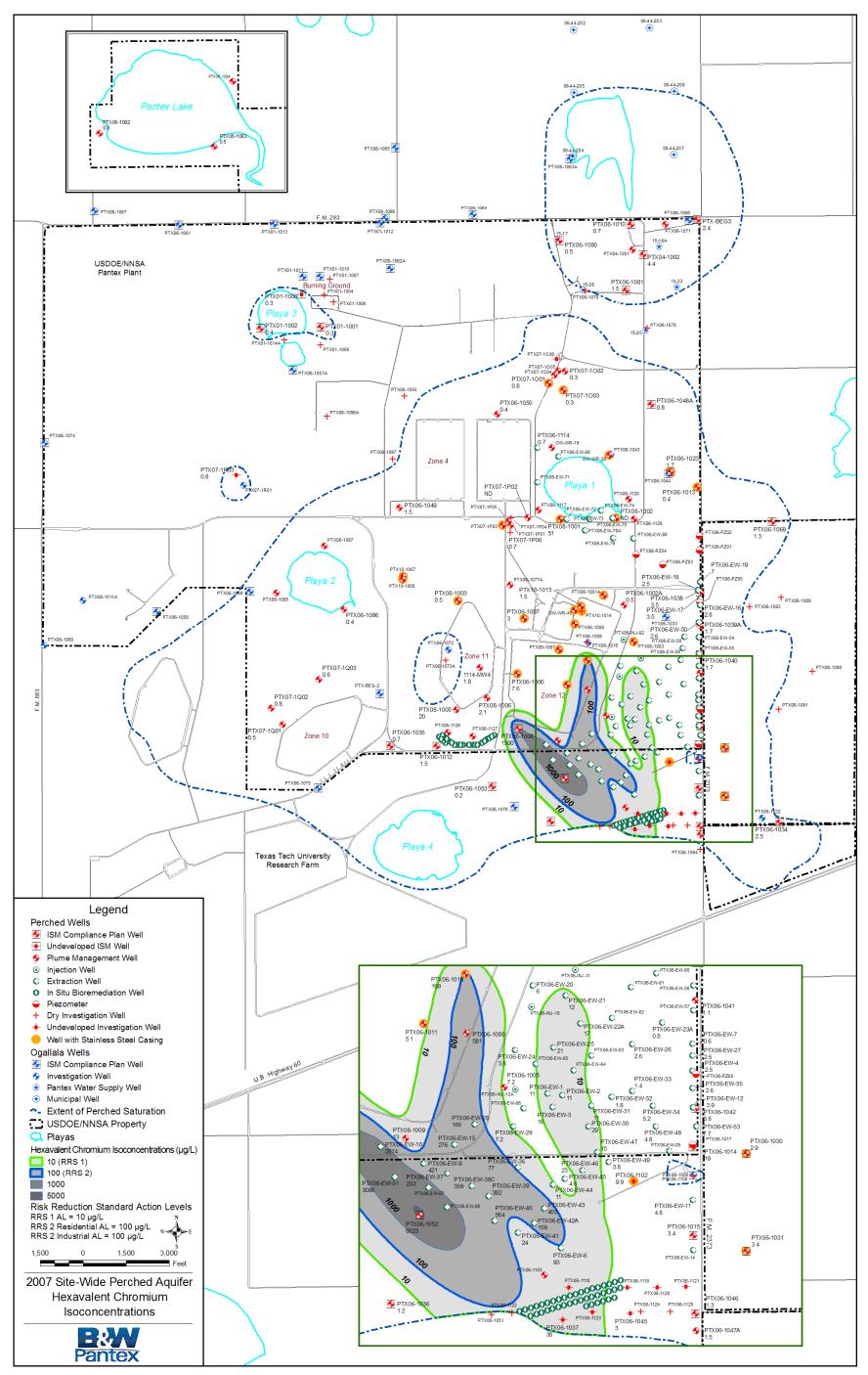


Figure 2-2. Perched Groundwater Hexavalent Chromium Isoconcentrations

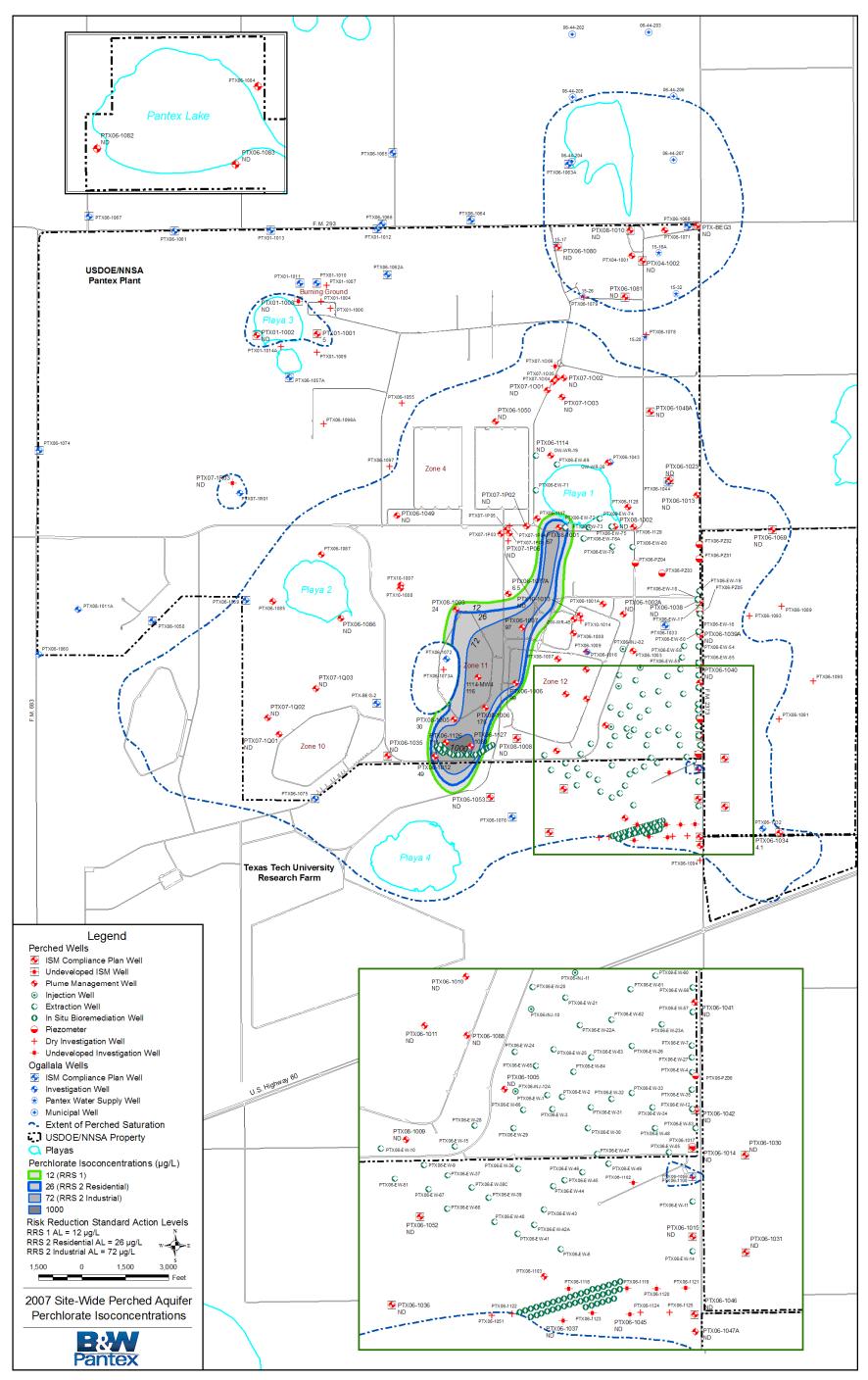


Figure 2-3. Perched Groundwater Perchlorate Isoconcentrations

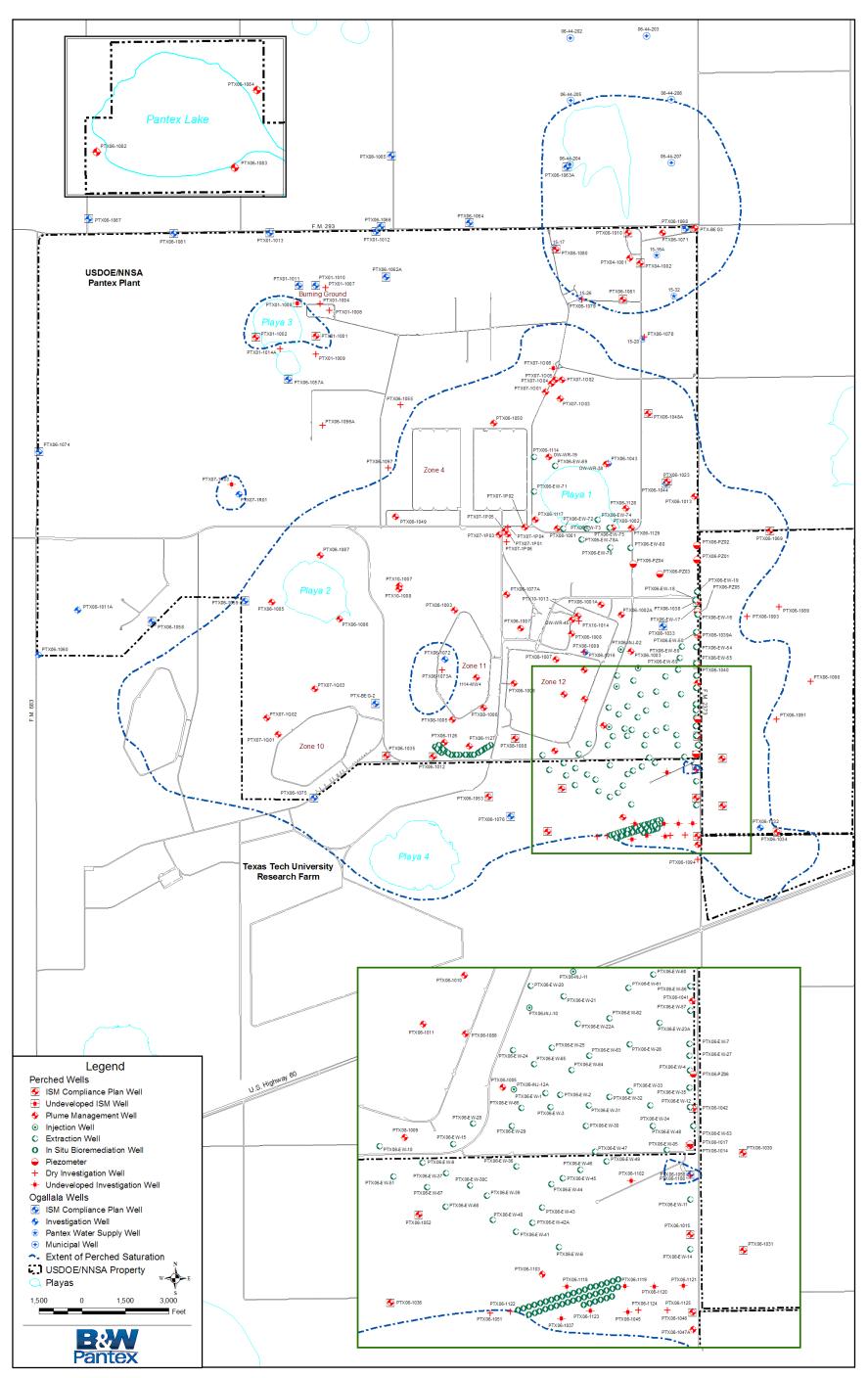
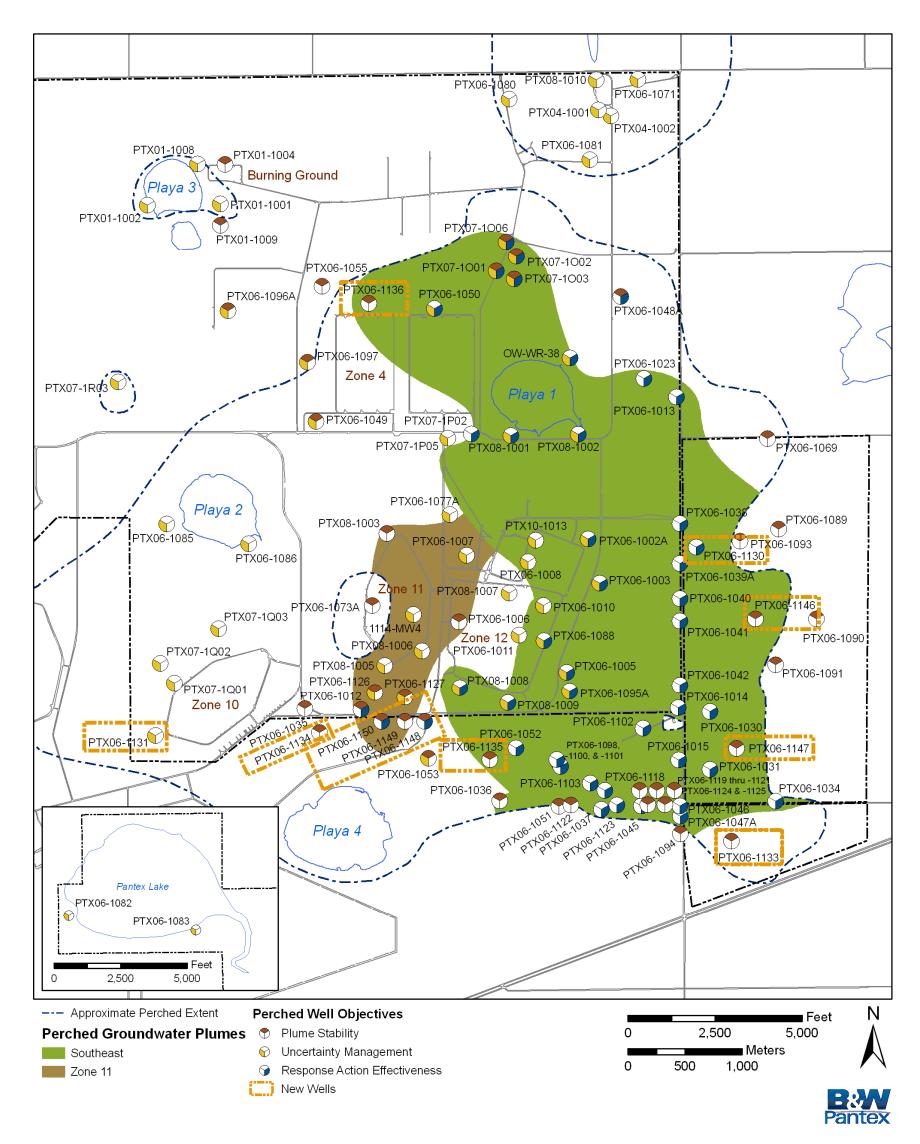
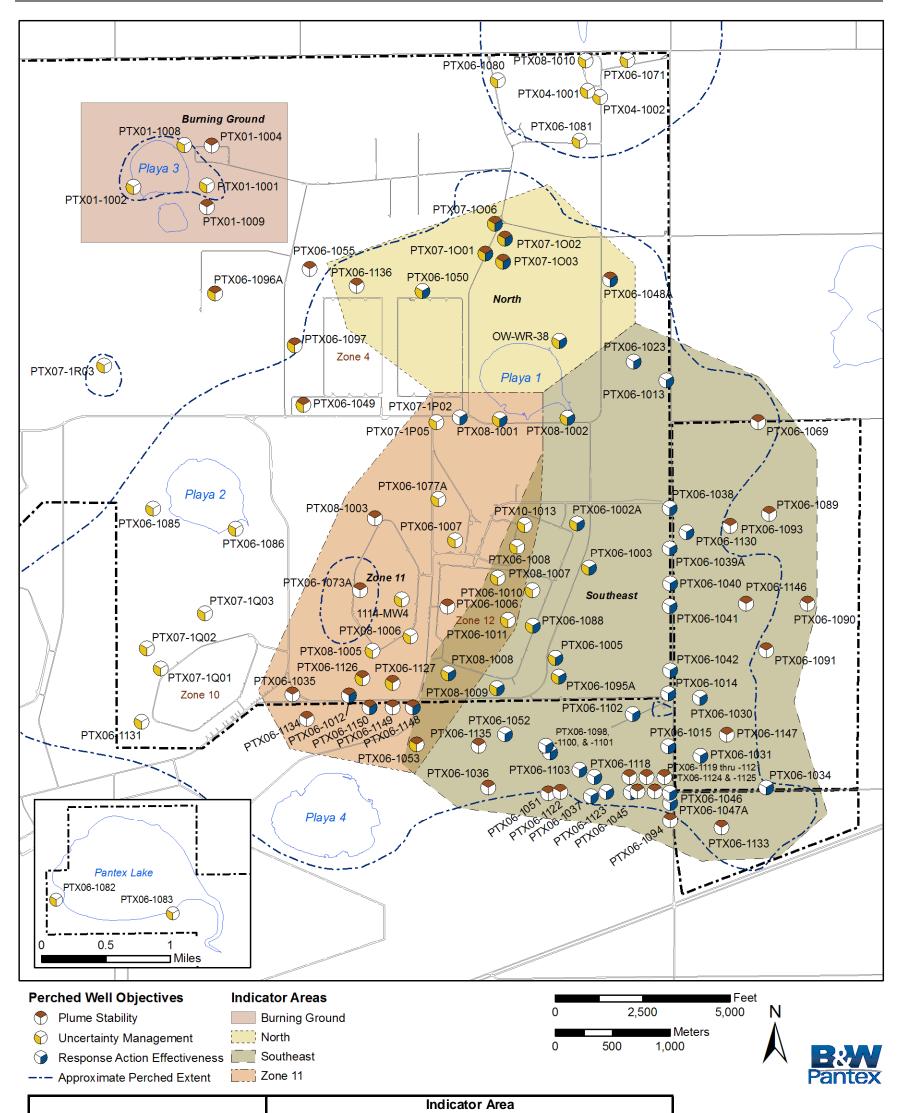




Figure 2-4. Well Location Map

Figure 2-5. Perched Groundwater Long-Term Monitoring Network

Indicator Constituents	Burning Ground	Miscellaneous	North	Southeast	Zone 11
Primary List (Explosives, VOCs, Boron)	Х	Х	Х	х	Х
Chromium (Total & Hexavalent)				x	
1,4-Dioxane					х
Perchlorate	Х				х

Primary Indicator Constituent List

<u>High Explosives (9)</u>	<u>VOCs (7)</u>
2-Amino-4,6-dinitrotoluene	1,2-Dichloroethane
4-Amino-2,6-dinitrotoluene	Chloroform
1,3-Dinitrobenzene	PCE
2,4-Dinitrotoluene	TCE
2,6-Dinitrotoluene	cis-1,2-Dichloroethene
HMX	trans-1,2-Dichloroethene
RDX	Vinyl Chloride
1,3,5-Trinitrobenzene	<u>Metals (1)</u>
TNT	Boron

Figure 2-6. Indicator Constituent Areas for Perched Groundwater

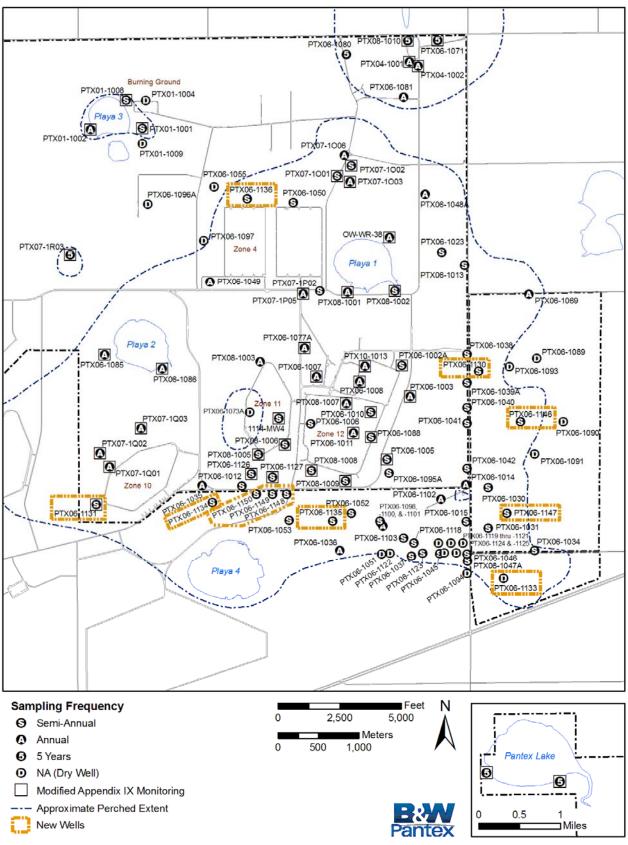


Figure 2-7. Sampling Frequency for Perched Groundwater

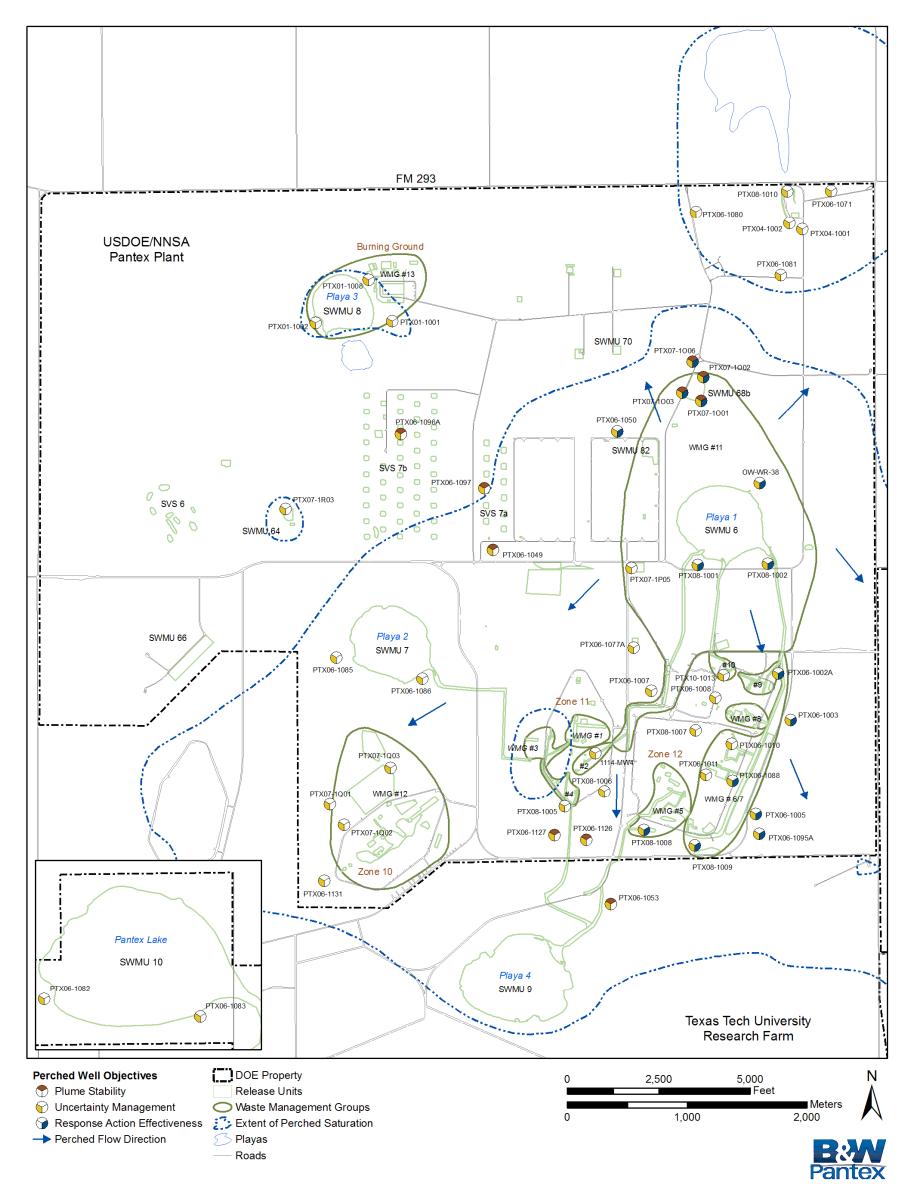


Figure 2-8. Monitoring of Soil Release Units for Perched Groundwater

3. OGALLALA AQUIFER

This section describes the development of the LTM network for the Ogallala Aquifer beneath Pantex Plant. The general strategy used to develop the monitoring network is presented in Section 1.2. This strategy was adapted for the Ogallala Aquifer well network and comprised the following steps:

- 1. Develop monitoring objectives.
- 2. Use mathematical monitoring network optimization tools to optimize the spatial distribution of monitoring for early detection of potential impacts to the Ogallala Aquifer from perched groundwater.
- 3. Evaluate the existing well network with respect to each objective to identify areas where monitoring is needed.
- 4. Combine the results of the different evaluation methods to develop the final LTM network.

The monitoring objectives developed for the Ogallala Aquifer are early detection and uncertainty management. These objectives were described in Section 1.3.1. A summary of the monitoring network optimization is provided in Section 3.1, and the evaluation of the existing well network with respect to each objective is discussed in Section 3.2. The final LTM network is presented in Section 3.3.

3.1. SUMMARY OF MONITORING WELL PLACEMENT OPTIMIZATION

As part of the evaluation of the need for additional monitoring wells to be installed near Pantex Plant for early detection of potential groundwater impacts to the Ogallala Aquifer, an optimization tool was used to identify best locations for these new monitoring wells in the area east of FM 2373. This is the area where modeling predicted contaminants in perched groundwater might migrate to the Ogallala Aquifer (BWXT Pantex/SAIC, 2007). This assessment was performed independently by Mr. Larry Deschaine of Science Applications International Corporation (SAIC), using the Plumefinder technology developed by Dr. George Pinder at the University of Vermont Research Center for Groundwater Remediation Design. Mr. Deschaine made recommendations for the locations of 3 new Ogallala Aquifer monitoring wells using the Plumefinder technology and incorporating the results of previous modeling. The summary presented below was taken from the *Optimization of Monitoring Well Placement for Breakthrough Detection in the Ogallala Aquifer* (SAIC, 2008), included in Appendix B.

3.1.1 Analysis Methods

This effort focused on the area east of FM 2373, downgradient of the area where modeling predicted contaminants in perched groundwater might migrate through the FGZ (BWXT Pantex/SAIC, 2007). Because of its widespread occurrence in perched groundwater and relatively high mobility, the high explosive compound RDX was modeled to determine the best locations for the wells. Although source strength and location are not directly measured, insight can be gleaned from the corrective measures study/feasibility study (CMS/FS) (BWXT Pantex/SAIC, 2007) modeling efforts.

The Ogallala Aquifer beneath the impacted perched groundwater is not accessible for investigation, because of the concern that drilling through perched groundwater may create pathways allowing the spread of contamination. As a result, irreducible uncertainty stemming from a lack of field data is present in the area of interest. The uncertainty specifically pertains to the hydraulic conductivity, potentiometric surface, and the elevation of the redbeds marking the base of the aquifer.

Modeling is combined with optimal estimation techniques to address this uncertainty. Specifically, geostatistical representations of the Ogallala Aquifer hydraulic conductivity fields are coupled with flow and transport simulations to determine the areas of greatest uncertainty in potential RDX plume location. This approach, known as the "PlumeFinder," is technology which integrates groundwater flow and transport simulation, geostatistical simulation, Monte Carlo simulation, and Kalman filter analysis to optimize monitoring well locations. In the analysis conducted, plume location (plume fringe) is defined as the 1 ppb isopleth contour for RDX and investigated over a 50-year simulation period. The areas of greatest uncertainty in the 1 ppb isopleth location then become candidates for new well locations, which in turn reduce the uncertainty in plume delineation by the maximum amount possible. To locate the leading edge of the RDX plume, both the retardation of RDX and potential biodegradation were ignored. This results in a conservative estimate (shortest travel time) to the fringe of the eastern perched groundwater while identifying the best location for early detection monitoring well placement. The actual travel time for RDX to migrate within the Ogallala Aquifer, if it occurs, is expected to be longer than simulated in this analysis.

3.1.2 <u>Results</u>

Delineation of potential future plumes can be improved by adding three new monitoring wells (PTX06-1137, PTX06-1138, and PTX06-1139) at locations determined using the PlumeFinder technology in combination with previous modeling results. These locations are shown in Figure 3-1. Installation of new wells, in concert with the existing Ogallala Aquifer monitoring wells, increases the certainty of early plume detection. A new well located using PlumeFinder reduces the maximum measure of uncertainty of plume delineation beyond the fringe of the perched aquifer by 72 percent. Two additional wells located beyond the eastern extent of perched groundwater provide early detection of potential contamination originating along the fringe of perched groundwater. Because most of the projected plume is beneath the perched aquifer, most of the uncertainty in its extent resides there. This demonstrates the contribution of irreducible uncertainty resulting from safe investigative practices, i.e., imposing the constraint that no wells be drilled through the perched groundwater to investigate a hypothetical plume.

3.2. EVALUATION OF EXISTING WELL NETWORK

The existing Ogallala Aquifer monitoring network was evaluated with respect to each objective to identify areas where additional monitoring is needed. This evaluation resulted in the proposed addition of four wells (PTX06-1140, PTX06-1141, PTX06-1143, and PTX06-1144) to the network in areas downgradient of perched contaminant plumes or soil release units to satisfy the early detection and uncertainty management monitoring objectives. The results of this evaluation are summarized in Table 3-1. These wells are identified on Figure 3-1.

A total of eight existing wells (PTX06-1059, PTX06-1060, PTX06-1063A, PTX06-1065, PTX06-1066, PTX06-1067, PTX06-1074, and PTX06-1075) were proposed for removal from the network because they either do not satisfy any of the monitoring objectives or will be replaced by one of the proposed new wells.

Four of these wells (PTX06-1063A, PTX06-1065, PTX06-1066, and PTX06-1067) are located north of the northern boundary of USDOE/NNSA property (Pantex Plant). Justification for removing these wells from the monitoring network is two-fold. First, removal eliminates ingress/egress (i.e., Access Agreements) with neighboring landowners. Second, Ogallala monitoring wells currently exist onsite along the northern boundary and, with one additional well (PTX06-1144) discussed above, will satisfy the LTM objectives. Removal of the four wells from the monitoring network decreases the number of samples but does not compromise the capability of the network. The following discussion addresses each offsite well and the justification for removal from the monitoring network.

- PTX06-1063A is located approximately 2,100 ft north of the USDOE boundary, immediately adjacent to the City of Amarillo well #623. Samples cannot be collected from PTX06-1063A while #623 is pumping because of the cone of depression caused by the production well. Well PTX06-1144 is proposed as a replacement for this well.
- PTX06-1065 is located about 2,600 ft north of the USDOE boundary, far enough from any release units that information from this well is of limited use. Other wells onsite (PTX01-1010, PTX01-1011, PTX01-1012, PTX01-1013, and PTX01-1062A) lie upgradient of this well and provide the necessary monitoring information to satisfy the monitoring objectives.
- PTX06-1066 is located immediately downgradient (about 230 ft) of existing onsite well PTX01-1012 and is therefore redundant.
- PTX06-1067 does not provide useful information regarding potential contamination sources at Pantex because it is near the northwest corner of the USDOE boundary and is not downgradient of any soil release units or impacted perched groundwater.

The other four wells (PTX06-1059, PTX06-1060, PTX06-1074, and PTX06-1075) proposed for elimination from the network are located along the western or southwestern boundaries of the USDOE/NNSA property upgradient of any soil release units or impacted perched groundwater associated with Pantex Plant. Therefore, these wells do not satisfy any of the monitoring objectives. These wells will be retained for monitoring of upgradient water quality in the Ogallala Aquifer.

3.3. LONG-TERM MONITORING NETWORK FOR THE OGALLALA AQUIFER

The recommendations from the PlumeFinder analysis were combined with the results of the evaluation against monitoring objectives to develop the final proposed well network shown in Figure 3-1 and 3-2 for each monitoring area. The proposed network includes 19 existing wells and seven new wells. In addition, four upgradient wells located along the southern and western boundaries of Pantex Plant will be retained for upgradient boundary monitoring, but are not included in the LTM network. The frequency of sampling for the Ogallala LTM network is provided in Table 3-2 and is depicted in Figure 3-3.

3.3.1 Final Network Recommendations

Table 3-2 provides a complete list of all wells in the proposed long-term monitoring network for the Ogallala Aquifer along with the LTM objectives, evaluation metrics, and proposed sampling frequency of each well. The LTM network is depicted in Figures 3-1 and 3-2.

- The final recommended network for the Ogallala Aquifer includes 26 monitoring locations, with 48 groundwater samples analyzed annually.
- Semiannual sampling is recommended for 22 locations. Annual sampling is recommended at 4 locations.
- All wells will be sampled for indicator constituents.
- Because the definition of uncertainty management wells is different for the Ogallala, only a small subset of uncertainty management wells was identified for monitoring of soil release units.

• A larger list of constituents (Modified Appendix IX list as presented in the Sampling and Analysis Plan) is recommended to be monitored every five years in 9 uncertainty management wells near soil source areas.

A table listing all wells and their coordinates (northings and eastings) is included in Appendix B.

3.3.2 Monitoring of Soil Release Units

TCEQ and EPA conditionally approved the investigations of soil release units with a requirement for LTM downgradient of release units to address uncertainties regarding the vertical extent of constituents. For purposes of monitoring the soil release units, the units were grouped by Zone or Waste Management Group and downgradient wells were identified in the first groundwater encountered. Because the first groundwater encountered beneath the most of the soil units is the perched groundwater, there are fewer Ogallala uncertainty wells to be monitored at source areas for the modified Appendix IX list (see Table 3-2 and Figure 3-3 for wells proposed for the 5-year modified Appendix IX monitoring). The Ogallala wells proposed for soil uncertainty management adequately address units outside of the perched groundwater footprint. There are few Ogallala wells on the western side of Pantex. Landfill areas to the west have adequate cover material and results of investigations indicate that soil contamination is limited, so downward migration of soil contaminants is unlikely. Downgradient Ogallala wells will be used to monitor for landfill units to the west.

Soil release units and monitoring wells are shown in Figure 3-4. A listing of the soil release units and the associated downgradient monitoring wells is provided in Table 3-3.

Well Identifier	Location	Purpose
PTX06-1137 PTX06-1138 PTX06-1139	East of FM 2373	Provide early detection monitoring downgradient of the southeast perched groundwater plume as recommended in the PlumeFinder analysis.
PTX06-1140	East of FM 2373	Provide early detection monitoring downgradient of the southeast perched groundwater plume, supplement to the three wells recommended in the PlumeFinder analysis.
PTX06-1141	Northwest of Zone 4	Monitor downgradient of several soil release units on the western side of Pantex Plant and adjacent to the northwestern extent of perched groundwater.
PTX06-1143	Near the northern extent of perched groundwater north of Playa 1	Monitor downgradient of the impacted perched groundwater northwest of Playa 1 and downgradient of soil release units.
PTX06-1144	Northern Pantex property boundary	Monitor downgradient of the firing sites and several other soil release units.

Table 3-1. Proposed New Long-Term Monitoring Wells for the Ogallala Aquifer

Indicator Area ¹	Well ID ²	LTM Objectives	Progress Report Metrics	Expected Condition	Indicator List ³ Monitoring Frequency	Multiple Sampling Depth Frequency ⁴	Appendix IX Monitoring List ⁵	Appendix IX Monitoring Frequency ⁶
Northwest	PTX01-1010	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Y	5 Yrs
Northwest	PTX01-1011	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Y	5 Yrs
Northwest	PTX01-1012	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Ν	NA
Northwest	PTX01-1013	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Ν	NA
Northwest	PTX06-1057A	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Annual	NA	Y	5 Yrs
Northwest	PTX06-1058	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Annual	NA	Y	5 Yrs
Northwest	PTX06-1061	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Annual	NA	Ν	NA
Northwest	PTX06-1062A	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Y	5 Yrs
Northwest	PTX06-1064	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Ν	5 Yrs
Northwest	PTX06-1068	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Ν	NA
Northwest	PTX06-1072	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Y	5 Yrs
Northwest	PTX06-1141	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Annual	I, 5-Yr	Y	5 Yrs
Northwest	PTX06-1143	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	I, 5-Yr	Y	5 Yrs
Northwest	PTX06-1144	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	I, 5-Yr	N	NA
Northwest	PTX07-1R01	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Y	5 Yrs
Northwest	PTX-BEG-2	Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Ν	NA
Southeast	PTX06-1032	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Ν	NA
Southeast	PTX06-1056	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Ν	NA
Southeast	PTX06-1137	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	I, 5-Yr	Ν	NA
Southeast	PTX06-1138	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	I, 5-Yr	Ν	NA
Southeast	PTX06-1139	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	I, 5-Yr	Ν	NA
Southeast	PTX06-1140	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	I, 5-Yr	N	NA
Southeast/Northwest	PTX06-1033	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Ν	NA
Southeast/Northwest	PTX06-1043	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Ν	NA
Southeast/Northwest	PTX06-1044	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	N	NA
Southeast/Northwest	PTX06-1076	Early Detection, Uncertainty Management	Compare to GWPS	Below background/PQL and GWPS	Semi-Annual	NA	Ν	NA

Table 3-2. Proposed Long-Term Monitoring Network for the Ogallala Aquifer

The indicator monitoring lists are set according to the monitoring areas. 1

Monitor wells on the west/southwest boundary are not listed here but are depicted in Figures 3-1 and 3-2. These wells do not support the LTM objective but they are used to monitor upgradient water quality. Refer to the Pantex Sampling and Analysis Plan (B&W Pantex, September 2008) or the Corrective Action Compliance Plan Table IIIA for the indicator monitoring lists. 2

3

4 The new wells that will be completed with blanks between the screened intervals were selected for this sampling because the intervals could be isolated during sampling. These wells will be completed with blanks between the screened intervals could be isolated during sampling. conducted to correspond to the 5-year sampling event for the 5-Year Review under CERCLA and the Compliance Plan. These samples will be analyzed for the indicator list of constituents. A full list of constituents to be monitored is required for uncertainty management. A modified Appendix IX has been recommended for the Corrective Action Compliance Plan Application (Table III) and in the Pantex Sampling and Analysis Plan (B&W Pantex, September 2008). 5

The Appendix IX monitoring list and 5-year frequency are applied to wells near source areas where the uppermost aquifer may be affected (outside the perched groundwater). 6

Grouping	Release Units	Ogallala Wells
Burning G	round	
Burning G	roundSWMU 8: Playa 3SWMU 14-24: Burning Ground-Explosive Burn PadsSWMU 25: Burning Ground-Explosive Burn Pad 11SWMU 26: Burning Ground-Explosive Burn Pad 12SWMU 27 Burning Ground-Explosive Burn Pad 13SWMU 37: Burning Ground-Landfill 1SWMU 38: Burning Ground-Landfill 2SWMU 39: Burning Ground-Landfill 3SWMU 40: Burning Ground-Landfill 4SWMU 41: Burning Ground-Landfill 5SWMU 42: Burning Ground-Landfill 6SWMU 43: Burning Ground-Landfill 7SWMU 44: Burning Ground-Landfill 8SWMU 45: Explosive Burn CageSWMU 46: Explosive Burn CageSWMU 47: Burning Ground-Evaporation PitSWMU 48: Burning Ground Solvent Evaporation PansSWMU 49: Burning Ground Solvent Evaporation PansSWMU 50: Burning Ground Solvent Evaporation PansSWMU 51: Burning Ground Solvent Evaporation PansSWMU 52: Burn Racks and Flashing PitsUnassigned Burning Ground-Explosive Burn Pad 16	PTX01-1010 PTX01-1011 PTX06-1062A
WMG 3	Unassigned: Demonstration Facilities AOC 7a: Sulfuric Acid Spills (11-36) AOC 8d: Solvent Leaks (Pad 11-22) AOC 8e: Solvent Leaks (Bldg 11-36) SWMU 5/08: Drainage Ditch 11-36 SWMU 113: Overflows From 11-36 Collection System/Sump Unassigned Former Leaching Bed N of Bldg 11-50 & W of Bldg 11-36	PTX06-1072
Other Unit		
N/A	SWMU 64: Landfill 13	PTX07-1R01
N/A	SWMU 66: Landfill 15 Demolition Debris Landfill	PTX06-1058
N/A	SWMU 70: Firing Site 5	PTX06-1143
N/A	SVS 6: Unnumbered Zone 7 Landfills Demolition Debris Landfills	PTX06-1057A
N/A	SVS 7a and 7b: Igloo Demolition Debris Landfills Zone 4 (SVS 7a) and Zone 5 (SVS 7b)	PTX06-1141

Table 3-3. Monitoring of Soil Release Units for the Ogallala Aquifer

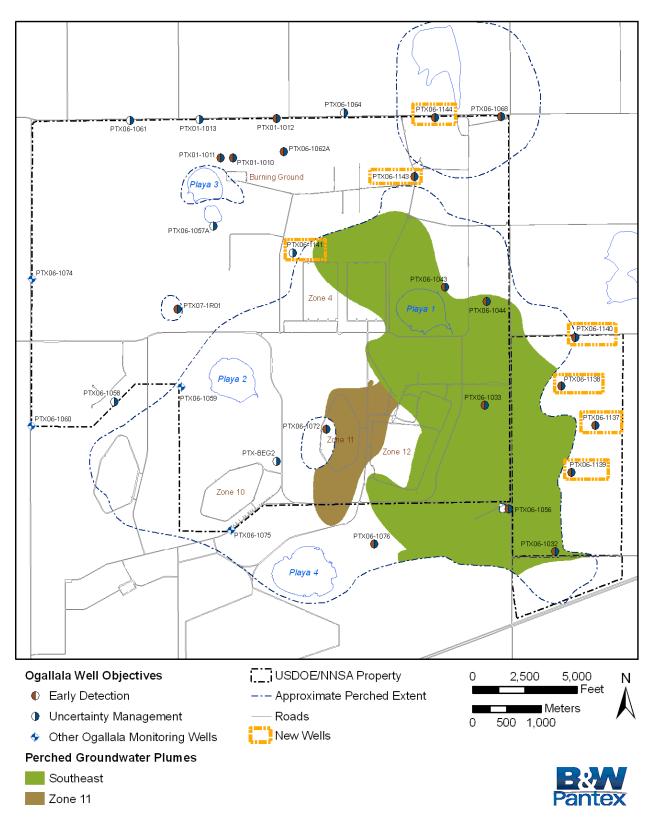


Figure 3-1. Ogallala Aquifer Long-Term Monitoring Network

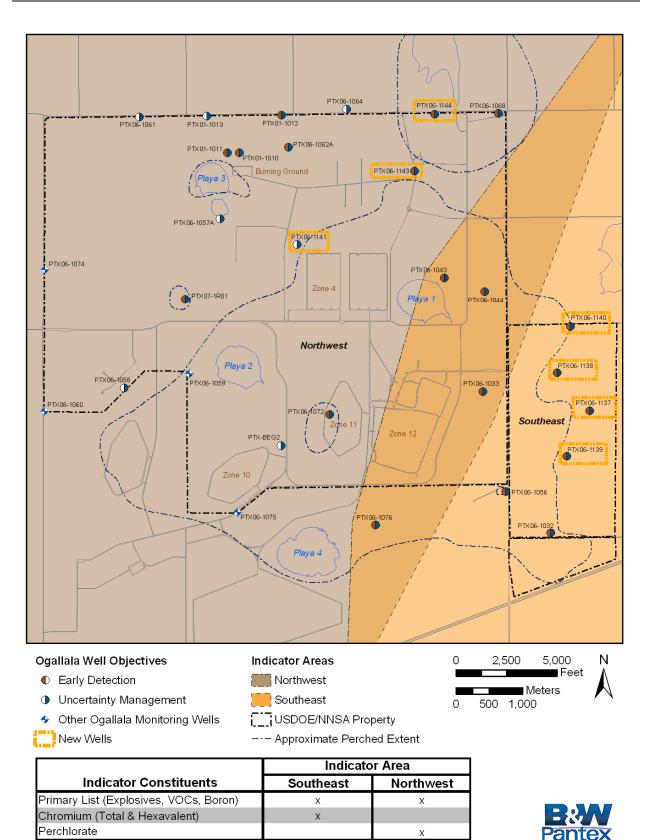


Figure 3-2. Indicator Constituent Areas for the Ogallala Aquifer

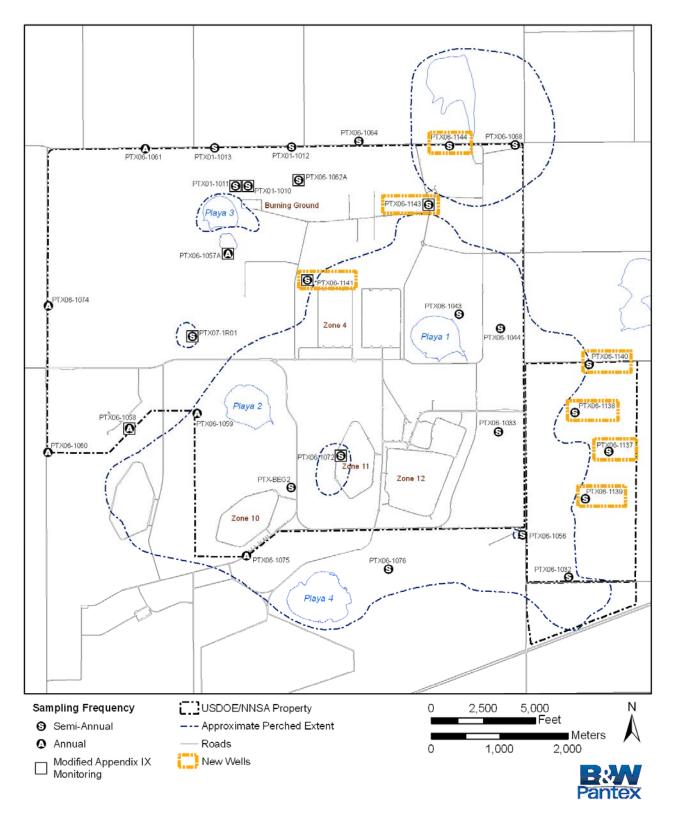


Figure 3-3. Ogallala LTM Network Sampling Frequency

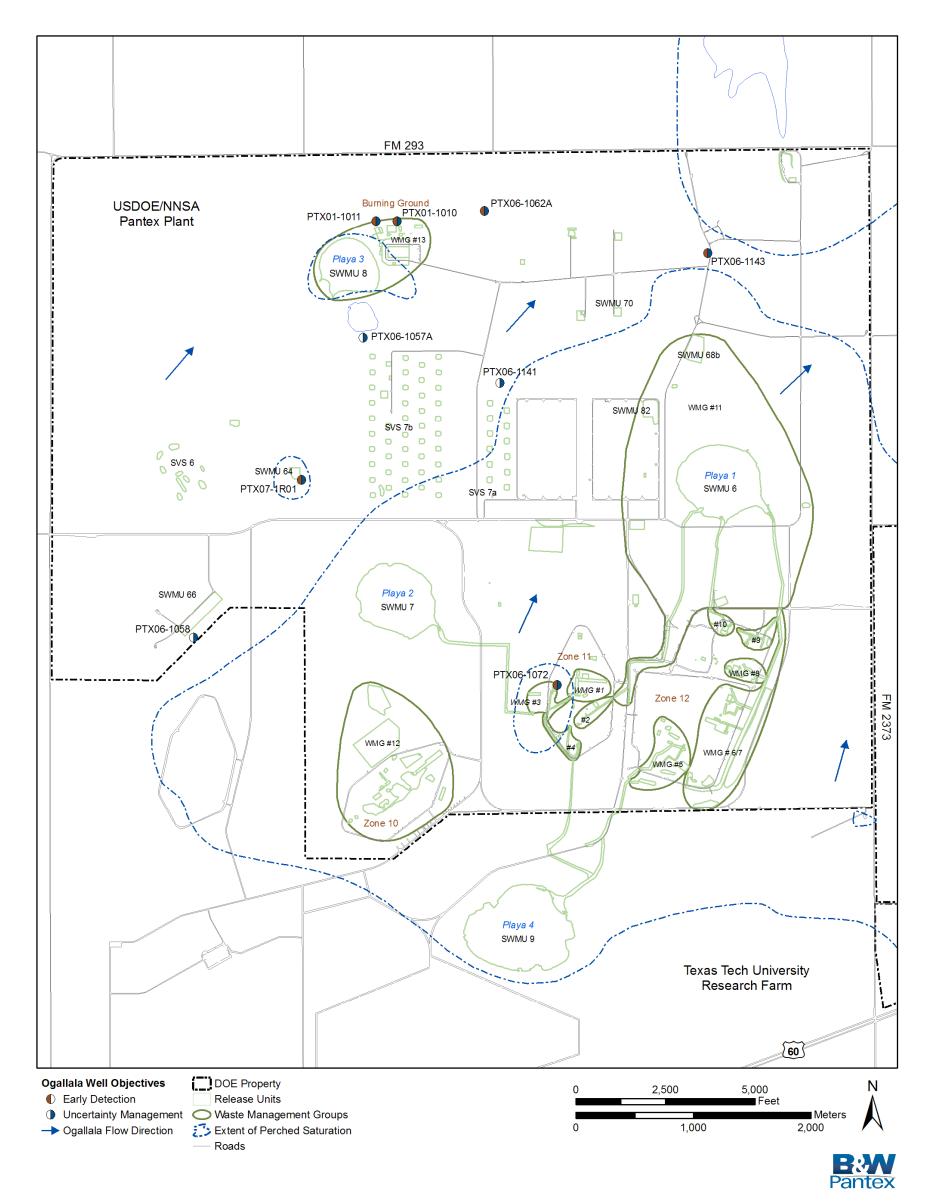


Figure 3-4. Monitoring of RRS 3 Soil Release Units for the Ogallala Aquifer

4. MONITORING WELL CONSTRUCTION

This section describes the screened intervals and the sample intake placement for each LTM Network well. The well construction information is presented for perched and Ogallala wells that will be part of the LTM Network.

4.1. PERCHED WELL CONSTRUCTION AND SCREENED INTERVALS

New perched monitoring wells will be constructed in accordance with the standard Compliance Plan Attachment B Well Specifications with one exception—the wells will be screened across the entire perched saturated interval. This construction allows for better monitoring of declining perched groundwater levels as the response action process is implemented to remove the water and beneficially use it, instead of injecting it back into the perched zone. A modified Attachment B Well Specification sheet is included in Appendix E to this report. Well completion and lithologic logs for existing perched wells that will be part of the LTM Network are presented in Appendix F.

4.2. PERCHED SAMPLE INTAKE PLACEMENT

Table 4-1 provides the sample intake placement for perched monitoring wells. This placement corresponds to the sampling depth in the well. Most of the wells that comprise the LTM Network have already been installed, so the sample intake levels listed reflect the actual current placement. Recommendations for sample intake placement are also included for new wells. Because many sample intakes were installed in the upper saturated thickness of the groundwater, as water levels decline, the sample intake levels will require adjustment to maintain the ability to sample from the upper 5 feet of saturated thickness.

4.3. OGALLALA WELL CONSTRUCTION AND SCREENED INTERVALS

Most Ogallala Aquifer wells were previously installed as part of the investigation and are screened across the entire saturated thickness. Construction completion and lithologic logs for the existing Ogallala Aquifer monitoring wells that will be part of the LTM Network are provided in Appendix F. Some of these wells, PTX01-1012, PTX06-1044, PTX06-1056, and, PTX06-1068 were evaluated by the USGS in July and August 2008 to determine if different lithologies intercepted by the screens are more transmissive than others, resulting in intervals of preferential flow. Results of the USGS flow study, presented in Appendix B, indicate that more transmissive zones generally occur within the lower depths of the aquifer from Playa 1 to the south. Therefore, the screened intervals for the new wells will intercept the entire saturated interval. The uppermost part of the aquifer will be sampled in areas close to a potential source of contaminants and the deeper part of the aquifer will be the target for wells intended to monitor for contaminants at a point distal to a potential source.

All new Ogallala Aquifer monitoring wells will be installed with screens that provide flexibility to sample from both the uppermost part of the aquifer and the deeper part of the aquifer. The wells will intercept the upper 30 to 100 feet of saturation using multiple screened intervals (no greater than 40 ft each) separated by blank casing. The decision of the upper screen intervals for each well is based on the anticipated decline of the water table. The blank casing separating the screen segments will be 15 ft long. The blank casing sections will enable placement of inflatable packers to isolate the upper screened interval. The inflatable packers and dedicated pumps will be adjusted as necessary to account for the declining Ogallala

Aquifer water table. The modified Attachment B Well Specifications and proposed well screen construction for each of the new Ogallala Aquifer monitoring wells are presented in Appendix E.

A field geologist will record the lithology observed during drilling, and geophysical logs will be recorded in each fluid-filled borehole immediately after reaching total depth. Geophysical logging will consist of spontaneous potential, natural gamma, and resistivity (16 inch and 64 inch). The field geologist will interpret these logs to determine final adjustments to construction of the screens for monitoring of transmissive zones within the aquifer. Upper screen segments and blank casing sections may also be adjusted based on interpretation of the field information. Deeper screen segments will be constructed to intercept the most transmissive zones while blocking off major clay and silt-containing units with blank casing sections. The screen construction decision process is described in greater detail in Appendix F.

4.4. OGALLALA SAMPLE INTAKE PLACEMENT

Table 4-2 provides the proposed sample intake placement for Ogallala Aquifer monitoring wells. This placement corresponds to the sampling depth in the well. Most of the wells that comprise the LTM Network have already been installed, so the sample intake levels reflect the actual current placement. Some sample intake placements have been adjusted based on the results of the USGS flow study and correlation to lithologic descriptions acquired during drilling of each existing well. Recommendations for sample intake placement are also included for the proposed new wells, but may be adjusted after the acquiring lithologic descriptions and geophysical logs. Figure 4-1 presents the Ogallala Aquifer wells and their sample intake placements and approximate saturated thickness (some wells are not completed to the base of the aquifer, so only the in-well saturated thickness can be calculated).

Initial sampling in the new Ogallala Aquifer wells will be conducted at multiple depths. Dedicated sample pumps will then be installed in the wells at the proposed sample intake depth. Routine samples at the proposed frequency for indicator constituents will be obtained from this depth. At the 5-year sampling event, the dedicated sample pumps will be removed and samples will be obtained from multiple depths in the new wells.

Well ID	Status	Groundwater Elevation ¹ (ft amsl)	Sample Intake Elevation (ft amsl)	Sample Intake Depth (ft below top of GW)	Screened Saturated Thickness ² (ft)	Bottom of Screen Elevation (ft amsl)
1114-MW4	Active	3276.83	3264.4	12.4	18.4	3258.5
OW-WR-38	Active	3302.99	3293.0	10.0	15.0	3288.0
PTX01-1001	Active	3277.87	3270.3	7.6	7.8	3270.1
PTX01-1002	Active	3294.95	3286.2	8.7	11.5	3283.5
PTX01-1008	Undeveloped	3292.91	3289.2	3.7	5.2	3287.7
PTX04-1001	Active	3305.72	3295.4	10.4	18.5	3287.3
PTX04-1002	Active	3305.48	3300.1	5.4	18.6	3286.8
PTX06-1002A	Active	3286.20	3276.1	10.1	17.8	3268.4
PTX06-1003	Active	3279.58	3275.1	4.5	6.7	3272.9
PTX06-1005	Active	3263.93	3247.2	16.7	21.1	3242.8
PTX06-1006	Active	3276.56	3258.6	17.9	25.9	3250.7
PTX06-1007	Active	3280.18	3275.7	4.5	25.7	3254.5
PTX06-1008	Active	3282.70	3280.8	1.9	11.9	3270.8
PTX06-1010	Active	3284.67	3267.4	17.3	22.4	3262.2
PTX06-1011	Active	3272.43	3259.5	12.9	21.8	3250.6
PTX06-1012	Active	3268.88	3257.4	11.5	14.4	3254.5
PTX06-1013	Active	3295.07	3289.4	5.7	10.7	3284.4
PTX06-1014	Active	3258.71	3253.5	5.2	9.1	3249.6
PTX06-1015	Active	3246.26	3243.8	2.4	4.6	3241.6
PTX06-1023	Active	3298.47	3296.1	2.4	8.5	3290.0
PTX06-1030	Active	3252.32	3245.3	7.0	7.1	3245.2
PTX06-1031	Active	3247.12	3240.1	7.0	7.3	3239.8
PTX06-1034	Active	3242.56	3238.1	4.5	8.0	3234.5
PTX06-1035	Active	3267.11	3259.3	7.8	12.8	3254.3
PTX06-1036	Active	3251.64	3250.6	1.0	1.5	3250.1
PTX06-1037	Undeveloped	3248.36	3246.3	2.0	2.5	3245.9
PTX06-1038	Active	3279.68	3277.9	1.8	20.9	3258.8

 Table 4-1. Sample Intake Information for Perched Groundwater Wells

Well ID	Status	Groundwater Elevation ¹ (ft amsl)	Sample Intake Elevation (ft amsl)	Sample Intake Depth (ft below top of GW)	Screened Saturated Thickness ² (ft)	Bottom of Screen Elevation (ft amsl)
PTX06-1039A	Active	3274.52	3268.2	6.3	14.4	3260.1
PTX06-1040	Active	3270.87	3264.8	6.0	18.3	3252.6
PTX06-1041	Active	3270.38	3254.5	15.9	33.2	3237.2
PTX06-1042	Active	3261.37	3256.3	5.1	11.8	3249.6
PTX06-1045	Undeveloped	3244.16	3243.8	0.4	1.2	3242.9
PTX06-1046	Active	3245.65	3236.7	9.0	14.5	3231.2
PTX06-1047A	Active	3247.30	3243.0	4.3	7.7	3239.6
PTX06-1048A	Active	3304.53	3300.4	4.1	7.9	3296.7
PTX06-1049	Active	3281.83	3259.3	22.5	38.6	3243.3
PTX06-1050	Active	3299.70	3282.2	17.5	34.9	3264.8
PTX06-1052	Active	3262.27	3254.6	7.6	16.0	3246.3
PTX06-1053	Active	3271.13	3267.8	3.4	9.0	3262.1
PTX06-1069	Active	3278.42	3275.4	3.1	5.1	3273.4
PTX06-1071	Active	3305.45	3288.9	16.5	38.1	3267.4
PTX06-1077A	Active	3282.73	No Dedicated Pump ³	NA	10.0	3272.7
PTX06-1080	Active	3268.29	3264.0	4.3	18.4	3249.9
PTX06-1081	Active	3303.73	3301.2	2.6	17.5	3286.3
PTX06-1082	Active	3294.27	3289.3	5.0	6.6	3287.6
PTX06-1083	Active	3291.63	3277.9	13.7	21.0	3270.6
PTX06-1085	Active	3268.71	3253.3	15.4	23.7	3245.0
PTX06-1086	Active	3270.36	3232.5	37.9	46.1	3224.3
PTX06-1088	Active	3271.94	3259.1	12.8	26.1	3245.8
PTX06-1095A	Active	3263.09	3258.8	4.3	18.8	3244.3
PTX06-1098	Active	3257.07	No Dedicated Pump ³	NA	17.6	3239.5
PTX06-1100	Active	3256.57	No Dedicated Pump ³	NA	13.8	3242.8
PTX06-1101	Active	3256.42	No Dedicated Pump ³	NA	14.6	3241.9
PTX06-1102	Undeveloped	3254.13	3249.7	4.5	7.6	3246.6
PTX06-1103	Active	3249.56	No Dedicated Pump ³	NA	21.6	3227.9

 Table 4-1. Sample Intake Information for Perched Groundwater Wells (continued)

Well ID	Status	Groundwater Elevation ¹ (ft amsl)	Sample Intake Elevation (ft amsl)	Sample Intake Depth (ft below top of GW)	Screened Saturated Thickness ² (ft)	Bottom of Screen Elevation (ft amsl)
PTX06-1118	Undeveloped	3250.39	No Dedicated Pump ³	NA	1.6	3248.8
PTX06-1120	Undeveloped	3248.49	No Dedicated Pump ³	NA	5.5	3243.0
PTX06-1121	Undeveloped	3247.71	No Dedicated Pump ³	NA	2.8	3244.9
PTX06-1123	Undeveloped	3248.85	No Dedicated Pump ³	NA	1.8	3247.0
PTX06-1126	Active	3270.92	3262.9	8.1	20.4	3250.6
PTX06-1127	Active	3271.85	3265.1	6.7	25.2	3246.6
PTX07-1O01	Active	3297.14	3296.1	1.1	5.0	3292.1
PTX07-1O02	Active	3297.87	3290.9	7.0	7.2	3290.7
PTX07-1003	Active	3300.17	3297.4	2.8	9.4	3290.8
PTX07-1006	Undeveloped	3289.66	3288.2	1.5	1.7	3288.0
PTX07-1P02	Active	3298.52	3283.9	14.6	17.0	3281.5
PTX07-1P05	Active	3296.66	3294.6	2.1	3.9	3292.8
PTX07-1Q01	Active	3265.47	3250.8	14.7	17.5	3248.0
PTX07-1Q02	Active	3265.20	3248.7	16.5	29.3	3235.9
PTX07-1Q03	Active	3267.91	3260.5	7.4	41.5	3226.4
PTX07-1R03	Undeveloped	3318.45	3316.0	2.5	5.0	3313.5
PTX08-1001	Active	3298.16	3291.2	7.0	9.6	3288.5
PTX08-1002	Active	3296.38	3293.2	3.1	10.1	3286.2
PTX08-1003	Active	3276.72	3262.6	14.2	24.4	3252.3
PTX08-1005	Active	3272.09	3259.1	13.0	14.6	3257.5
PTX08-1006	Active	3273.77	3269.3	4.5	34.7	3239.0
PTX08-1007	Active	3277.98	3264.2	13.8	22.9	3255.1
PTX08-1008	Active	3269.30	3263.6	5.8	24.1	3245.2
PTX08-1009	Active	3265.24	3253.6	11.7	17.7	3247.6
PTX08-1010	Active	3305.92	3304.6	1.4	21.9	3284.0
PTX10-1013	Active	3289.85	3276.0	13.8	17.9	3271.9
PTX06-1130	Proposed		To Be Determined	~5		
PTX06-1131	Proposed		To Be Determined	< 5		

 Table 4-1. Sample Intake Information for Perched Groundwater Wells (continued)

Well ID	Status	Groundwater Elevation ¹ (ft amsl)	Sample Intake Elevation (ft amsl)	Sample Intake Depth (ft below top of GW)	Screened Saturated Thickness ² (ft)	Bottom of Screen Elevation (ft amsl)
PTX06-1133	Proposed	Dry	No Dedicated Pump	NA	0	
PTX06-1134	Proposed		To Be Determined	~5		
PTX06-1135	Proposed		To Be Determined	< 5		
PTX06-1136	Proposed		To Be Determined	~5		
PTX06-1146	Proposed		To Be Determined	~5		
PTX06-1147	Proposed		To Be Determined	~5		
PTX06-1148	Proposed		To Be Determined	~5		
PTX06-1149	Proposed		To Be Determined	~5		
PTX06-1150	Proposed		To Be Determined	~5		
PTX01-1004	Dry	Dry	No Dedicated Pump	NA	0	3298.2
PTX01-1009	Dry	Dry	No Dedicated Pump	NA	0	3280.51
PTX06-1051	Dry	Dry	No Dedicated Pump	NA	0	3239.72
PTX06-1055	Dry	Dry	No Dedicated Pump	NA	0	3273.36
PTX06-1073A	Dry	Dry	No Dedicated Pump	NA	0	3274.07
PTX06-1089	Dry	Dry	No Dedicated Pump	NA	0	3263.13
PTX06-1090	Dry	Dry	No Dedicated Pump	NA	0	3254.78
PTX06-1091	Dry	Dry	No Dedicated Pump	NA	0	3261.24
PTX06-1093	Dry	Dry	No Dedicated Pump	NA	0	3274.42
PTX06-1094	Dry	Dry	No Dedicated Pump	NA	0	3243.49
PTX06-1096A	Dry	Dry	No Dedicated Pump	NA	0	3301.14
PTX06-1097	Dry	Dry	No Dedicated Pump	NA	0	3266.95
PTX06-1119	Dry	Dry	No Dedicated Pump	NA	0	3249.8
PTX06-1122	Dry	Dry	No Dedicated Pump	NA	0	3249.84
PTX06-1124	Dry	Dry	No Dedicated Pump	NA	0	3243.99
PTX06-1125	Dry	Dry	No Dedicated Pump	NA	0	3243.76

Table 4-1. Sample Intake Information for Perched Groundwater Wells (con	tinued)
---	---------

¹Based on December 2008 measurements for most wells. ²Saturated thickness above the bottom of the well screen. ³No dedicated sample pumps have been installed in these wells because the wells have not been routinely sampled or because the well has low yield or limited saturated thickness. Dedicated sample pumps may be installed in one or more of these wells in the future.

Well ID	Status	Groundwater Elevation ¹ (ft amsl)	Sample Intake Elevation (ft amsl)	Sample Intake Depth (ft below top of GW)	Screened Saturated Thickness ² (ft)	Bottom of Screen Elevation (ft amsl)
PTX01-1010	Active	3087.79	3081.2	6.6	358.8	2729.0
PTX01-1011	Active	3090.10	3019.1	71.0	307.3	2782.8
PTX01-1012	Active	3074.81	3067.7	7.1	397.8	2677.1
PTX01-1013	Active	3089.17	3011.4	77.8	372.1	2717.0
PTX06-1032	Active	3134.20	3102.0	32.2	36.9	3097.3
PTX06-1033	Active	3097.41	3084.5	12.9	105.1	2992.3
PTX06-1043	Active	3081.77	2910.1	171.7	188.7	2893.1
PTX06-1044	Active	3059.93	3045.5	14.5	133.8	2926.1
PTX06-1056	Active	3137.48	3126.8	10.7	76.8	3060.7
PTX06-1057A	Active	3105.99	To Be Determined	~20	296.6	2809.4
PTX06-1058	Active	3168.25	To Be Determined	~20	131.3	3037.0
PTX06-1061	Active	3100.40	3091.9	8.5	371.8	2728.6
PTX06-1062A	Active	3077.25	3068.8	8.5	395.5	2681.8
PTX06-1064	Active	3059.57	3053.2	6.4	289.3	2770.2
PTX06-1068	Active	3024.11	3004.1	20.0	289.2	2734.9
PTX06-1072	Active	3137.26	3127.2	10.1	132.9	3004.4
PTX06-1076	Active	3179.95	3170.3	9.6	14.3	3165.7
PTX07-1R01	Active	3125.31	To Be Determined	~20	151.0	2974.3
PTX-BEG2	Active	3156.99	3148.7	8.3	33.3	3123.7
PTX06-1137	Proposed		To Be Determined	~15		
PTX06-1138	Proposed		To Be Determined	~15		
PTX06-1139	Proposed		To Be Determined	~15		
PTX06-1140	Proposed		To Be Determined	~15		
PTX06-1141	Proposed		To Be Determined	~20		
PTX06-1143	Proposed		To Be Determined	~20		
PTX06-1144	Proposed		To Be Determined	> 150		

 Table 4-2. Sample Intake Information for Ogallala Aquifer Wells

¹Based on December 2008 measurements for most wells.

²Saturated thickness above the bottom of the well screen.

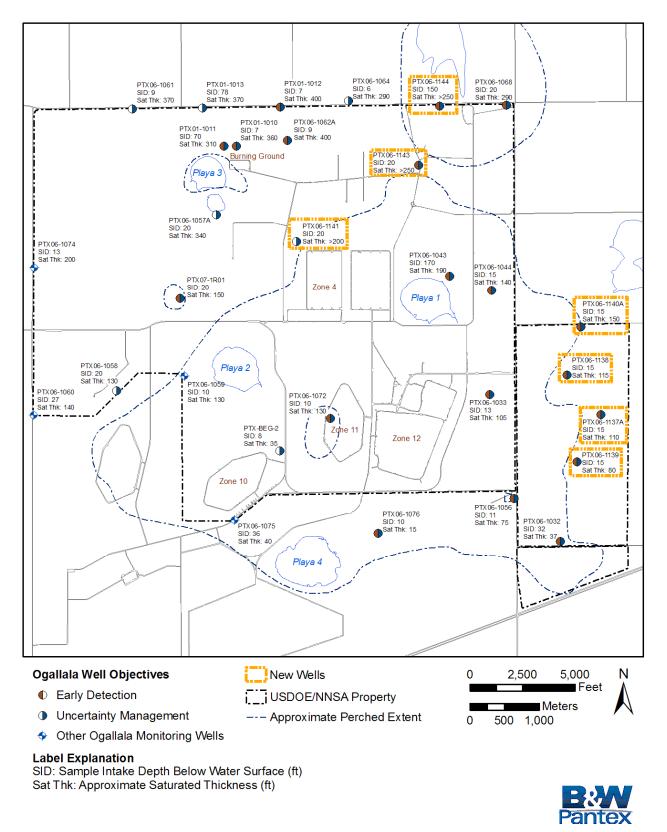


Figure 4-1. Sample Intake Depths for Ogallala Aquifer Wells

5. EVALUATION OF MONITORING DATA

Selection of the final remedy through the CERCLA process creates a need for modification of the Compliance Plan to include the Corrective Action Requirements. Accordingly, Pantex must identify the methods for evaluating the response action systems that comprise the final remedy. This section provides the methods that will be used to evaluate the various objectives identified in this report. The data collected according to this LTM plan will also support the 5-Year Review required under the IAG and the Compliance Plan.

5.1. PROGRESS REPORT EVALUATION

The semi-annual and annual progress reports required through CP-50284 and the IAG will include evaluations of the available data from the monitoring networks. The annual report will provide a full evaluation of the response action systems, while the semi-annual report will only provide a comparison of data to the GWPS.

The data will be evaluated with respect to the remedial action objectives in the ROD and the response actions installed for Pantex. The following will be evaluated:

- Plume stability
- Evaluation of soil stabilization measures (uncertainty management)
- Achievement of cleanup standards (response action effectiveness)
- COC concentrations in the perched groundwater and Ogallala Aquifer (early detection)
- Groundwater use controls.

The data collected from the LTM system will support evaluation of all objectives including groundwater use controls. Table 5-1 presents each objective and describes how the data will be used for evaluation. The expected conditions identified for each well are included in Tables 2-1 and 3-1, and will be used in data evaluations.

5.2. 5-YEAR REVIEW

A 5-year review is required under the Compliance Plan and the IAG. Data collected for the LTM system will also support the 5-year review. The evaluations performed for the annual report will be reviewed collectively to determine the performance of the response actions across a 5-year time period. This is completed to determine if the response actions need to be adjusted to better meet the RAOs. In addition, the LTM design will be reevaluated using similar to those used for this report. Adjustments to the network will be made as necessary and updated through this design report.

Objective	Information Evaluation	Output from Evaluation
Plume stability	Water levels	Hydrographs, water level trending, map of water level trends, saturated thickness map, water elevation map, current conditions of dry wells
	Concentration trends	Concentrations trends in each well, map of concentration trends by constituent
Soil Stabilization Measures (Uncertainty Management)	Review of indicator monitoring data for Ogallala and perched Uncertainty Management wells	Data trend determinations at source areas
	Review of 5-Year data collection (modified Appendix IX monitoring)	Identification of new constituents, if any
Achievement of Cleanup Standards	Evaluation of data against GWPS	Table of data listing all wells that exceed the GWPS
(Response Action Effectiveness)	Concentration trends	Response Action Effectiveness wells concentration trends
	Evaluation of ISB performance data	Determine if complete breakdown is occurring, and if amendment continues to be effective. Compare downgradient wells data to GWPS to determine if system is reducing concentrations to acceptable levels and if conditions in the aquifer are suitable for continuing degradation
	Evaluation of extraction well capture zones	Text and map depicting capture zone analysis
	Evaluation of MNA data	Determine if RDX and other HEs are breaking down in wells selected for this analysis
Prevent Contaminants from Exceeding Cleanup Standards in the Ogallala Aquifer	Evaluation of data collected at Ogallala Aquifer wells	Comparison of data to background and GWPS.
(Early Detection)	Evaluate trends, if necessary (e.g., metals, or other low level detections that may occur)	Concentration trend charts and discussion

Table 5-1.	Groundwater	Monitoring	Data	Evaluation	Matrix
------------	-------------	------------	------	-------------------	--------

5.3. EVALUATION METRICS

Most methods for the evaluation are based on simple comparisons to established values, such as the practical quantitation limit (PQL), background, or GWPS. Statistical analyses of concentration trends in each well will be conducted using the methods described in the following sections. Well hydrographs will be provided for all monitoring wells, and a linear regression trend analysis will be used to determine if water levels are declining as stated in the cleanup objectives for the perched groundwater.

5.3.1.1 Statistical Concentration Trend Analysis

The general change in concentration, or trend, of a particular constituent in a well can be quantified using a statistical trend analysis method. The methods to be used, including a nonparametric Mann-Kendall analysis and a parametric linear regression, were adapted from the AFCEE Monitoring And Remediation Optimization System (MAROS) Software. The following descriptions of the statistical trend analysis methods were adapted from the MAROS Version 2.2 User's Guide (AFCEE, 2007).

With actual site measurements, apparent concentration trends may often be obscured by data scatter arising from non-ideal hydrogeologic or sampling and analysis conditions. However, even though the scatter may be of such magnitude as to yield a poor fit (typically characterized by a low correlation coefficient, e.g., $R^2 << 1$) for the first-order relationship, parametric and nonparametric methods can be utilized to obtain confidence intervals on the estimated first-order coefficient, i.e., the slope of the log-transformed data. Nonparametric tests such as the Mann-Kendall test for trend are suitable for analyzing data that do not follow a normal distribution. Nonparametric methods focus on the location of the probability distribution of the sampled population, rather than specific parameters of the population. The outcome of the test is not determined by the overall magnitude of the data points, but depends on the ranking of individual data points. Assumptions on the distribution of the data are not necessary for nonparametric tests. The Mann-Kendall test for trend is a nonparametric test which has no distributional assumptions and irregularly spaced measurement periods are permitted. The advantage gained by this approach involves the cases where outliers in the data would produce biased estimates of the least squares estimated slope.

Parametric tests such as first-order regression analysis make assumptions on the normality of the data distribution, allowing results to be affected by outliers in the data in some cases. However, more accurate trend assessments using parametric methods result from data where there is a normal distribution of the residuals. Therefore, when the data are normally distributed, the nonparametric Mann-Kendall test is not as efficient.

5.3.1.1.1 Mann-Kendall Analysis

General

The Mann-Kendall test is a non-parametric statistical procedure that is well suited for analyzing trends in data over time (Gilbert, 1987). The Mann-Kendall test can be viewed as a nonparametric test for zero slope of the first-order regression of time-ordered concentration data versus time. The AFCEE MAROS Tool includes this test to assist in the analysis of groundwater plume stability. The Mann-Kendall test does not require any assumptions as to the statistical distribution of the data (e.g. normal, lognormal, etc.) and can be used with data sets which include irregular sampling intervals and missing data. The Mann-Kendall test is designed for analyzing a single groundwater constituent, multiple constituents are analyzed separately. For this evaluation, a decision matrix was used to determine the "Concentration Trend" category for each well, as presented in Table 5-2.

Mann-Kendall Statistic (S)

The Mann-Kendall statistic (S) measures the trend in the data. Positive values indicate an increase in constituent concentrations over time, whereas negative values indicate a decrease in constituent concentrations over time. The strength of the trend is proportional to the magnitude of the Mann-Kendall Statistic (i.e., large magnitudes indicate a strong trend). Data for performing the Mann-Kendall Analysis must be in time sequential order. The first step is to determine the sign of the difference between consecutive sample results. Sgn(x_j - x_k) is an indicator function that results in the values 1, 0, or -1 according to the sign of (x_i - x_k), where j > k. The function is calculated as follows:

$$sgn(x_{j} - x_{k}) = 1 if x_{j} - x_{k} > 0$$

$$sgn(x_{j} - x_{k}) = 0 if x_{j} - x_{k} = 0$$

$$sgn(x_{i} - x_{k}) = -1 if x_{i} - x_{k} < 0$$

The Mann-Kendall statistic (S) is defined as the sum of the number of positive differences minus the number of negative differences or

$$S = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \operatorname{sgn}(x_{j} - x_{k}).$$

The *confidence in the trend* for the Mann-Kendall statistic is calculated using a Kendall probability table (e.g. Hollander, M. and Wolfe, D.A., 1973). By assessing the S result along with the number of samples, n, the Kendall table provides the probability of rejecting the null hypothesis ($H_0 = no$ trend) for a given level of significance. MAROS calculates a "confidence level" percentage by subtracting the probability (*p*) from 1 (Confidence = 1-*p*%). Confidence of 90% represents a significance level of $\alpha = 0.1$, and 95% confidence corresponds to $\alpha = 0.05$. The resulting confidence in the trend is applied in the Mann Kendall trend analysis.

Average

The arithmetic mean of a sample of n values of a variable is the average of all the sample values written as

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Standard Deviation

The standard deviation is the square root of the average of the square of the deviations from the sample mean written as

$$s = \sqrt{\frac{\displaystyle\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} \,.$$

The standard deviation is a measure of how the value fluctuates about the arithmetic mean of the data.

Coefficient of Variation (COV)

The Coefficient of Variation (COV) is a statistical measure of how the individual data points vary about the mean value. The coefficient of variation, defined as the standard deviation divided by the average or

$$C.O.V. = \frac{s}{\overline{x}}$$

Values less than or near 1.00 indicate that the data form a relatively close group about the mean value. Values larger than 1.00 indicate that the data show a greater degree of scatter about the mean.

Results and Interpretation of Results: Mann-Kendall Analysis

The concentration data are used to calculate COV and S for each well with at least four sampling events. A "Concentration Trend" and "Confidence in Trend" are reported for each well with at least four sampling events. If data are insufficient, the well trend analysis is not conducted.

The COV is a statistical measure of how the individual data points vary about the mean value. Values less than or near 1.0 indicate that the data form a relatively close group about the mean value. Values larger than 1.0 indicate that the data show a greater degree of scatter about the mean. The Mann-Kendall statistic (S) measures the trend in the data. Positive values indicate an increase in constituent concentrations over time, whereas negative values indicate a decrease in constituent concentrations over time. The strength of the trend is proportional to the magnitude of S (i.e., larger magnitudes indicate a stronger trend). The "Confidence in Trend" (1-*p*) is the statistical probability that the constituent concentration is increasing (S>0) or decreasing (S<0). The null hypothesis (no trend) is rejected for confidence above 90%.

The "Concentration Trend" for each well is determined according to the rules in the decision matrix (Table 5-2), where COV is the coefficient of variation. The MAROS Mann-Kendall Analysis Decision Matrix was developed by Groundwater Services Inc. for AFCEE. Strongly increasing or decreasing trends indicate a higher level of statistical significance. The confidence can be used as a qualitative measure of the statistical strength of the trend when evaluating the overall stability of the plume.

5.3.1.1.2 Linear Regression Analysis

General

Linear regression is a parametric statistical procedure that is typically used for analyzing trends in data over time. However, with the usual approach of interpreting the log slope of the regression line, concentration trends may often be obscured by data scatter arising from non-ideal hydrogeologic or sampling and analysis conditions. Even though the scatter may be of such magnitude as to yield a poor goodness of fit (typically characterized by a low correlation coefficient, e.g., $R^2 \ll 1$) for the first-order relationship, confidence intervals can nonetheless be constructed on the estimated first-order coefficient, i.e., the slope of the log-transformed data. Using this type of analysis, a higher degree of scatter simply corresponds to a wider confidence interval about the average log slope. Assuming the sign (i.e., positive or negative) of the estimated log slope is correct, a level of confidence that the slope is not zero can be easily determined. Thus, despite a poor fit, the overall trend in the data may still be ascertained, where low levels of confidence correspond to "Stable" or "No Trend" conditions (depending on the degree of scatter) and higher levels of confidence indicate the stronger likelihood of a trend. The coefficient of variation, defined as the standard deviation divided by the average, is used as a secondary measure of scatter to distinguish between "Stable" or "No Trend" conditions for negative slopes. The linear regression analysis is designed for analyzing a single groundwater constituent, multiple constituents are analyzed separately. For this evaluation, a decision matrix was used to determine the "Concentration Trend" category for each well, as presented in Table 5-3.

Linear Regression

The objective of linear regression analysis is to find the trend in the data through the estimation of the log slope as well as placing confidence limits on the log slope of the trend. Regression begins with the specification of a model to be fitted. A linear relationship is one expressed by a linear equation. The linear regression analysis is performed on log(concentration) versus time. The regression model assumes that for a fixed value of x (sample date) the expected value of y (log concentration) is some function. For a particular value, x_i or sample date the predicted value for y (log concentration) is given by

$$\hat{y}_i = a + bx_i$$

The fit of the predicted values to the observed values (x_i, y_i) are summarized by the difference between the observed value y_i and the predicted value \hat{y}_i (the residual value). A reasonable fit to the line is found by making the residual values as small as possible. The method of least squares is used to obtain estimates of the model parameters (a, b) that minimize the sum of the squared residuals, S² or the measure of the distance between the estimate and the values we want to predict (the y's).

$$S^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

The values for the intercept (a) and the slope (b) of the line that minimize the sum of the squared residuals (S^2) , are given by

$$b = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \quad \text{and} \quad a = \overline{y} - b\overline{x}$$

where \overline{x} and \overline{y} are the mean x and y (log concentration) values in the dataset.

In order to test the confidence on the regression trend, there is a need to place confidence limits on the slope of the regression line. In this stage of the trend analysis, it is assumed that for each x value, the y-distribution is normal. A t-test may be used to test that the true slope is different from zero. This t-test is preferentially used on data that is not serially correlated or seasonally cyclic or skewed.

The variance of $y_i(\sigma^2)$ is estimated by the quantity $S_{y|x}^2$ where this quantity is defined as

$$S_{y|x}^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n-2}$$

where n is the number of samples.

The estimation of the standard deviation or standard error of the slope (s.e.b.) is defined as

s.e.b. =
$$\sqrt{\frac{S_{y|x}^2}{\sum_{i=1}^n (x_i - \overline{x}_i)^2}}$$

To test significance of the slope calculated, the following t-test result can be used to find the confidence interval for the slope.

$$t = \frac{b}{s.e.b.}$$

The t result along with the degrees of freedom (n-2) are used to find the confidence in the trend by utilizing a t-distribution table found in most statistical textbooks (e.g. Fisher, L.D. and van Belle, G., 1993). The resulting confidence in the trend is utilized in the linear regression trend analysis.

Results and Interpretation of Results: Linear Regression Analysis

The concentration data are used to calculate the COV and the first-order coefficient (log slope) for each well with at least four sampling events. A "Concentration Trend" and "Confidence in Trend" are reported for each well with at least four sampling events. If data are insufficient, the well trend analysis is not conducted.

The COV is a statistical measure of how the individual data points vary about the mean value. Values less than or near 1.0 indicate that the data form a relatively close group about the mean value. Values larger than 1.0 indicate that the data show a greater degree of scatter about the mean.

The Log Slope measures the trend in the data. Positive values indicate an increase in constituent concentrations over time, whereas negative values indicate a decrease in constituent concentrations over time.

The "Confidence in Trend" is the statistical probability that the constituent concentration is increasing (log slope > 0) or decreasing (log slope < 0).

The "Concentration Trend" for each well is determined according to the rules in the decision matrix (Table 5-3), where COV is the coefficient of variation. The MAROS Linear Regression Analysis Decision Matrix was developed in-house by Groundwater Services Inc. for AFCEE.

5.3.1.2 Water Level Trend Analysis

A similar linear regression trend analysis will be used with water level measurements to determine if water levels are declining as stated in the cleanup objectives for the perched groundwater. For water level trend analysis, the measured water levels are the y values. These values are not log-transformed before applying the regression analysis.

5.3.1.3 Comparison to GWPS

Data collected at each well will be directly compared to the GWPS for each constituent to determine if concentrations exceed the GWPS. Wells that exceed the GWPS will be highlighted.

5.3.1.4 Dry

Dry wells will be checked semi-annually for water. If sufficient water is found to allow sample collection, the well will be sampled according to the appropriate indicator list, and the data collected will be evaluated accordingly.

5.4. EXPECTED CONDITIONS

The expected condition designated for each well provides a context for evaluating the monitoring data from the well based on the monitoring history, knowledge of plume movement and source area conditions, and expected impacts of remedial action systems. The range of expected conditions were classified into six categories presented below.

<u>Below background/PQL and GWPS:</u> Concentrations are not expected to exceed background/PQL or the GWPS. This conditions applies to wells that are located outside the extent of a plume or that have not produced exceedances of RRS1 in historical sampling data.

<u>Stable or decreasing trend below GWPS:</u> Concentrations are below the GWPS and are expected to remain stable or decrease over time. This condition applies to wells that have exhibited a decline of concentrations to below the GWPS or that have a history of detections below the GWPS.

<u>Decreasing water levels, Long-term stabilization of concentrations:</u> These wells are within the influence of the groundwater extraction systems, so water levels are expected to decline over time. Concentrations are expected to stabilize as the pump and treat systems continue to remove contaminant mass from the perched groundwater.

<u>Below GWPS in 2–5 years:</u> These wells are downgradient of the ISB systems, so concentrations are expected to decrease as groundwater passing through the treatment zone migrates to the wells. The decrease in concentrations may not be evident until sufficient time has passed to allow treated groundwater to travel the distance from the treatment zone to the well at the pore water velocity.

<u>Long-term decreasing trend:</u> These wells are outside the zone of influence of the groundwater extraction systems and are not downgradient of an ISB system. Concentrations in these wells are expected to slowly decrease through natural attenuation processes including dispersion, dilution, and degradation.

<u>Remain dry:</u> These wells are beyond the extent of perched saturation and serve as plume stability wells. These wells will be watched to ensure that the perched groundwater, and the contaminant plumes, is not expanding. The expected condition for these wells is that water will not be found.

	-	
Mann-Kendall Statistic	Confidence in Trend	Concentration Trend
S > 0	> 95%	Increasing
S > 0	90–95%	Probably Increasing
S > 0	< 90%	No Trend
$S \leq 0$	$< 90\%$ and COV ≥ 1	No Trend
$S \leq 0$	< 90% and COV < 1	Stable
S < 0	90–95%	Probably Decreasing
S < 0	> 95%	Decreasing

Table 5-2, MAROS N	Mann-Kendall Analysis	Decision Matrix
	vianni ischuan marysis	Decision matrix

Table 5-3. MAROS Linear Regression Analysis Decision Matrix

Log Slope	Confidence in Trend	Concentration Trend
Positive	> 95%	Increasing
Positive	90–95%	Probably Increasing
Positive	< 90%	No Trend
Negative	$< 90\%$ and COV ≥ 1	No Trend
Negative	< 90% and COV < 1	Stable
Negative	90–95%	Probably Decreasing
Negative	> 95%	Decreasing

THIS PAGE LEFT INTENTIONALLY BLANK.

6. SUMMARY AND CONCLUSIONS

This report documents the development of the proposed long-term groundwater monitoring well network and the methods for evaluation of the response actions based on the monitoring well network for Pantex Plant.

Pantex is proposing that a total of 134 perched and Ogallala wells be monitored. Twenty-six Ogallala monitor wells and 108 perched wells are recommended for monitoring. The objectives for the development of the network are to evaluate the following:

Perched

- Plume stability
- Response Action Effectiveness
- Uncertainty Management

Ogallala

- Early Detection
- Uncertainty Management

The frequency of sampling and the monitoring lists were recommended to evaluate each well for indicator parameters (as presented in the *Sampling and Analysis Plan*, B&W Pantex 2009). In addition, a larger list of constituents (modified Appendix IX as presented in the *Sampling and Analysis Plan*) is recommended for monitoring every 5 years to be used in conjunction with the 5-Year Review required by the Compliance Plan and CERCLA. The monitoring well network will also be reviewed each 5 years to make recommended changes.

The well construction designs for new perched and Ogallala wells were recommended to ensure that final monitoring well placement and sampling will allow for early detection of contaminants and to evaluate the final remedial actions at Pantex.

This plan also provides the methods for evaluating compliance with the response action objectives for the perched groundwater at Pantex. These evaluations will be performed in the semi-annual and annual reports, as required. Evaluations include comparison of monitoring data against the applicable standards, concentration trending, evaluation of water levels, and evaluation of well conditions.

THIS PAGE LEFT INTENTIONALLY BLANK.

7. **REFERENCES**

- AFCEE, 2007. Monitoring and Remediation Optimization System (MAROS) Software Version 2.2 User's Guide, Air Force Center for Environmental Excellence, Texas.
- ANL and BMI, 1995. Draft RCRA Facility Investigation Report for the Groundwater in Zone 12 at the DOE Pantex Plant, Argonne National Laboratory, Illinois, and Battelle Memorial Institute, Ohio, November.
- B&W Pantex, 2008. 2007 Annual Progress Report in Support of Compliance Plan No. 50284 and Pantex Plant Interagency Agreement. April 2008.
- B&W Pantex and Sapere Consulting, 2008. *Record of Decision for Soil, Groundwater and Associated Media*. Prepared for USDOE/NNSA Pantex Plant. September 2008.
- BPX/MHC, 1997. *1996 Environmental Report for Pantex Plant*, DOE/AL/65030/9704, Battelle Pantex and Mason & Hanger Corporation, Texas, May.
- BPX/MHC, 1998. *Environmental Information Document for Pantex Plant*, Battelle Pantex and Mason & Hanger Corporation, Texas, October.
- BWXT Pantex and SAIC, 2004. Subsurface Modeling Report for the U. S. Department of Energy/National Nuclear Security Administration, Pantex Plant, Amarillo, Texas, BWXT Pantex, L.L.C., Texas, September.
- DOC, 1997. Local Climatologic Data, Annual Summary with Comparative Data, Amarillo, Texas, National Oceanic and Atmospheric Administration, Environmental Data Services.
- Fisher, L.D. and van Belle, G., 1993. *Biostatistics: A Methodology for the Health Sciences*, Wiley, New York.
- Gibbons, R.D., 1994. Statistical Methods for Groundwater Monitoring, Wiley, New York.
- GSI, 2008. Groundwater Monitoring Network Optimization, Perched Groundwater Unit, Pantex Plant. GSI Environmental Inc. February 2008.
- Gustavson, 1994. Preliminary Assessment of Regional Depositional Systems of the Tertiary Ogallala and Quaternary Blackwater Draw Formations, Pantex Plant and Vicinity, Carson County, Texas, Milestone Report by Thomas C. Gustavson, Bureau of Economic Geology and the University of Texas at Austin, Texas.
- Hollander, M. and Wolfe, D.A., 1973. Nonparametric Statistical Methods, Wiley, New York.
- Hovorka, 1995. *Stratigraphy of Playas in the Pantex Area Playa 5 and Pantex Lake*, Bureau of Economic Geology, and The University of Texas at Austin, Texas, Milestone Report prepared by Susan D. Hovorka, Texas, July.
- Johns, 1989. *Lithogenetic Stratigraphy of the Triassic Dockum Formation, Palo Duro Basin, Texas.* University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 182, 71 p.

- McGuire, 2004. Water-Level Changes in the High Plains Aquifer, Predevelopment to 2003 and 2002 to 2003: U.S. Geological Survey Fact Sheet FS-2004-3097, p. 6, prepared by V.L. McGuire.
- Mullican, 1997. Playas and recharge of the Ogallala aquifer on the Southern High Plains of Texas–An examination using numerical techniques. The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 242, 72 p.
- Nativ, 1988. Hydrogeology and Hydrochemistry of the Ogallala Aquifer, Southern High Plains, Texas Panhandle and Eastern New Mexico, The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 177, prepared by R. Nativ, Texas.

APPENDIX A

Hydrogeologic Description of Pantex Plant

A. HYDROGEOLOGY

This appendix describes the hydrogeologic setting of Pantex Plant, including geology and water resources.

A.1. TOPOGRAPHY

Pantex Plant is located in the Texas Panhandle on the High Plains portion of the Great Plains Physiographic Province. This area is a broad, flat plateau that gently slopes east and south and is known as the *Llano Estacado* (Spanish for "Staked Plain"). Topographic elevation across Pantex Plant ranges from approximately 3,501 to 3,595 feet (1,067 to 1,096 m) above mean sea level (amsl), with an average elevation of approximately 3,554 feet (1,083 m) amsl (Table A-1). The topography is relatively flat with slopes ranging from approximately 0.00005 in upland areas to approximately 0.07 near closed drainage basins containing ephemeral lakes (known as playas). The average topographic slope across the Plant area is approximately 0.006 (Table A-1).

A.2. LOCAL GEOLOGY

The shallow subsurface stratigraphy in the area of Pantex Plant is comprised of the following geologic units (in order of increasing age of formation and depth below land surface):

- Blackwater Draw Formation (Pleistocene Epoch)
- Ogallala Formation (Pliocene Epoch)
- Dockum Group (Triassic Period)
- Permian Quartermaster Formation (Permian Period) where the Dockum Group is not present.

The vertical dimensions of the geologic units are summarized in Table A-1. More detailed information regarding the local geology is presented in the *Subsurface Modeling Report* (BWXT Pantex and SAIC, 2004).

The Blackwater Draw, the uppermost hydrostratigraphic unit (HSU) consists of eolian silts and sands with an approximately 20-foot (6-m) thick lower unit composed of silty sand and caliche. The upper surface of the Blackwater Draw is defined by surface topography. Numerous depressions representing the playa basins are apparent on the land surface. These depressions range from a few feet to more than 46 feet (14 m) in relief and from several hundred feet to 1 mile (1.6 km) or more in diameter (ANL and BMI, 1995). Sediments beneath the playas contain thick sequences, roughly 16 to 60 ft (5 to 18 m), of lake sediments that are highly variable in lateral and vertical extent (Hovorka, 1995). The lake sediments interfinger with the Blackwater Draw sediments near the edges of the playa basins. The Blackwater Draw Formation and the availability of water control infiltration and recharge, especially to perched groundwater.

Underlying the Blackwater Draw Formation is the Ogallala Formation. The Ogallala sediments consist of coarse-grained fluvial sequences that fill the floors of paleovalleys and fine upward from gravel to fine sand. The fining-upward sequences contain channel sands and gravels overlain by finer overbank deposits (Gustavson, 1994). Fine-grained eolian deposits overlie the coarse fluvial sediments. Regionally, the thickness of the Ogallala Formation ranges from a few feet to over 900 feet (274 m). A massive caliche caprock layer generally defines the top of the Ogallala Formation (and the base of the Blackwater Draw Formation); however, it is not continuous in extent below Pantex Plant. Where present, the caprock layer consists of a hard, dense, finely crystalline caliche.

Underlying the Ogallala Formation is the Dockum Group. Where present, the Dockum Group is estimated to be approximately 200 feet (61 m) thick in the Plant area (Johns, 1989). Identification of the Dockum Group from the Ogallala Formation is more difficult than the identification of the Permian Redbeds or the Quartermaster Formation. The Quartermaster Formation is made up of red shale or clay with sandstone, dolomite, or gypsum. The Permian Redbeds have very low permeability values; therefore, there are limited permeable pathways between the Ogallala and Permian rocks (Nativ, 1988).

A.3. GROUNDWATER RESOURCES

A.3.1 Ogallala Aquifer

The principal source of groundwater for the region is the Ogallala Aquifer, the primary unit of the High Plains Aquifer, comprising the highly permeable basal sediments of the Ogallala Formation throughout the Southern High Plains. The Ogallala Aquifer provides water for municipal water supplies, crop irrigation, livestock operations, and industry and is the sole water source for Pantex Plant.

The High Plains Aquifer has been developed extensively with more than 96% of the total withdrawal used for irrigation (McGuire, 2004). During 2000, approximately 121,000 acre-feet of water were pumped from the aquifer in Carson County (PGCD, 2003). About 97,300 acre-feet, or 80%, were withdrawn for irrigation (PWPG, 2005). Because this volume of discharge greatly exceeds the amount of recharge, water levels in the aquifer are declining. Water level changes in the High Plains Aquifer from the time prior to substantial ground-water irrigation development (about 1950) to 2003 are illustrated in Figure A-1. In this figure, declines in western Carson County near Pantex Plant range from about 25 ft (7.6 m) to more than 150 feet (46 m). According to the Panhandle Groundwater Conservation District, the average water level in Carson County declined 31 feet (9.4 m) from 1964 to 2004 (PGCD, 2004). Beneath the northern part of Pantex Plant, water levels have dropped more than 130 feet (40 m) since 1942 and are currently declining at rates greater than 1 foot (0.3 m) per year.

The Ogallala Aquifer in Carson County was estimated to contain about 17.5 million acre-feet of groundwater in 1960 (Knowles, et al., 1984). In 2000, the volume in storage had declined to about 15.3 million acre-feet (PWPG, 2005). It is the stated goal of the Panhandle Groundwater Conservation District to conserve and preserve the limited supply of groundwater in the district while maintaining the economic viability of all resource user groups. To meet this goal, the District has instituted a conservation management policy to retain 50% of the 1998 groundwater supply in 2048 (PCGD, 2003). According to Groundwater Availability Modeling conducted as part of regional water planning, about 65% of the year 2000 groundwater supply in Carson County is projected to remain in 2050 (PWPG, 2005).

Regionally, the Ogallala water table slopes from northwest to southeast, generally following the regional topographic surface. In the vicinity of Pantex Plant, however, the water table slopes from southwest to northeast, as shown in Figure A-2, in response to extensive pumping from the City of Amarillo Carson County well field located north of Pantex Plant. Figure A-3, showing the approximate saturated thickness of the Ogallala Aquifer near Pantex, indicates an area of limited saturation in the aquifer on the eastern side of the Texas Tech University (TTU) property. As water levels in the aquifer continue to decline, this area of limited saturation will expand. Figure A-2 includes the locations of Ogallala Aquifer monitoring wells in the vicinity of Pantex Plant. This monitoring network was used to determine the water levels and potentiometric surface of the Ogallala Aquifer beneath the Plant.

A.3.2 Perched Groundwater

Localized bodies of perched groundwater occur above the Ogallala Aquifer throughout the Southern High Plains (Mullican, 1997). These localized zones occur where focused recharge from playa lakes has ponded on top of an aquitard, referred to as the fine-grained zone (FGZ). Figure A-4 includes the

locations of perched groundwater monitoring wells in the vicinity of Pantex Plant. This monitoring network was used to determine the water levels and potentiometric surface of perched groundwater beneath the Plant. Three primary areas of perched groundwater beneath Pantex Plant are shown in Figure A-5. The largest area of perched groundwater underlying Pantex Plant is associated with natural recharge from Playas 1, 2, and 4, treated wastewater discharge to Playa 1, and historical releases to the ditches draining Zones 11 and 12. Smaller areas of perched groundwater are associated with Playa 3 (near the Burning Ground) and Pratt Playa (near the northeast corner of Pantex Plant).

Perched groundwater does not discharge to the surface, is not a source of drinking water for Pantex Plant, nor is it used for any Pantex Plant industrial operations. Treated water from the perched groundwater pump and treat system, and treated wastewater meeting Pantex Plant permitted discharge requirements, is used for subsurface irrigation onsite. Because perched groundwater is the shallowest water-bearing zone in the area, it is the first groundwater unit affected by the migration of constituents released from Pantex Plant Solid Waste Management Units (SWMUs). Units impacted by constituents at the surface are separated from groundwater in either the perched zone or the Ogallala Aquifer by a 200- to 500-foot (61-to 153-m) thick unsaturated zone. Vertical flow between perched groundwater and the Ogallala Aquifer is limited by the FGZ. In areas where perched groundwater is present, a second unsaturated zone occurs between the perched groundwater and the Ogallala Aquifer. Because of the thin saturated thickness of perched groundwater, flow in the perched zone is controlled by the topography of the FGZ and by localized sources of recharge, such as Playa 1. As a result, groundwater flow directions in the perched groundwater vary spatially in response to local topography and recharge. Perched groundwater in that area.

As a result of historical waste management practices that occurred at Pantex Plant from the early 1950s to approximately the late 1980s, portions of the main perched groundwater are impacted by contaminants, primarily in the areas beneath and downgradient of Zones 11 and 12 and Playa 1. The most prevalent contaminant in perched groundwater is Research Development Explosive compound cyclo-trimethylene trinitramine (RDX), a high explosive (HE) compound used at Pantex Plant since it began operations in the early 1950s. The approximate extent of RDX impacts in perched groundwater at Pantex Plant is shown in Figure A-6. In this figure, the highest concentrations of RDX are observed south of the Plant boundary on TTU property, and along the eastern Plant boundary. Current concentrations observed are much lower near the known source areas (WMG 6/7, SWMU 5-13c, and Playa 1). The lower concentrations near the source areas indicate that influx of RDX to perched groundwater was much greater in the past, the observed nature and extent of RDX impacts are a result of historical releases, and improved waste management practices have mitigated continuing influx of RDX to the perched groundwater. The *Groundwater RFIR* (Stoller, 2004) provides a complete discussion of the nature and extent of constituents in perched groundwater.

A.4. SOIL CHARACTERISTICS

Surficial soils at Pantex Plant are predominantly Pullman clay loams. Subsurface soils are considered part of the Blackwater Draw and Ogallala Formations. The Pullman clay loam series dominates the upland, and Randall clay dominates the playa bottoms. Lazbuddie and Lofton soils occur on the playa benches, and Pep and Estacado soils occur on the playa side slopes.

A.5. METEOROLOGY AND CLIMATOLOGY

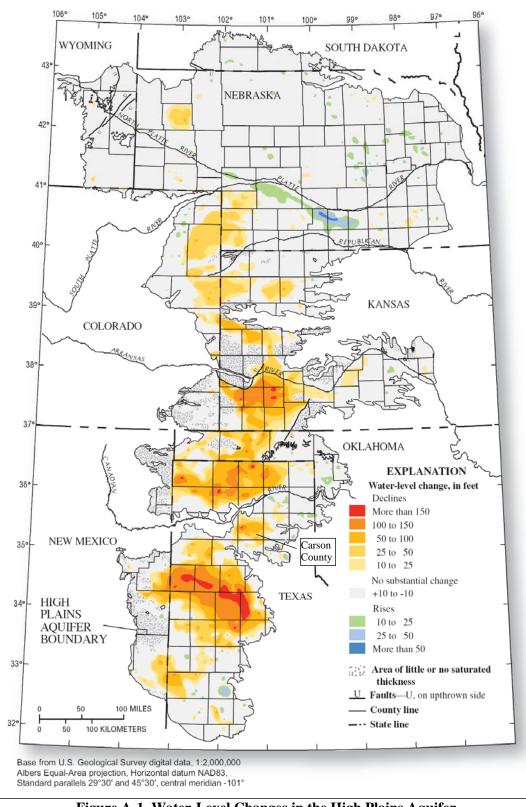
The climate in the Texas Panhandle is typical of continental interiors. It is mainly semi-arid, with mild winters and hot, dry summers and is characterized by large variations in daily temperature extremes, low relative humidity, and irregular rainfall of moderate amounts. Thunderstorms occur approximately 49 days per year and can produce tornadoes (DOC, 1997). Pantex Plant is in a windy area and in a moderate- to high-hazard zone for tornadoes.

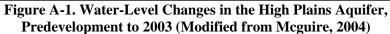
Based on National Weather Service (NWS) records, average annual precipitation for Amarillo is 19.9 inches (50.5 cm). The average annual temperature is 57.1°F (13.9°C), with a normal low temperature in January of 21.2°F (-6.0°C) and a normal high temperature in July of 91.7°F (33.2°C). Average wind speeds at the Amarillo NWS station are 13.1 mph (21.1 kph) based on a 33-year period of record (BPX/MHC, 1998). The prevailing wind direction is from the south for May through September and from the southwest for the remainder of the year (DOC, 1997). Analysis of NWS meteorological data for 1990 indicates local winds were predominantly from the south and southwest directions approximately 41% of the time with an average wind speed of 13.4 mph (21.6 kph). The gross lake-surface evaporation rate averages 73 inches (185 cm) per year, as measured from 1950 through 1975 (BPX/MHC, 1997).

A.6. SURFACE WATER

The principal surface water features of the Southern High Plains are the numerous shallow playas and small stream valleys or draws. Stream drainage patterns are poorly developed because of the low relief of the plains. Streams occur as long, shallow draws following the general slope of the land surface at widely spaced intervals. The drainage areas of the streams and draws are limited to narrow belts of land. Playa basins drain the larger, interfluvial areas and generally do not contribute runoff to streams. The perennial surface water feature closest to Pantex Plant is the Canadian River, located approximately 17 miles (27 km) to the north. The river flows in a generally eastward direction into Lake Meredith, a constructed reservoir. A few smaller streams are located south and east of Pantex Plant along the High Plains Escarpment. These streams are tributaries of the Red River and include 1) the Salt Fork of the Red River, about 20 miles (32 km) southeast of Pantex Plant; 2) the Prairie Dog Town Fork of the Red River, 25 miles (40 km) southwest of Pantex Plant; and 3) Sweetwater Creek, about 50 miles (80 km) east of Pantex Plant. During flood events at Pantex Plant, surface water may flow to offsite playas but runoff from Pantex Plant does not flow into the Canadian River, Lake Meredith, or any of the smaller streams.

Three playas are located at Pantex Plant, as shown on Figure A-4. Playa 1 is north of Zone 12, Playa 2 is west-northwest of Zone 11, and Playa 3 is included in the Burning Ground WMG. Playa 4 is located on TTU property, south of Zone 11. A large playa basin is located on Pantex Lake property, 2.5 miles (4 km) northeast of the Pantex Plant boundary. Other playas are present in the area and each constitutes a separate drainage basin with no surface drainage outlets. Most surface water runoff from Pantex Plant flows into the onsite playas. Historically, treated and untreated industrial wastewater was discharged directly to the ditches and flowed to the playas. Waste management practices were improved in the 1980s and all industrial discharges to the ditches were eliminated by 1999. Additionally, Playa 1 and Pantex Lake have received treated wastewater from the Old Sewage Treatment Plant (OSTP) and the current Wastewater Treatment Facility (WWTF). The treated wastewater discharge is currently routed to a subsurface irrigation system in accordance with permit requirements. Occasionally, treated wastewater is discharged to Playa 1 in compliance with permit requirements. Playas 2 and 3 and Pantex Lake receive only storm water runoff.


		High		Low		Average ^b	
	Geologic Features	ft	m	ft	m	ft	m
	Topographic Elevation (Top of Blackwater Draw Formation)	3594.6	1095.6	3501.2	1067.2	3553.6	1083.1
	Topographic Slope (ft/ft)	0.07	0.07	0.00005	0.00005	0.006	0.006
	Elevation of Base of Blackwater Draw Formation (Top of Ogallala Formation and Caprock Caliche)	3532.9	1076.8	3436.9	1047.6	3480.6	1060.9
Elevation ^c	Elevation of the Base of the Caprock Caliche	3522.4	1073.6	3426.3	1044.3	3470.5	1057.8
	Elevation of the Perched Water Table Surface	3321.9	1012.5	3257.4	992.8	3283.4	1000.8
	Elevation of the Top of the FGZ	3341.5	1018.5	3111.1	948.3	3277.5	999.0
	Elevation of the Base of the FGZ	3309.6	1008.8	3031.5	924.0	3226.3	983.4
	Top of Ogallala Water Table	3210.4	978.5	2677.2	816.0	3115.6	949.6
	Elevation of the Base of the Ogallala Formation (Top of the Dockum Group and Redbeds)	3152.4	960.9	2679.2	816.6	2895.9	882.7
	Depth bgs to Base of Blackwater Draw Formation (Top of Ogallala Formation and Caprock Caliche)	105.0	32.0	33.6	10.2	72.9	22.2
Depth	Depth bgs to Base of Caprock Caliche	115.0	35.0	43.6	13.3	83.0	25.3
below	Depth bgs to Perched Water Table Surface	297.9	90.8	195.1	59.5	256.7	78.2
ground	Depth bgs to Top of FGZ	321.7	98.1	223.5	68.1	276.0	84.1
surface	Depth bgs to Base of FGZ	431.1	131.4	267.5	81.5	327.1	99.7
(bgs)	Depth bgs to Ogallala Water Table Surface	507.5	154.7	343.5	104.7	437.9	133.5
	Depth bgs to Base of Ogallala Formation (Top of the Dockum Group and Redbeds)	888.9	270.9	390.9	119.2	657.6	200.4
	Thickness of Blackwater Draw Formation	105.5	32.2	33.6	10.2	72.8	22.2
	Thickness of Caprock Caliche	23.2	7.1	0.5	0.2	7.1	2.2
	Saturated Thickness of Perched Groundwater	79.4	24.2	0.0	0.0	22.0	6.7
Thickness	Thickness of FGZ	157.1	47.9	8.7	2.6	51.1	15.6
	Lower Ogallala Unsaturated Thickness	221.1	67.4	0.0	0.0	110.8	33.8
	Saturated Thickness of Ogallala Aquifer	406.2	123.8	29.0	8.8	219.7	67.0
	Thickness of Ogallala Formation (Total)	821.6	250.4	316.4	96.5	584.7	178.2


Table A-1. Vertical Dimension of Geologic Features within Pantex Plant Boundary	va
Tuble II IV Vertical Dimension of Geologie I catalog within I antes I fait Doundary	,

Note: Water surface information is based on April 2000 measurements collected from monitoring, investigation, municipal, private, and extraction wells (See Table 2-3 of Subsurface Modeling Report [BWXT Pantex and SAIC, 2004] for list of wells included).

^aTable taken from the Subsurface Modeling Report (BWXT Pantex and SAIC, 2004) ^bAverages were calculated as the arithmetic mean of the interpolated surfaces within the Pantex Plant boundary.

^cElevation data is amsl.

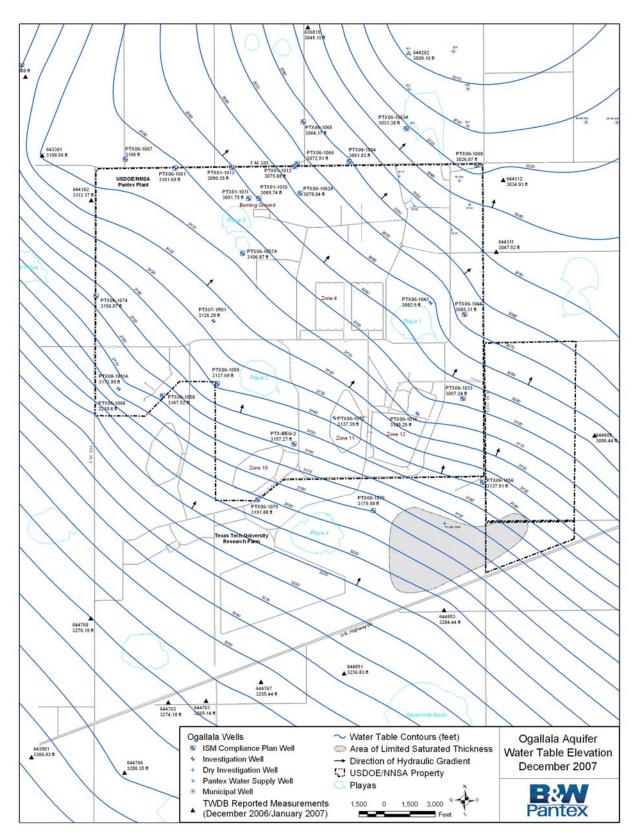


Figure A-2. Ogallala Aquifer Water Levels at Pantex Plant, December 2007

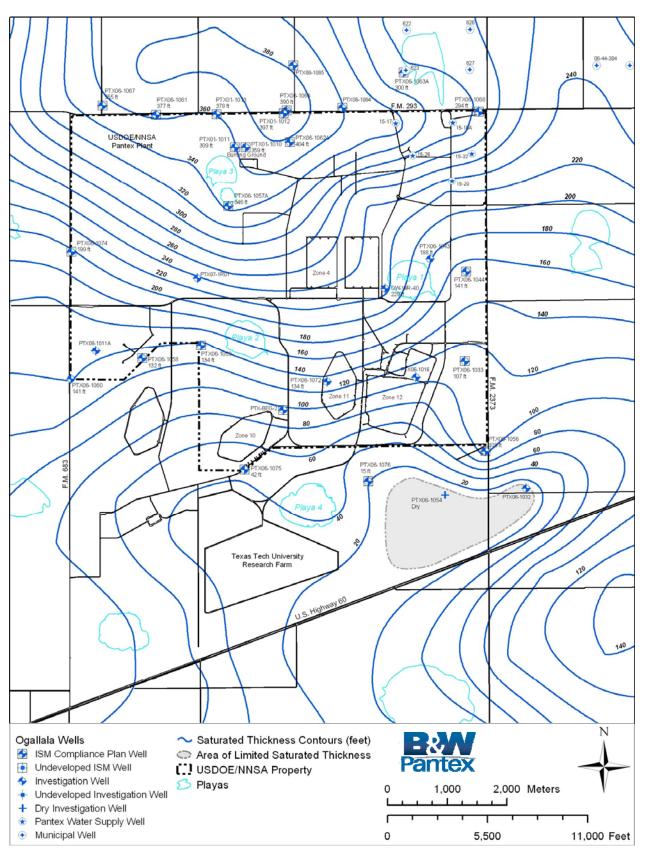


Figure A-3. Approximate Saturated Thickness of the Ogallala Aquifer, December 2004

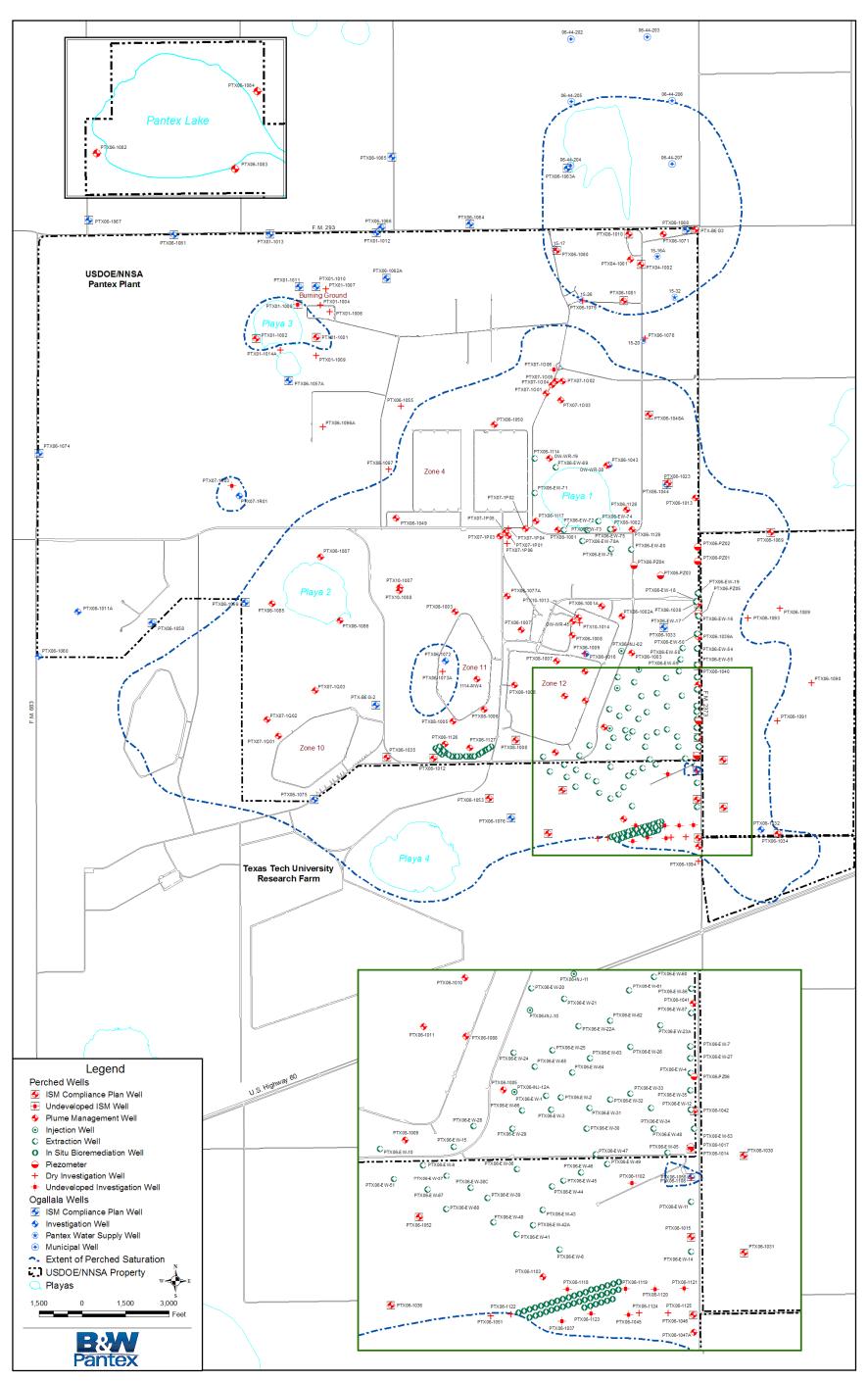


Figure A-4. Well Location Map

THIS PAGE LEFT INTENTIONALLY BLANK

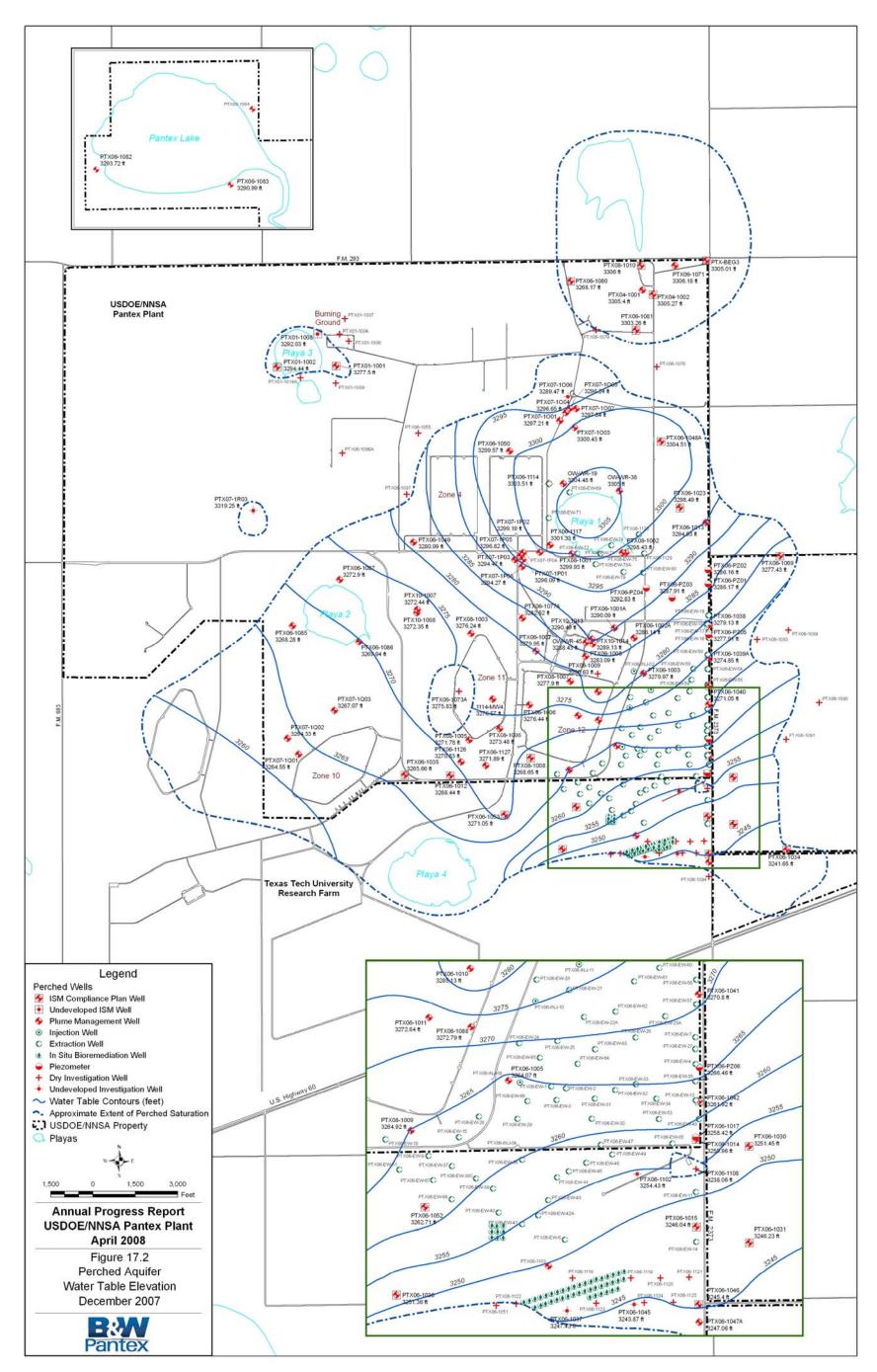


Figure A-5. Perched Groundwater Water Levels at Pantex Plant

THIS PAGE LEFT INTENTIONALLY BLANK

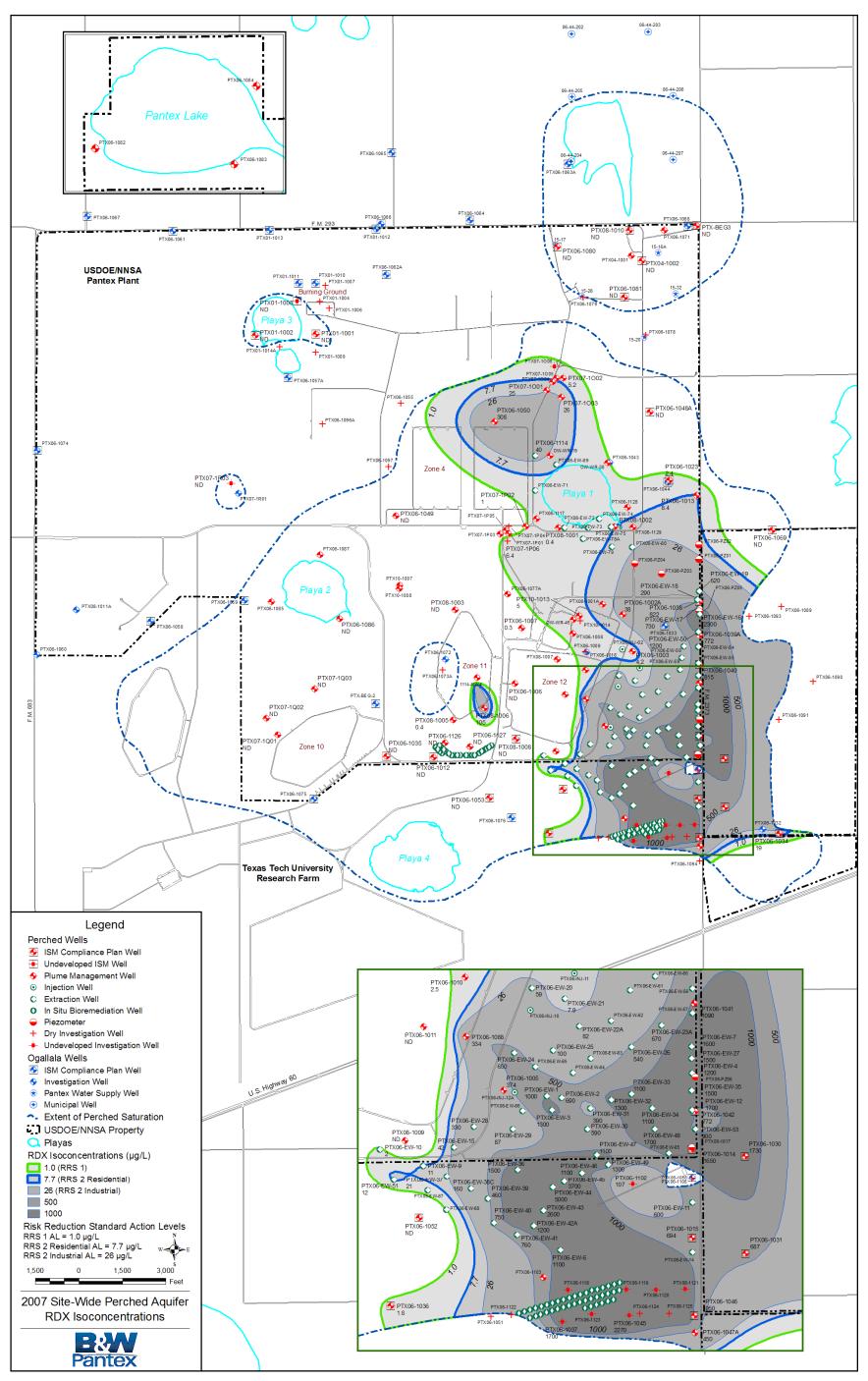


Figure A-6. Perched Groundwater RDX Isoconcentrations

THIS PAGE LEFT INTENTIONALLY BLANK

Appendix B

Groundwater Monitoring Network Optimization (GSI, 2008)

Optimization of Monitoring Well Placement for Breakthrough Detection in the Ogallala Aquifer (SAIC, 2008)

Analysis of Vertical Flow During Ambient and Pumping Conditions in Four Monitoring Wells at the Pantex Plant, Carson County, Texas, July—September 2008 (USGS, 2009)

Groundwater Monitoring Network Optimization

Perched Groundwater Unit, Pantex Plant

Prepared for: B & W Pantex L.L.C. Pantex Plant P.O. Box 30020 Amarillo, Texas 79120

February 12, 2008

G-3262

GSI Environmental Inc. 2211 Norfolk, Suite 1000, Houston, Texas 77098-4054

Table of Contents

Executive Summary	
1.0 Introduction	1
1.1 Site Background and Regulatory History	2
1.2 Geology and Hydrogeology	4
2.0 Analytical Approach	7
2.1 MAROS Method	7
2.2 Data Input, consolidation and Site Assumptions	. 12
2.3 Qualitative Evaluation	. 13
3.0 Results	. 14
3.1 Southeast Sector	. 14
3.2 Southwest Sector	. 20
3.3 North Sector	. 24
4.0 Conclusions and Recommendations	. 28
5.0 References Cited	. 34

Tables

Table 1	Pantex Plant Investigation Wells: Perched Groundwater
Table 2	Aquifer Input Parameters
Table 3	COC Assessment Southeast Sector
Table 4	Investigation Well Trend Summary Results Southeast Sector
Table 5	Well Redundancy Analysis Summary Results Southeast Sector
Table 6	Sampling Frequency Analysis Results Southeast Sector
Table 7	Final Recommended Groundwater Monitoring Network Southeast Sector
Table 8	COC Assessment Southwest Sector
Table 9	Investigation Well Trend Summary Results Southwest Sector
Table 10	Well Redundancy Analysis Summary Results Southwest Sector
Table 11	Sampling Frequency Analysis Results Southwest Sector
Table 12	Final Recommended Groundwater Monitoring Network Southwest Sector
Table 13	Investigation Well Trend Summary Results North Sector
Table 14	Sampling Frequency Analysis Results Southwest Sector
Table 15	Final Recommended Groundwater Monitoring Network North Sector
Table 16	Summary Monitoring Network Recommendations Perched Groundwater

Figures

Figure 1	Pantex Plant Vicinity
Figure 2	Pantex Perched Groundwater Investigation Well Locations
Figure 3	Pantex Southeast Sector Perched Groundwater: RDX Average Concentrations and Mann-Kendall Trends
Figure 4	Pantex Perched Groundwater Southeast Sector RDX and 4ADNT First Moments and Mann-Kendall Trends
Figure 5	Pantex Southeast Sector RDX Uncertainty
Figure 6	Pantex Southwest Sector TCE and Perchlorate Average Concentrations and Mann-Kendall Trends
Figure 7	Pantex North Sector Perched Groundwater: RDX Average Concentrations and Mann-Kendall Trends
Figure 8	Pantex Perched Groundwater Final Recommended Monitoring Network

Appendices

- Appendix A: MAROS 2.2 Methodology
- Appendix B: MAROS Reports
- Appendix C: Electronic Data

ABBREVIATIONS

2ADNT	2-Amino, 4,6-dinitrotoluene
24DNT	2,4-Dinitrotoluene
26DNT	2,6-Dinitrotoluene
4ADNT	4-Amino, 2,6-dinitrotoluene
AEC	Atomic Energy Commission
AOC	Area of Concern
AR	Area Ratio
ARARs	Applicable or Relevant and Appropriate Requirements
BGS	Below Ground Surface
BRA	Baseline Risk Assessment
CES	Cost Effective Sampling
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
COC	Constituent of Concern
COPC	Constituent of Potential Concern
COV	Coefficient of Variation
CR	Concentration Ratio
CSM	Conceptual Site Model
EDD	Electronic Data Deliverable
ESD	Explanation of Significant Difference
FGZ	Fine Grained Zone
GIS	Geographic Information System
HE	High Explosive
HHRA	Human Health Risk Assessment

HMX	High melting explosive (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)
HSCB	Hypothetical Statistical Compliance Boundary
ICM	Interim Corrective Measures
LTM	Long-Term Monitoring
LTMO	Long-Term Monitoring Optimization
MAROS	Monitoring and Remediation Optimization Software
MCES	Modified Cost Effective Sampling
MCL	Maximum Contaminant Level
MK	Mann-Kendall Trend
MSC	Medium Specific Concentration
MSL	Mean Sea Level
NAPL	Non-Aqueous Phase Liquid
NPL	National Priorities List
O&M	Operation and Maintenance
OU	Operable Unit
PDWS	Primary Drinking Water Standard
PGPTS	Perched Groundwater Pump and Treat System
PLSF	Preliminary Location Sampling Frequency
POC	Point of Compliance
POE	Point of Exposure
PRG	Preliminary Remediation Goal
PRP	Potentially-Responsible Party
RAO	Remedial Action Objectives
RCRA	Resource Conservation and Recovery Act

RDX	Research Department Explosive (Hexahydro-1,3,5-trinitro-1,3,5-triazine)
RI	Remedial Investigation
ROD	Record of Decision
RRR	Risk Reduction Rules
RRS	Risk Reduction Standards
SF	Slope Factor
SWMU	Solid Waste Management Unit
TCE	Trichloroethene
TCEQ	Texas Commission on Environmental Quality
TNT	Trinitrotoluene
TTU	Texas Tech University
USEPA	United States Environmental Protection Agency
VOC	Volatile Organic Compound
WMG	Waste Management Group

GROUNDWATER MONITORING NETWORK OPTIMIZATION PANTEX PLANT

EXECUTIVE SUMMARY

The following report reviews and provides recommendations for improving the efficacy of the groundwater monitoring network for perched groundwater underlying the Pantex Plant, near Amarillo, Texas in Carson County. The Pantex Plant consists of several historic manufacturing, storage and disposal locations associated with maintaining the United States' nuclear arsenal. As a result of historic waste management practices, perched groundwater underlying the facility is affected by various constituents associated with munitions production and equipment maintenance.

The current groundwater monitoring network has been evaluated using a formal qualitative approach as well as using statistical tools found in the Monitoring and Remediation Optimization System software (MAROS). Recommendations are made for groundwater sampling frequency and location based on current hydrogeologic conditions and articulated long-term monitoring (LTM) goals for the system. The recommendations presented below are based on a technical review, balancing both the statistical results with goals of the monitoring system and anticipated site management decisions. Final decisions on the locations and frequency of groundwater sampling will be made by B&W Pantex, DOE and regulators. The following report evaluates the monitoring system for perched groundwater using analytical and hydrogeologic data from sampling events conducted between January 2000 and May 2007.

Site Groundwater Monitoring Goals and Objectives

Goals for long-term protection of human health and the environment at Pantex have been articulated in the Corrective Measure Study/Feasibility Study (CMS/FS, BWXT, 2007b) as Remedial Action Objectives (RAO). Remedial actions for perched groundwater have been proposed that fulfill the following objectives:

- Reduce exposure risk posed by impacted perched groundwater through contact prevention;
- Achieve cleanup goals for constituents of concern (COCs) at points of exposure (POE) in the perched groundwater (at property boundaries and/or areas sensitive to vertical migration);
- Prevent growth of perched groundwater COC plumes;
- Prevent constituents of potential concern (COPCs) from exceeding regulatory screening levels (MCLs/MSCs) in the Ogallala Aquifer.

Long-term groundwater monitoring of the perched unit is an essential component of confirming that the RAOs are met. The perched groundwater monitoring network at Pantex must address a number of monitoring objectives.

• A primary goal for the network is to define and delineate groundwater exceeding applicable regulatory standards. Monitoring data from the site network are used to support institutional controls by identifying and delineating areas of affected groundwater.

- A second goal for the network is to monitor changes in the plumes over time including changes in concentrations at source areas and tails.
- A third goal of the monitoring network is to evaluate the efficacy of the chosen remedy or remedies to control and reduce concentrations of constituents. One aspect of this objective is to document natural attenuation of chemical constituents.
- The network will also provide sufficient data to optimize remediation systems.
- The final goal of the network is to provide early warning for potential impacts to the Ogallala Aquifer.

Project Goals and Objectives

The goal of the long-term monitoring optimization (LTMO) process is to review the current groundwater monitoring program and provide recommendations for improving the efficiency and accuracy of the network in supporting site monitoring objectives discussed above. Specifically, the LTMO process provides information on the site characterization, stability of the plume, sufficiency and redundancy of monitoring locations and the appropriate frequency of network sampling. Tasks involved in the LTMO process include:

- Evaluate well locations and screened intervals within the context of the hydrogeologic regime to determine if the site is well characterized;
- Evaluate overall plume stability through trend and moment analysis;
- Evaluate individual well concentration trends over time for target chemicals of potential concern (COPCs);
- Develop sampling location recommendations based on an analysis of spatial uncertainty;
- Develop sampling frequency recommendations based on qualitative and quantitative statistical analysis results;
- Evaluate individual well analytical data for statistical sufficiency and identify locations that have achieved clean-up goals.

The end product of the LTMO process at the Pantex Plant is a recommendation for specific sampling locations and frequencies that best address site monitoring goals and objectives listed above.

Results

Perched groundwater was divided into three sectors for analysis. Investigation wells were grouped into networks based on the direction of groundwater flow, source areas and major constituents associated with each sector. The Southeast Sector monitoring network consists of wells in perched groundwater extending south from Playa 1 and east and south of Zones 11 and 12. The Southwest Sector monitoring network includes and extends west and south of Zone 11. Investigation wells south of Zone 12 were included in both the Southwest and Southeast Sector spatial analyses to account for possible variability in groundwater flow. The North Sector includes groundwater north of Zones 11 and 12 in the vicinity of Playa 1. Statistical and qualitative evaluations of Pantex Plant perched groundwater analytical data have been conducted with results summarized below:

Southeast Sector

- Priority constituents in the Southeast Sector include RDX and 4-amino,2,6dinitrotoluene (4ADNT). Groundwater affected by other COPCs is within the extent of groundwater affected by RDX. Hexavalent chromium (Cr(VI)) affects perched groundwater in the area between the Southeast and Southwest Sectors and was considered in the analysis of both monitoring networks.
- Several downgradient monitoring locations indicate increasing concentration trends for RDX and 4ADNT.
- Estimates of total dissolved mass over time indicate that the mass of RDX is stable within the plume. Estimates of dissolved mass of 4ADNT over time show more variability and may exhibit a weakly increasing trend consistent with degradation of the TNT parent compound.
- Estimates for the center of mass for the RDX and 4ADNT plumes indicate some expansion downgradient consistent with decreasing trends in the source and groundwater extraction areas and increasing concentration trends downgradient.
- Data provided by monitoring locations along the eastern boundary of the DOE property in conjunction with data from the Southeast Sector extraction wells may provide redundant information.
- Areas of concentration uncertainty exist within the plume south of Zone 12 near PTX06-1036 and the eastern edge of the plume in the area where the perched unit pinches out.
- Because of increasing concentration trends, and possible expansion of the plume, frequent (semiannual) monitoring of Southeast Sector wells is indicated.

Southwest Sector

- Priority constituents in the Southwest Sector include trichloroethene (TCE) and perchlorate. Groundwater affected by high explosives (HE) exists under the industrial area of Zone 11, but is not as widespread as that of the Southeast Sector.
- Over 50% of wells in the Southwest Sector monitor groundwater with low to no detections of COPCs, resulting in non-detect or no trend results for individual wells in the Sector. Increasing concentration trends for perchlorate are found at one location south of Zone 11 (PTX06-1012), while increasing TCE trends are found at two locations in the same area.
- Estimates for plume-wide total dissolved mass of perchlorate and TCE show no trends; however, estimates of the center or mass for the TCE plume over time are moving downgradient. Increasing distance between the source and center of mass for TCE is consistent with increasing trends in the downgradient region of this plume.
- Redundant locations were identified on the western edge of the plume in areas with very low concentrations of site COPCs.
- One area of concentration uncertainty was found in the region of PTX06-1012.
- Rates of concentration change are low over much of the Sector, consistent with a recommendation for reduced sampling frequency. The area between wells 1114-MW4 and PTX06-1012 was identified as an area of more rapid concentration change.

North Sector

- The only COC identified for the North Sector is RDX.
- The majority of monitoring locations in the North Sector are not affected by constituents above regulatory screening levels.
- Statistical trend evaluation results indicate many non-detect locations or wells showing intermittent detections (no trend). Concentration trends for RDX in the North Sector show decreasing trends just south of Playa 1. An increasing RDX trend was found at PTX06-1050 indicating possible spread of the plume to the northwest of the main perched groundwater unit.
- Due to the limited number of monitoring locations, moment analysis was not conducted for the North Sector.
- No wells in the North Sector were identified as redundant.
- One area of higher concentration uncertainty was found west of PTX06-1050.
- Rates of concentration change in the North Sector support a dramatic reduction in sampling frequency for many locations.

Recommendations

The following general recommendations are made based on the findings summarized above and those described in Section 3 below. General recommendations for monitoring are based on a combination of statistical results of analyses for priority COCs and a consideration of qualitative issues such as hydrogeology, potential receptors and monitoring goals. Detailed recommendations are presented in Section 4 and summarized on Table 16 and Figure 8.

The recommended network increases data collection effort in some areas to provide a dataset that fulfills statistical requirements for evaluating the effect of the remedies discussed in the CMS/FS (BWXT, 2007b). The recommended network reduces monitoring effort and cost in some areas, but recommends the addition of new wells in areas where further characterization would support site monitoring goals.

Southeast Sector

- The final recommended network for the Southeast Sector includes 29 investigation well locations, with approximately 51 groundwater samples collected annually. Data from 48 active extraction wells should be evaluated along with data from the investigation wells to characterize the Sector.
- Semiannual monitoring is recommended for 20 of 31 wells in the Southeast Sector. Seven wells in the source area or in areas of stable concentration trends are recommended for annual sampling. Three wells are intermittently or permanently dry and should be monitored for saturation, annually.
- Southeast Sector well PTX06-1014 is recommended for elimination from the routine monitoring program.
- Two new locations are recommended for the Southeast Sector. One new location is recommended for the area between PTX06-1036 and PTX06-1052. The other new location is recommended for the area east of PTX06-1039. New wells are recommended for semiannual sampling until a statistically significant dataset has been collected.

Southwest Sector

- The final recommended network for the Southwest Sector includes 22 monitoring locations, with an average of 27.5 groundwater samples analyzed annually.
- Six existing locations were found to provide redundant information and are recommended for elimination from routine monitoring in the Southwest Sector: PTX06-1006, PTX06-1087, PTX07-1P02, PTX07-1P03, PTX07-1Q02, and PTX10-1008 (Wells identified as redundant may be sampled to reduce uncertainty in some locations).
- Overall, four new groundwater monitoring locations are recommended for the Southwest Sector. Two new wells are recommended for the southern area of the perched unit to delineate constituents in the Southwest Sector. Two new locations south of PTX08-1005 are recommended to decrease spatial uncertainty in the area of the TCE/perchlorate plume near Zone 11.
- Semiannual sampling is recommended for four current wells (1114-MW4, PTX06-1012, PTX08-1005, and PTX08-1006) and for the four proposed new locations. Annual sampling is recommended at 9 locations, and biennial sampling is recommended for five perimeter wells.

North Sector

- The final recommendation for the North Sector monitoring network is to include a total of 21 investigation wells, with an average of 18 samples collected annually.
- No wells are recommended for elimination from the North Sector networks. However, many locations are recommended for dramatically reduced sampling frequency. If low to non-detect conditions persist in isolated perched groundwater in the future, some of these wells may be eliminated.
- One new monitoring location is recommended to delineate the RDX plume in the North Sector. The new monitoring location is recommended for an area downgradient of PTX06-1050 at the edge of the saturated unit.

Additional Recommendations

- Groundwater monitoring data as well as well construction and location information should continue to be managed in a site-wide relational database.
- Capture zone analysis for the perched groundwater extraction system in the Southeast Sector is recommended and should continue to be presented annually, as required by Compliance Plan No. 50284.
- Reevaluate the network in 5 years after any additional remedies have been implemented and a statistically significant dataset has been collected.

1.0 INTRODUCTION

The Pantex Plant in Carson County, Texas is an active facility owned by the United States Department of Energy/National Nuclear Security Administration (DOE/NNSA). The primary mission of the plant is to assemble, disassemble and evaluate nuclear weapons from the US stockpile, to develop, fabricate and test explosives and explosive components and provide secure storage for material from the above activities. The Pantex Plant is permitted as a hazardous waste facility under the Resource Conservation and Recovery Act (RCRA) and is a National Priorities Listed (NPL) site administered under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA, Superfund).

The site is located approximately 17 miles northeast of Amarillo, Texas in Carson County in US Environmental Protection Agency (EPA) Region VI. The plant covers over 10,000 acres with additional property consisting of a 1,000 acre tract at Pantex Lake and over 5,000 acres owned by Texas Tech University (TTU) as a buffer around the site. Industrial operations occur on approximately 2,000 acres. Constituents associated with site manufacturing and testing activities currently affect soil and groundwater at the facility. Investigation and remediation activities have been on-going since the 1980s.

Groundwater monitoring plays a critical role in long-term environmental restoration of the Pantex Plant Site. The purpose of the following evaluation is to review the current groundwater monitoring network and provide recommendations for improving the efficiency and accuracy of the network for supporting site management decisions.

At the Pantex Plant, groundwater monitoring goals define why data are collected and how data from the site will be used. The groundwater monitoring network at Pantex must address the following monitoring objectives.

- Define and delineate groundwater exceeding applicable regulatory standards. Monitoring data from the site network are used to support institutional controls by identifying and delineating areas of affected groundwater.
- Monitor changes in the plumes over time including changes in concentrations at source areas and tails.
- Evaluate the efficacy of the chosen remedy or remedies to control and reduce concentrations of constituents. One aspect of this objective is to document natural attenuation of chemical constituents.
- Provide sufficient data to optimize remedial systems.
- Provide early warning for potential impacts to the Ogallala formation or off-site receptors.
- Comply with regulatory requirements.

In order to recommend an optimized network that addresses the stated monitoring objectives, spatial and analytical data from the site were analyzed using a series of quantitative and qualitative tools.

Tasks performed during Long-Term Monitoring Optimization (LTMO) process include:

- Evaluate well locations and screened intervals within the context of the hydrogeologic regime to determine if the site is well characterized;
- Evaluate overall plume stability through trend and moment analysis;
- Evaluate individual well concentration trends over time for target constituents of concern (COPCs);
- Develop sampling location recommendations based on an analysis of spatial uncertainty;
- Develop sampling frequency recommendations based on both qualitative and quantitative statistical analysis results;
- Evaluate individual well analytical data for statistical sufficiency and identify locations that have achieved clean-up goals.

A discussion of site background and regulatory context for the Pantex Plant Site is provided in Section 1 below. Section 2 details the analytical and statistical approach taken during the LTMO evaluation. A detailed discussion of results is provided in Section 3. Summary conclusions and recommendations are presented in Section 4.0.

1.1 Site Background and Regulatory History

The Pantex Plant site is located in the Texas Panhandle, in a historically agricultural area. Plant operations began in 1942 under the Army Ordnance Corps, manufacturing conventional munitions and high explosives (HE) such as trinitrotoluene (TNT). The Plant was briefly deactivated at the end of the World War II, and the property sold to TTU. In 1951, the site was reclaimed for use by the Atomic Energy Commission (AEC) to produce both nuclear weapons and HE compounds. Radioactive materials have not been manufactured at the facility but components containing radioactive materials are managed at the site. Compounds such as TNT, High Melting Explosive (HMX, octahydro-1,3,5,7-tetranitro-1,3,5-triazine) have been manufactured and used at the site.

Supervision of the site was eventually transferred to the DOE and NNSA. The Pantex Plant is currently managed as a government-owned, contractor-operated facility, overseen by DOE/NNSA and operated by Babcock & Wilcox Technical Services Pantex, LLC (B&W Pantex, formerly BWXT Pantex). As the prime contractor, B&W Pantex also directs environmental activities including investigation and remediation of areas impacted by past waste management practices.

In the late 1980's, environmental investigation and restoration activities began at DOE facilities across the country. Under the authority of the 1984 RCRA Hazardous and Solid Waste Amendments, the EPA conducted a *RCRA Facility Assessment* of the Pantex Plant in 1988. EPA identified Solid Waste Management Units (SWMUs) and Areas of Concern (AOC) containing environmental media possibly subject to interim corrective measures (ICMs). The RCRA Facility Investigation (RFI) identified operational areas at the site and groupings of corrective action units in common watersheds termed waste management groups (WMGs). Conceptual Site Models

(CSMs) were developed to describe the location and movement of constituents for each WMG.

In 1991 EPA, in cooperation with the Texas Commission on Environmental Quality (TCEQ) (formerly Texas Natural Resource Conservation Commission [TNRCC]), issued a Hazardous Waste permit to the Pantex Plant. In the same year, the Pantex Plant was proposed for the NPL for chemical constituents in both soil and groundwater. The Pantex Plant was formally listed in 1994, and a Memorandum of Agreement (MOA) between TCEQ and EPA established TCEQ as lead agency for oversight of remediation of chemical releases.

Since 1994, on-going interim investigation, remediation and corrective action measures have been conducted, and an integrated approach to address both CERCLA and RCRA requirements has been developed. A Record of Decision (ROD) for the Pantex Plant has not been issued. ICMs to date have been implemented as non-time critical removal actions under CERCLA for perched groundwater. Specific remedies in place include extensive groundwater extraction wells in the perched unit (perched groundwater pump and treat system [PGPTS]).

Environmental regulatory oversight of the Pantex Plant is, therefore, exercised under RCRA and CERCLA as well as other applicable Texas state regulations. All non-radiological environmental restoration activities at the Pantex Plant are conducted under the State of Texas Risk Reduction Rules (RRR) (30 TAC §335 Subchapter S, 1993). TCEQ defines three Risk Reduction Standards (RRS) for closure of affected sites. In 2005, EPA and TCEQ completed technical reviews of investigations for SWMUs at Pantex, and identified the appropriate RRS to be applied to the majority of Plant SWMUs. Most areas of perched groundwater evaluated in the following report will be covered under RRS 3. RRS 3 allows for COPCs to remain in place as long as the risk posed by those COPCs is not greater than the target risk values provided in the regulations. Cleanup goals under RRS 3 also allow the use of long-term site controls such as institutional and engineering controls to attain regulatory compliance. The long-term groundwater monitoring network for the perched unit is, therefore, an important component of compliance under RRS 3.

Under RRS 3, cleanup values known as Media Specific Concentrations (MSCs) can be derived using site-specific information detailed in the various BRA and Baseline Human Health Risk Assessment (BHHRA) Reports (BWXT, 2006). MSCs for the Pantex Plant are listed in the CMS/FS (BWXT, 2007) and have been used as the screening levels to evaluate the groundwater monitoring network.

RCRA Facility Investigations (RFIs) have been conducted for corrective action units at Pantex and have defined sources and the extent of impacts for several corrective action units. The Baseline Risk Assessments (BRA) for areas anticipated to be managed under RRS 3 have also been completed. A Corrective Measures Study/Feasibility Study (CMS/FS) (BWXT, 2007b), including evaluation of remedial options for the Site, was issued in September, 2007. Remedial actions for perched groundwater are anticipated to include continuation of the groundwater extraction system (PGPTS) and other ICMs

already in place, as well as addition of new vertical extraction wells in the east/southeast and in the vicinity of Playa 1. Targeted *in situ* redox manipulation and enhanced bioremediation are proposed for the southeast fringe of perched groundwater. Natural attenuation processes will be a component of any remedial action chosen. Long-term groundwater monitoring will be required to confirm progress toward remedial goals.

1.2 Geology and Hydrogeology

The Pantex Plant lies on the High Plains portion of the Great Plains Physiographic Province in the Texas Panhandle. The area, known as the Llano Estacado is a broad, flat, plateau with topographic elevation across the site ranging between 3,501 feet above mean sea level (ft amsl) to 3,595 ft amsl. The average topographic slope across the Plant area is approximately 0.006 feet, and Plant surface water tends to drain to the onsite playas.

The uppermost hydrostratigraphic unit (HSU) at the Pantex Plant is the Blackwater Draw (BWD). The BWD extends up to 90 ft below ground surface (bgs) at the site, and is largely unsaturated. The unit consists of silts and sands and an approximately 20-foot thick lower unit composed of silty sand and caliche. The playas are depressions in the BWD.

The Ogallala Formation underlies the Blackwater Draw and is composed of coarsegrained fluvial sequences including channel sands and gravels overlain by finer overbank deposits. The Ogallala Formation in Texas is the southernmost extension of a major water-bearing unit that extends north to Nebraska and is exploited for municipal water supplies as well as crop irrigation and industrial water supplies. The Ogallala Aquifer is the principal municipal water supply for the city of Amarillo, which operates a municipal well field north of the Pantex Plant. The Ogallala Aquifer provides potable and industrial water for the Pantex Plant as well as agricultural water for the TTU property to the south.

A Caliche Caprock layer generally defines the top of the Ogallala Formation, but is not continuous across the entire Pantex Plant. The Caprock consists of a hard, dense and finely crystalline caliche. In the Pantex area, the Ogallala Formation consists of upper and lower permeable units separated by a Fine Grained Zone (FGZ). The FGZ consists of low-permeability silts and clays and varies in thickness from over 150 ft to less than 10 ft. The FGZ slopes down toward the southeast corner of the Pantex Plant. The upper unit of the Ogallala formation contains discontinuous areas of perched groundwater underlain by the FGZ. The Ogallala Aquifer resides in the lower permeable unit beneath the FGZ.

Underlying the Ogallala Formation are the lower permeability Dockum Group and Permian Quartermaster Formation, where the Dockum Group is not present.

4

<u>1.2.1 Playas</u>

The Texas Panhandle region is characterized by a number of topographic depressions or playas (playa lakes) that drain larger land areas but do not connect with other surface drainage outlets. Historically, playa lakes provide limited recharge of perched groundwater in the area of the Pantex Plant, in response to irregular, moderate precipitation events. The playas hold water temporarily, and because of the soil, hydrology and vegetation, they are frequently classified as (non-jurisdictional) wetlands. Three playas are present in the vicinity of industrial operations at the Pantex Plant and received the majority of surface runoff from the property, as well as, permitted discharges of treated effluent from the waste water treatment facility. Along with drainage ditches, the playas have served as groundwater recharge areas for perched groundwater underlying the Plant. With elimination of industrial discharges, discontinuation of routine discharges from the wastewater treatment facility, and the implementation of institutional controls, efforts are on-going to reduce recharge to the perched groundwater through these routes.

Playa 1 is north of Zone 12, and served as a receiving pond for treated and untreated waste water originating from the Zone 12 industrial area for many years. Most industrial discharges to plant ditches were discontinued in the 1980s and the remainder, including steam condensate discharges, were eliminated by 1999. Currently, occasional permitted discharges enter Playa 1 along with storm water runoff. Playa 2 is west/northwest of Zone 11, and Playa 3 is part of the Burning Ground WMG. Playas 2 and 3 receive only surface water runoff. A large playa basin associated with the Pantex Lake property lies 2.5 miles north of the main facility and Playa 4 is located on TTU property to the south.

1.2.2 Perched Groundwater

Perched groundwater is encountered at various locations across the Texas Panhandle in the upper permeable unit of the Ogallala Formation. At the Pantex Plant, groundwater from recharge areas, in particular playa lakes, tends to mound on top of the low permeability FGZ. The FGZ separates perched groundwater from the lower Ogallala aquifer.

Perched groundwater is found in three main areas under the Pantex Plant. The largest area of perched groundwater lies beneath Playa 1 and extends beneath Zones 11 and 12, pinching out on the TTU property to the south and off-site to the east (see Figure 1). Groundwater in this unit is associated with recharge from Playas 1, 2 and 4 and drainage ditches associated with Zones 11 and 12. Isolated areas of perched groundwater also occur under the Burning Ground (near Playa 3) and in the northeast corner of the Pantex Plant (near Pratt Playa). While groundwater in the perched units meets the technical definition of a potential drinking water source, no water supply wells are drilled into the unit for either drinking water or industrial water supply on-site and all public drinking water supply wells in the vicinity are drilled into the Ogallala Aquifer, with the exception of one perched groundwater well on offsite property north of the northeast

corner of Pantex near Pratt Playa. The perched groundwater does not discharge to surface water bodies and hydraulic connection with the Ogallala is limited by the FGZ.

The extent and chemistry of the largest perched groundwater unit has been influenced by historic waste and water management practices associated with industrial activity at the plant. From the early 1950s to the 1980's portions of the main perched groundwater were impacted by constituents of potential concern (COPCs) and artificially high recharge originating from plant industrial processes. Because of mounding in the vicinity of Playa 1 and the topography of the FGZ, groundwater flow in the main perched unit tends to be radial, with the surface sloping to the southeast, south and east of Zone 12, and sloping to the southwest, west of Zone 11. Groundwater north of Playa 1 tends to flow to the north (see Figure 1 for potentiometric surface data). Radial flow within the main perched unit is the reason why the monitoring network was divided into sectors for the LTMO analysis (see Sectors identified on Figure 2 and described under Section 2.1.1).

Saturated thickness of perched groundwater varies across the unit with a high of approximately 70 feet beneath Playa 1 to 0 feet at the extreme edges of the unit. Depth to groundwater varies from about 215 feet near Playa 1 to approximately 280 feet at the south of the main perched unit under TTU property. Beneath the perched groundwater, the FGZ consists of low permeability silts and clays ranging from a few feet in thickness to more than 100 feet below Playa 1. The FGZ tends to isolate perched water from deeper strata; however, the FGZ becomes more course and permeable in areas to the south and east of the main Plant.

1.2.3 Ogallala Formation

The Ogallala Aquifer is encountered at depths of 400 to 500 feet bgs beneath the Pantex Plant with the water table sloping from southwest to northeast locally under the influence of the municipal well field. The saturated thickness of the Ogallala varies from less than 30 feet to over 400 feet. Removal of water from the Ogallala aquifer for municipal, industrial and large-scale agricultural uses has reduced the saturated thickness in many areas of the aquifer.

Based on monitoring data, the Ogallala Aquifer has not been impacted by releases from the Pantex Plant above conservative screening levels (see Figure 2 for current Ogallala monitoring well locations). The Ogallala Aquifer was considered as part of a potential exposure scenario during the Baseline Human Health Risk Assessment (Baseline HHRA). While the Ogallala does not currently pose an exposure risk to receptors, modeling results indicate that the Ogallala may be impacted by COPCs present in the perched groundwater at some time in the future. For this reason, groundwater in the Ogallala will be monitored for possible impacts in the future. The monitoring network for the Ogallala was not evaluated for this report, but is being evaluated elsewhere, using appropriate tools.

2.0 ANALYTICAL APPROACH

Evaluation of the groundwater monitoring network for the Pantex Plant consisted of both quantitative and qualitative methods. A quantitative statistical evaluation of the site was conducted using tools in the MAROS software. The qualitative evaluation reviewed hydrogeologic conditions, well construction and placement. Both quantitative statistical and qualitative evaluations were combined using a 'lines of evidence' approach to recommend a final groundwater monitoring strategy to support site monitoring objectives.

2.1 MAROS Method

The MAROS 2.2 software was used to evaluate the LTM network at the Pantex Plant. MAROS is a collection of tools in one software package that is used in an explanatory, non-linear but linked fashion to statistically evaluate groundwater monitoring programs. The tool includes models, statistics, heuristic rules, and empirical relationships to assist in optimizing a groundwater monitoring network system. Results generated from the software tool can be used to develop lines of evidence, which, in combination with professional judgment, can be used to inform regulatory decisions for safe and economical long-term monitoring of groundwater plumes. A summary description of each tool used in the analysis is provided in Appendix A of this report. For a detailed description of the structure of the software and further utilities, refer to the MAROS 2.2 User Manual (AFCEE, 2003) or Aziz, et al. (2003).

In MAROS 2.2, two levels of analysis are used for optimizing long-term monitoring plans: 1) an overview statistical evaluation with interpretive trend analysis based on temporal trend analysis resulting in plume stability information; and 2) a more detailed statistical optimization based on spatial and temporal redundancy reduction methods (see Appendix A or the MAROS Users Manual (AFCEE, 2003)).

2.1.1 Well Groups

Perched groundwater underlying the Pantex Plant is encountered in areas associated with natural and anthropogenic recharge from playa lakes and drainage ditches. Perched groundwater is not continuous across the site, and groundwater flow within the largest perched unit is radial from a mound underlying Playa 1 (see Figure 1). Because of the spatial heterogeneity in aquifer characteristics, perched unit investigation wells (monitoring wells) at the Pantex Plant were separated into analysis groups by sector in order to perform the MAROS analysis. Investigation wells were grouped according to predominant groundwater flow direction, sources and major constituents of concern (COCs).

Because MAROS is designed to evaluate two-dimensional monitoring networks, well depths and screened intervals were reviewed to determine if the well groups should be chosen based on depth. Perched groundwater in the upper Ogallala formation has a maximum saturated thickness of approximately 70 ft., with an average saturated

thickness close to 20 ft (B&W Pantex well database). Median screen lengths for wells are approximately 25 feet. The unit is fairly homogeneous (with little to no channelization or fractures). Perched groundwater wells were considered to be screened at approximately the same depth, so well groups were not separated based on vertical heterogeneity in the aquifer. Well groups used in this report are defined for the purpose of the LTMO analysis and do not correspond with other classifications for site modeling.

Spatial sectors defined for the analysis are summarized in the table below and illustrated on Figure 2. The 75 investigation wells used in the core analysis are listed in Table 1, by sector. Data from extraction wells in the Southeast Sector were included to provide spatial information and concentration trends in this area. Data from each sector were evaluated separately for priority COCs, plume stability, spatial sufficiency, well redundancy, monitoring frequency and, where appropriate, data sufficiency. Some individual wells were included in more than one zone, with the final monitoring recommendation for the well based on the most conservative results for that well.

MAROS Analysis Group Name	Comment
Southeast Sector	The Southeast Sector monitoring network consists of wells in perched groundwater extending south from Playa 1 and east and south of Zones 11 and 12. Both onsite and offsite wells are included in one analysis group. The Southeast Zone network includes 31 groundwater monitoring wells. Data from 48 groundwater extraction wells were included in the analysis in order to provide better spatial coverage of the area. The Southeast Sector is a priority monitoring area due to the magnitude of COC concentrations and possible thinning of the FGZ in this area.
Southwest Sector	The Southwest Sector monitoring network includes and extends west and south of Zone 11. (No groundwater quality data were available for Zone 9 wells (FPOP)). Investigation wells south of Zone 12 were included in both the Southwest and Southeast Sector spatial analyses to account for possible variability in groundwater flow.
North Sector	Groundwater north of Zones 11 and 12 and Playa 1 is discontinuous and less impacted than the Southeast and Southwest Sectors. Wells in this Sector were analyzed for individual trends, but large scale spatial analysis was not appropriate for this Sector. The North Sector includes wells at Pantex Lake.

2.1.2 COC Choice

The varying groundwater flow directions, complex sources and commingled plumes cause widespread spatial heterogeneity in constituent concentrations at the Pantex Plant. In order to better evaluate the importance of each well in the network, each monitoring location was evaluated individually for priority constituents of concern (COCs). To identify priority COCs for individual sampling locations, the maximum concentration found for a constituent at each well between 2000 and 2007 was divided by the corresponding MSC or relevant regulatory screening level. The COC concentrations that exceeded the screening level by the highest ratio were identified as priority COCs for the individual well. The COC with the highest concentration relative to the screening level ratio for each investigation well is identified in Table 1 along with the ratio. Other Priority COCs (those with screening level ratios over 1) determined for each monitoring location are also listed in Table 1.

The COC most often identified as a priority at individual wells was RDX. For locations where the Risk Ratio is below 1, no constituents are detected above MSCs and no plume exists in that location. The dataset was not examined for statistical outliers, and, at some locations, a single detection of a compound caused the compound to be designated the priority for that well. Boron is frequently detected at Pantex area wells, but boron concentrations do not routinely exceed the RRS 2 screening level of 3.3 mg/L (see Table 1).

MAROS includes a short module that provides recommendations on prioritizing COCs on a plume-wide basis. Prioritization is based on *toxicity, prevalence*, and *mobility* of the compound. The toxicity ranking is calculated by examining a representative concentration (i.e. mean, median, etc.) for each compound for the entire plume. The representative concentration is then compared to the screening level (MSC) for that compound. COCs are ranked according to the extent the representative concentration exceeds the screening level. Ranking according to prevalence is performed by counting the number of wells in the network where concentrations are above screening levels and by identifying the number of wells where the compound is detected. COCs with the greatest detection frequency and the largest percentage of wells above screening levels are prioritized. Constituents found over screening levels are ranked for mobility based on Kd (sorption partition coefficient). The MAROS ranking was performed for each Sector network at Pantex.

2.1.3 Plume Stability

Within MAROS, historical analytical data are analyzed to develop a conclusion about plume stability. If a plume is found to be stable, in many cases, the number of locations and monitoring frequency can be reduced without loss of information. Plume stability results are assessed from time-series concentration data with the application of two types of statistical tools: individual well concentration trend analyses and plume-wide moment analysis.

Individual well concentrations are evaluated using both Mann-Kendall and Linear Regression trend tools. The Mann-Kendall nonparametric evaluation is considered one of the best methods to evaluate concentration trends as it does not assume the data fit a particular distribution (Gilbert, 1987). Individual well concentration trends were calculated for priority COPCs for the time period 2000 to 2007. Individual well Mann-Kendall trends were also used in the sampling frequency analysis, where trends determined for the 2004 to 2007 interval were compared with trends calculated using the entire dataset for each well. During the final 'lines of evidence' evaluation, individual well concentration trends are considered along with summary statistics such as percent detection and historic maximum concentration to recommend sampling frequencies for wells in the network.

Moment analysis algorithms in MAROS are simple approximations of complex calculations and are meant to estimate the total dissolved mass (zeroth moment), center of mass (first moment) and spread of mass (second moment) in the plume and the trend for each of these estimates over time. Trends in the total dissolved mass can indicate effective removal processes (decreasing trends) or plume stability. The zeroth moment is not intended to be an accurate calculation of total mass in the plumes at the Pantex Plant. The estimate of mass is based on a uniform saturated thickness or rough approximations of saturated thickness and porosity at each monitoring location, and perched groundwater underlying the Pantex Plant varies between roughly 0-70 feet in saturated thickness. The zeroth moment is a tool to determine if mass tends to increase or decrease within the extent of the monitoring network over time. So, only the trends for the zeroth moments are reported.

Trends for the first moment indicate the relative amount of mass upgradient vs. downgradient and the change in the distance of the center of mass from the source over time. Trends in the second moment indicate the relative distribution of mass between the center of the plume and the edge.

2.1.4 Well Redundancy and Sufficiency

Spatial analysis modules in MAROS recommend elimination of sampling locations that have little impact on the historical characterization of a contaminant plume while identifying areas in the plume where additional data are needed. For details on the redundancy and sufficiency analyses, see Appendix A or the MAROS Users Manual (AFCEE, 2003).

Sample locations are evaluated in MAROS for their importance in providing information to define concentrations within the groundwater plume. Wells identified as providing information redundant with surrounding wells are recommended for elimination from the program. (Note: elimination from the program does not necessarily mean plugging and abandoning the well. See Section 2.3 below.)

Well sufficiency is evaluated in MAROS using the same spatial analysis as that for redundancy. Areas identified as having unacceptably high or unexplained levels of concentration uncertainty are recommended for additional monitoring locations.

The well redundancy and sufficiency analysis uses the Delaunay method and is designed to select the minimum number of sampling locations based on the spatial analysis of the relative importance of each sampling location in the monitoring network. The importance of each sampling location is assessed by calculating a slope factor (SF) and concentration and area ratios (CR and AR respectively). Sampling locations with a high SF provide unique information and are retained in the network. Locations with low SF are considered for removal. Areas defined by many wells with high SF may be candidates for new well locations.

Monitoring networks at the Pantex Plant were defined for constituents based on source areas and continuous areas of perched groundwater with similar groundwater flow direction. SF's were calculated for all wells in the Southeast and Southwest Sectors of the Pantex Plant and the results were used to determine the importance of each well in the network for defining the extent of concentrations for the primary COCs in these areas. Monitoring locations in the North Sector have limited hydrologic connection, either by virtue of discontinuous groundwater, very low concentrations or because of variable flow directions. For this reason, spatial analysis in the North Sector provides limited information, and network recommendations are based on individual well trends and qualitative information.

The results from the Delaunay method and the method for determining new sampling locations are derived solely from the spatial configuration of the monitoring network and the spatial pattern of the contaminant plume based on a two-dimensional assumption. No parameters such as the hydrogeologic conditions are considered in the analysis. Therefore, qualitative information, professional judgment and regulatory considerations must be used to inform final decisions.

2.1.5 Sampling Frequency

MAROS uses a Modified Cost Effective Sampling (MCES) method to optimize sampling frequency for each location based on the magnitude, direction, and uncertainty of its concentration trends. The MCES method was developed on the basis of the Cost Effective Sampling (CES) method developed by Ridley et al. (1995). The MCES method estimates a conservative lowest-frequency sampling schedule for a given groundwater monitoring location that still provides needed information for regulatory and remedial decision-making.

MAROS has recommended a preliminary location sampling frequency (PLSF) for each monitoring location for perched groundwater at the Pantex Plant based on a combination of recent and long-term trends and the magnitude and rate of concentration change. The PLSF has been reviewed qualitatively and a final optimal sampling frequency has been recommended consistent with monitoring objectives and regulatory requirements.

2.1.6 Data Sufficiency

The MAROS Data Sufficiency module employs simple statistical methods to evaluate whether analytical data are adequate both in quantity and in quality to confirm the achievement of regulatory clean-up goals. Statistical tests for the MAROS module were taken from the USEPA *Methods for Evaluating the Attainment of Cleanup Standards Volume 2: Groundwater* statistical guidance document (USEPA, 1992). The statistical methods are designed to evaluate plumes where the majority of analytical results have dropped below screening levels. As perched water at the Pantex Plant is still in the remedial choice stage of regulation, this statistical package was not employed during the analysis of the network in the Southeast and Southwest Sectors. The analysis was performed for North Sector locations with significant percentages of non-detect results.

2.2 Data Input, Consolidation and Site Assumptions

Groundwater analytical data from the Pantex Plant area were supplied by B&W Pantex from the site database (BWXT, 2007a), supplemented with information from historic site reports and the CMS/FS (BWXT, 2007b). Groundwater monitoring locations included in the evaluation are listed in Table 1, with additional details provided on extraction wells in Appendix B Table B.1.

Chemical analytical data collected between January 2000 and July 2007 and well information data were organized in a database, from which summary statistics were calculated. In all, 75 investigation well locations in the perched unit were considered in the network evaluation for the Pantex Plant.

In order to provide reasonable consistency in statistical comparisons, analyses have been limited to certain time-frames. Individual well trend evaluations were performed for data collected between January 2000 and July 2007. The data represent a 7 year record for many wells, and provide an indication of long-term trends in site constituent concentrations. Some monitoring locations have been added to the network between 2000 and 2005 or sampled infrequently. Where possible, statistical trends have been calculated for recently-installed locations using their full data record.

For sample locations with more than 40 sample events (n>40), data were consolidated quarterly. That is, for locations with more than one sample result for one calendar quarter (3 month period), the average concentration was used in the statistical analysis. Duplicate samples were also averaged to develop one result for each COPC for each time-interval.

To ensure a consistent number and identity of wells for the moment analysis, site data were consolidated annually for the analysis. An average concentration for each well for each year was calculated by the software. Estimates of total dissolved mass, center of mass and spread of mass were calculated for each year 2000 – 2007 based on the average concentration at each monitoring point. Trends for each of the moments are

based on the Mann-Kendall evaluation of each moment calculated for each year 2000 – 2007.

For the spatial analysis (well redundancy and sufficiency) and for the sample frequency analysis, recent data collected between July 2005 and July 2007 were used. This interval provides at least seven quarters of data for most locations under relatively consistent operation of the ICMs.

2.3 Qualitative Evaluation

Multiple factors should be considered in developing recommendations for monitoring at sites undergoing long-term groundwater restoration. The LTMO process for the Pantex Plant includes developing a 'lines of evidence' approach, combining statistical analyses with qualitative review to recommend an improved monitoring network. Results from the statistical analyses in combination with a qualitative review were used to determine continuation or cessation of monitoring at each well location, addition of new locations, and proposed frequency of monitoring for those locations retained in the network.

The primary consideration in developing any monitoring network is to ensure that information, collected efficiently, supports site management decisions. Site information needs are reflected in the monitoring objectives for the network. For this reason, any proposed changes to the network are reviewed to be consistent with and supportive of the stated monitoring objectives. The qualitative review process starts with evaluating each monitoring location for the role it plays supporting site monitoring objectives. For example, a location may provide vertical or horizontal delineation of the plume or may provide information on decay rates in the source area. Each well in the perched groundwater network was evaluated for its contribution to site monitoring objectives.

A recommendation to eliminate chemical analytical monitoring at a particular location based on the data reviewed does not necessarily constitute a recommendation to physically abandon the well. A change in site conditions might warrant resumption of monitoring at some time in the future. In some cases, stakeholders may pursue a comprehensive monitoring event for all historic wells every five to ten years to provide a broad view of plume changes over time.

In general, continuation of water level or hydrogeologic measurements at all site wells is recommended. Data on hydraulic gradients and potentiometric surfaces are often relatively inexpensive to collect and can be used to support model development and resource planning.

Qualitative evaluation for sampling frequency recommendations includes looking at factors such as the rate of change of concentrations, the groundwater flow velocity, and the type and frequency of decisions that must be made about the site. Additionally, consideration is given to the concentration at a particular location relative to the regulatory screening level, the length of the monitoring history and the location relative to potential receptors.

3.0 RESULTS

3.1 Southeast Perched Groundwater Sector

Data from 31 monitoring wells at various depths were included in the network analysis for the Southeast Sector along with data from 48 extraction wells (see Figure 3). Investigation well locations are listed in Table 1 with the size of the dataset for each well, and major COCs detected. Extraction well information is listed in Appendix B Table 1. Data from a total of 79 monitoring locations were considered in the analysis of the Southeast Sector.

Perched groundwater in the Southeast Sector has been subjected to extensive site characterization efforts, as well as a comprehensive modeling effort (BWXT, 2006; BWXT, 2007). The source areas for the Southeast Sector have been identified as Zones 11 and 12 and the ditch running alongside these industrial units draining to Playa 1. Groundwater flow is to the east/southeast from the source areas. The highest concentrations of COCs are located south and east of the DOE property boundary (see Figure 3), with lower concentrations at the historic source.

Based on results from site characterization efforts, affected groundwater in the Southeast Sector extends to the point where the saturation ends. Figure 3 indicates the location of wells drilled to the depth of perched water to the southern and eastern extents that were found to be dry. Delineation of affected groundwater in this Sector is defined by wells that provide data on the extent of saturation. Perched water does not release to surface water and its hydraulic connectivity with the Ogallala is limited by the presence of the FGZ; therefore, affected groundwater in this area is largely delineated.

3.1.1 COC Choice

Priority constituents for each individual well in the Southeast Sector are indicated on Table 1. A sector-wide evaluation of priority COCs was performed in the MAROS software and the results are indicated in the Table 3 MAROS COC Assessment for the Southeast Sector.

Based on toxicity and prevalence metrics, the two primary COCs for the Southeast Sector are RDX and 4ADNT. The median RDX concentration in the Southeast Sector network is approximately two orders of magnitude above the MSC. RDX concentrations exceed the MSC at 69 of 79 locations evaluated while 4ADNT exceeds at 63 of 79 locations. Table 3 provides details of how the COCs were ranked by toxicity, prevalence and mobility in the Southeast Sector. While other constituents were considered (Cr(VI), TNT, 2ADNT, 24DNT, TCE) in the analyses, the monitoring network was optimized specifically to address management of the RDX and 4ADNT affected groundwater. Plumes of TCE and TNT are entirely contained within the greater RDX affected groundwater. Groundwater affected by Cr(VI) exists to the south of Zones 11 and 12 and is also considered in the analysis of the Southwest Sector.

The results of the MAROS COC Assessment are shown on Table 3, but are specific to the monitoring network evaluation and are not meant to supplant the BRA's, which use different metrics to evaluate risk.

3.1.2 Plume Stability

3.1.2.1 Concentration Trends

Individual well concentration trends for the two priority COCs using the Mann-Kendall method (2000 to 2007) are summarized in the table below with detailed results shown in Table 4 and illustrated on Figures 3 and 4. Detailed Mann-Kendall reports for major COCs for each well in the network are located in Appendix B.

COC	Total Wells	Pantex Plant Southeast Perched Groundwater Mann-Kendall Trend Results by Number of Wells				
		NondetectDecreasing or ProbablyStableIncreasing or ProbablyNo Trend or InsufficientDecreasingDecreasingData				
RDX	79	1 (1%)	38 (48%)	12 (15%)	19 (24%)	9 (11%)
4ADNT	79	5 (6%)	32 (41%)	15 (19%)	15 (19%)	12 (15%)
2ADNT	79	10 (12%)	35 (44%)	10 (12%)	9 (11%)	15 (19%)
ΤΝΤ	79	21 (26%)	21 (26%)	7 (9%)	14 (18%)	16 (20%)

For the major HE COCs, the majority of locations evaluated for RDX and 4ADNT show decreasing (D or PD) to stable (S) Mann-Kendall trend results. Other COCs, such as TNT and 2ADNT show higher percentages of wells with no detections. No Trend (NT) statistical results are found at locations with high variance in the data or a limited number of detections of COCs.

Roughly 20% of wells monitor groundwater with increasing concentration trends. Increasing concentration trends are found in areas of the plume downgradient from extraction wells and in areas where the saturated thickness drops off. Areas with increasing concentration trends occur on the perimeter of the plume, as constituents from historic sources are transported to the terminus of the groundwater unit. Extraction wells in the center of the plume have largely decreasing concentration trends.

In the Southeast Sector Cr(VI) is less prevalent than the HE compounds with the plume limited to an area south of Zone 12. Interpretation of trend results for Cr(VI) is complicated by the change in analytical detection limits within the dataset. Well locations PTX06-1012, PTX06-1035 and PTX06-1036 show historic non-detect results between 2000 and 2005. Analytical detection limits were reduced in August 2005, resulting in detectable results in subsequent analyses. Locations with higher concentrations of Cr(VI) show decreasing trends (PTX06-1010, PTX08-1008, and PTX06-1052) indicating a shrinking plume in this area.

3.1.2.2 Moments

Moment analysis was used to estimate the dissolved mass (zeroth moment), center of mass (first moment) and distribution of mass (second moment) for the plumes and the trends for these metrics over time. In order to ensure a consistent number and identity of wells for each moment estimate, an annual average concentration for each well was calculated. For the Southeast Sector, data from both investigation and extraction wells were used to estimate the moments. Moments were calculated using both a uniform saturated thickness (30 ft) and variable saturated thickness using estimates of saturated thickness from the database. The number of wells in the sampling program each year for RDX (including extraction wells) range between 68 locations in 2007 to 76 in 2005.

Mann-Kendall trends of moments were evaluated for annually consolidated data 2000-2007. Trends for estimates of the zeroth, first and second moments for both RDX and 4ADNT for the Southeast Sector are shown in the table below, and first moments for RDX and 4ADNT are illustrated on Figure 4. MAROS reports for zeroth, first and second moments for other COPCs are located in Appendix B. Moment results were the same for both uniform and variable saturated thickness assumptions, except where noted.

Moment Type	Constituent			
Moment Type	RDX Trend	4ADNT Trend		
Zeroth (Total Dissolved Mass)	Stable	Probably Increasing*		
First (Center of Mass)	Increasing	Probably Increasing		
Second (Spread of Mass)	Increasing/Stable	No Trend/ No Trend		

*Result for uniform saturated thickness. Variable thickness resulted in No Trend.

Statistical results indicate that the total dissolved mass of RDX in the plume has been stable between 2000 and 2007. The zeroth moment for 4ADNT shows a probably increasing trend using uniform saturated thickness and No Trend when specific saturated thicknesses are used. These results indicate a possible weakly increasing trend, indicating that dissolved mass of 4ADNT within the network may be increasing due to degradation of the parent compound (TNT). Zeroth moments for 2ADNT are stable while TNT results indicated probably decreasing mass (consistent with possible transformation processes).

First moments, or the distance of the center of mass from the source, are statistically increasing over time for RDX and probably increasing for 4ADNT. However, the change in the center of mass is not significant, given the scale of the plume in this area (see Figure 4). Increasing first moments are often seen when source concentrations decrease, leaving relatively more of the total mass in the tail region. For RDX and 4ADNT, individual well concentration trends are decreasing at the source and in the center of the plume (under the influence of the extraction wells) and some peripheral areas show increasing concentrations. As a result, the center of mass for the priority constituents is shifting slightly to the east over time. First moments for TNT and 2ADNT show no trend.

Second moments are a measure of the distribution of mass about the center of mass in the plume. Second moments in the direction of groundwater flow (X direction) for RDX, TNT and 2,4DNT indicate that the mass in the center of the plume is decreasing relative to the mass on the edges of the plume (increasing second moment). An increasing second moment is consistent with the removal of mass from the center of the plume by the PGPTS. Second moments for 4ADNT show no trend, indicating no significant change in the distribution of mass within the plume.

Considering the overall results of the moment analysis, the plumes in the Southeast Sector are largely stable, with little change in total mass and distribution of mass, largely decreasing concentrations in the source and center of the plume. Slowly changing conditions are consistent with a reduced frequency of monitoring.

3.1.3 Redundancy and Sufficiency

The spatial redundancy analysis was performed for the network using RDX and 4ADNT as the priority COCs. (Note: Spatial analyses were also performed for TNT, 2ADNT and Cr(VI) and were considered as supporting information for final network recommendations).

Data collected between the 3rd quarter 2005 and 2007 were used in the spatial optimization. Summary results for the redundancy analysis are presented on Table 5 and include average SF (the estimate of uncertainty surrounding the well) and the MAROS recommendation for retention or elimination of the well from the network for each perched unit investigation well for RDX and 4ADNT. The preliminary MAROS recommendations were reviewed and a final recommendation for inclusion in the network is indicated. Extraction wells were included in the analysis, but were not considered for removal from the monitoring network.

Although several investigation well locations were identified by the software as candidates for removal for individual compounds, no single well was identified as redundant for all COCs analyzed. Based on a qualitative review of the network and associated regulatory requirements, all wells, but one, were recommended for retention in the monitoring network for the immediate future. Location PTX06-1014 was recommended for elimination from routine monitoring as it has very low SFs for all COCs examined. PTX06-1014 is redundant with PTX06-1042, PTX06-1030 and PTX06-1102.

Monitoring wells along the DOE property in the vicinity of the extraction wells have low SF due to the density of data generated in this area. The lack of concentration uncertainty in this area is indicated on Figure 5 by several 'S' (small uncertainty) indicators in the Delaunay triangles formed between the property line wells and the extraction wells. Very low SFs were calculated for locations along the eastern border of the DOE property for RDX and 4ADNT. While these wells (PTX06-1038, PTX06-1039A, PTX06-1014, PTX06-1015, etc.) tend to provide some redundant information, they are retained in the network due to the detection of increasing concentration trends and the absence of monitoring locations to the east. Well redundancy along the DOE property line should be reevaluated in 5 years after collection of additional data. If low SFs are

calculated after additional data collection efforts, the wells should be considered for removal from the routine monitoring network.

Well sufficiency for the network is evaluated using calculated SFs as measures of concentration uncertainty. MAROS uses the Delaunay triangulation and SF calculations to identify areas with high concentration uncertainties, but new wells are added only in locations where uncertainty is unexplained by site characteristics. The Southeast Sector network has a number of characteristics that contribute to concentration uncertainty. Source areas along the west include a line source (the ditch) and other sources that are spatially as well as temporally discontinuous. Radial groundwater flow and the drying of the unit on the edges also contribute to higher calculated uncertainties.

Results of the well sufficiency analysis for RDX are shown on Figure 5. Figure 5 shows the polygons created by the triangulation method and indicates areas of high uncertainty with an "L" or an "E" in the center of the triangle. For the Southeast Sector network, areas of high concentration uncertainty for RDX exist in the source area, largely as a result of the heterogeneity of the source and radial groundwater flow. No new wells are recommended for the source area as concentration uncertainty is explained by flow conditions.

Another area of spatial uncertainty exists south of the source in the area between PTX06-1052 and PTX06-1036. Sampling results for PTX06-1052 show no detections of RDX, 4ADNT or TNT. However, monitoring locations around PTX06-1052 show consistent detections of site HEs. Concentration uncertainty in the area may be exacerbated by dry and intermittently dry wells (PTX06-1037 and 1045) on the southern border of the unit. Conversely, for Cr(VI), the area around PTX06-1052 represents some of the highest concentrations (with decreasing trends) found in the perched unit, while adjacent well PTX06-1053 monitors groundwater with no detections of Cr(VI) Results of the sufficiency analysis indicate a new well in the vicinity of PTX06-1052, PTX06-1053 and PTX06-1036 may be beneficial for characterizing concentrations of RDX, Cr(VI), TNT and 4ADNT in the area.

Better characterization of the area south of Zone 12 will provide information on COC migration patterns from possible sources west of the Southeast Sector. Additional information in this area will improve delineation of Cr(VI) affected groundwater and provide data on continued attenuation of Cr(VI). Temporal trend results for Cr(VI) south of Zone 12 will provide better information when more samples are collected using the new analytical detection limits, especially for wells with relatively low concentrations such as PTX06-1036, PTX06-1012 and PTX06-1035.

A second new monitoring location is recommended for the saturated area east of the line of monitoring wells on the eastern DOE property boundary. Results of TNT and 24DNT sufficiency analyses indicate the Delaunay triangle east of PTX06-1041 between PTX06-1030 and PTX06-1069 has high concentration uncertainty (TNT SF=0.8, 24DNT SF=0.6 at PTX06-1041). Higher concentration uncertainties are often found in areas bounded by wells with low or intermittent detections of COCs (PTX06-1069) and areas of higher concentrations (PTX06-1041) separated by large distances. A new well would help

delineate the extent and trend of concentrations on the eastern edge of the perched unit. Currently, wells in this area show increasing concentration trends for RDX and 4ADNT, but due to consistent detections, this area does not exhibit high statistical concentration uncertainties for these compounds.

3.1.4 Sampling Frequency

Table 6 summarizes the results of the MAROS preliminary sampling frequency analysis. Recent (2005-2007) and overall rates (2000-2007) of concentration change for RDX and 4ADNT were determined along with the recent and overall Mann-Kendall trends. The software recommends a preliminary sampling frequency based on review of recent and overall rates and trends. Detailed results of the analysis are shown on Table 6 with final sampling recommendations from a 'lines of evidence approach' listed on Table 7 and Table 16. The sampling frequency suggested by the software (MAROS Recommended Frequency) was compared against the current frequency and site monitoring goals. A final recommended frequency was determined based on both MAROS generated recommendations and site-specific qualitative analyses.

Groundwater monitoring to date at the Pantex Plant has focused on characterizing the nature and extent of affected groundwater. For this reason, the sampling intervals for investigation wells have not been consistent. Many locations are currently sampled once annually, and, therefore, do not have sufficient data (4 samples) to evaluate a recent trend 2005- 2007. In some cases, wells have been installed recently (PTX06-1095A), and do not have a statistically significant dataset. For locations with a limited recent dataset, MAROS often recommends conservative (more frequent) sampling frequency. For wells with a longer sampling record (sampling prior to 2000), and low rates of concentration change, a reduced sampling frequency is appropriate. The MAROS preliminary sampling frequency recommendation for the network varies from quarterly to annual sampling for the Southeast Sector.

A total of 31 investigation wells were analyzed using the MCES method. Three wells in the Southeast Sector are listed as dry to intermittently dry in the site database (BWXT, 2007a). Dry wells are recommended for inclusion in the hydrogeologic monitoring program to monitor water levels at these locations. Of the remaining 28 locations, one well is recommended for exclusion from the program. Well PTX06-1014 was determined to be redundant with well PTX06-1042. Other wells identified as possibly redundant were recommended for inclusion in the monitoring network until the final remedy is established.

The majority of the remaining investigation wells (20) are recommended for semiannual sampling. Several wells recommended for semiannual sampling have increasing concentration trends for RDX and 4ADNT. Semiannual sampling is recommended to provide a statistically significant dataset to evaluate the efficacy of the remedy over the next few years. Wells near the source are recommended for annual sampling as concentrations are generally decreasing. The table below summarizes the current monitoring frequency for wells in the network and the sampling frequency recommended after the lines of evidence evaluation.

	Recommended Well Sampling Frequency					
Monitoring Wells	Sampling Frequency	Current Sampling Frequency	Sampling Frequency Recommendation			
	Quarterly	0	0			
	Semi-annual	16	22			
	Annual	12	7			
	Biennial	0	0			
Total Samples (average per year)		44	51			
Total Wells		28	29			

The Sampling Frequency Recommendation includes 2 new locations to be sampled semiannually. The current sampling frequency is estimated from the sample dates in the site analytical database (BWXT Pantex, 2007). Three dry wells in the Southeast Sector are recommended for inspection and hydrogeologic monitoring at an annual frequency.

A summary of the final network recommendations for the Southeast Sector are shown on Table 7 and on Figure 8. Table 7 lists lines of evidence used in making each recommendation and a short description of the function of each well in achieving site monitoring goals. The combination of annual and semiannual frequencies will ensure temporal coverage to "define and enclose" the plume as well as providing a record of attenuation of high concentrations in the interior and edges of the sector. The final proposed network increases sampling effort in the near future, but will provide data for improved statistical analyses within the next 5 years.

3.2 Southwest Sector

Data from 29 investigation well locations were used in the analysis of the Southwest Sector. Wells located south of Zone 12 (PTX06-1036, PTX06-1052, PTX06-1053, PTX08-1008, PTX08-1009) were used in both Southeast and Southwest spatial analyses to account for the diverging groundwater flow directions. Source areas for the Southwest Sector include Zones 11 and 12; however, the area was not impacted by the drainage ditch from Zone 12 to Playa 1, to any great extent. Sources in the Southwest were more isolated, therefore; COC plumes in the Southwest Sector are not as extensive. The Southwest Sector is characterized by large areas of very low to non-detect results with isolated areas of higher concentrations. Areas above MSCs include TCE and perchlorate affected groundwater underlying Zone 11.

Individual plumes within the Southwest Sector perched unit are largely delineated by unaffected wells down and cross-gradient. Affected groundwater is well delineated to the north and west of the perched unit. Perimeter wells PTX07-1Q01 and PTX07-1Q02 north to PTX06-1085 and PTX06-1087 monitor groundwater below site MSCs. Perched groundwater south of PTX06-1035 on TTU may require more wells to provide delineation between areas of affected groundwater and the edge of the perched unit.

3.2.1 COC Choice

Priority constituents for each individual well in the Southwest Sector are indicated on Table 1. The analytical dataset includes some results that may be outliers, so not all priority constituents identified on Table 1 are detected consistently at the location indicated. Risk ratios below 1 indicate the groundwater is not affected above regulatory screening levels at the locations indicated. A sector-wide evaluation of priority COCs was performed in the MAROS software and the results are indicated on Table 8 MAROS COC Assessment for the Southwest Sector. Cr(VI) is identified as a priority COC for a limited number of wells in the Southwest Sector. The priority COCs for the design of the Southwest monitoring network are perchlorate, TCE, and 4ADNT.

3.2.2 Plume Stability

3.2.2.1 Concentration Trends

Individual well concentration trends for wells in the Southwest Sector are summarized on Table 9. Summary results are presented in the table below.

The percentage of monitoring locations with no detections for specific COCs is very high in the Southwest Sector, consistent with the observation that the plumes within this sector are isolated.

COC	Total Wells	Pantex Plant Southwest Perched Groundwater Mann-Kendall Trend Results by Number of Wells				
		Nondetect Decreasing or Probably Stable Increasing or Probably No Trend or Insufficient Decreasing Decreasing Data				
Perchlorate	29	15 (52%)	5 (17%)	3 (10%)	1 (3%)	5 (17%)
TCE	29	15 (52%)	1 (3%)	4 (14%)	2 (7%)	7 (24%)
4ADNT	29	17 (58%)	2 (7%)	2 (7%)	1 (3%)	7 (24%)

Mann-Kendall trend results for perchlorate are illustrated on Figure 6. Locations with the highest concentrations of perchlorate show strongly decreasing concentration trends (1114-MW4, PTX08-1005, and PTX08-1006) or stable trends (PTX06-1007). Locations within the plume with low to intermittent detections show No Trend results (datasets with intermittent non-detect results often have high coefficients of variation (COV)). One location, PTX06-1012, shows an increasing concentration trend for perchlorate and a probably increasing trend for TCE. PTX06-1012 is downgradient from Zone 11 and is not bounded to the south by other investigation wells.

TCE affected groundwater is encountered in roughly the same area as perchlorate affected groundwater (see Figure 6). Locations with detections of TCE indicate largely stable to no trend results. The only area of possibly increasing TCE concentrations is located between wells 1114-MW4 and PTX06-1012, where probably increasing trends indicate an area that may require more monitoring effort. Strongly decreasing trends

were calculated at location PTX06-1052, at the interface between the Southeast and Southwest flow directions.

4ADNT affected groundwater is not widespread in the Southwest Sector, and is more closely associated with Zone 12. The 4ADNT plume is largely east or commingled with perchlorate and TCE affected groundwater. Locations monitoring the highest Cr(VI) concentrations (PTX08-1008, PTX06-1010 and PTX06-1052) show decreasing concentration trends. Locations monitoring the edge of the Cr(VI) plume show intermittent detections, and require a larger dataset to interpret trends in this area.

3.2.2.2 Moments

Mann-Kendall trends of moments were evaluated for annually consolidated data 2000-2007. Trends for estimates of the zeroth, first and second moments for TCE and perchlorate for the Southwest Sector are shown in the table below. Detailed MAROS reports for zeroth, first and second moments are located in Appendix B.

Momont Tuno	Constituent			
Moment Type	TCE Trend	Perchlorate Trend		
Zeroth (Total Dissolved Mass)	No Trend	Stable		
First (Center of Mass)	Increasing	No Trend		
Second (Spread of Mass)	Stable/Increasing	No Trend/Increasing		

Total mass estimates of TCE and perchlorate are not changing rapidly within the current network. Moment results for 4ADNT and RDX indicate stable mass estimates for these COCs. For perchlorate, the distribution of mass within the plume is not changing rapidly. There is some evidence of dilution of mass in the center of the plume for both TCE and perchlorate (increasing second moments). First moment estimates for TCE are increasing, indicating that the plume may still be expanding in the direction of groundwater flow. This result is consistent with increasing trends at location PTX06-1012.

3.2.3 Redundancy and Sufficiency

Summary results for the redundancy analysis for the Southwest Sector are presented on Table 10 and include average SF (the estimate of uncertainty surrounding the well) for each perched unit investigation well for perchlorate and TCE. Locations with SF approaching 0 are often recommended for elimination from routine monitoring, while locations with high SF provide unique information in the immediate spatial region and are retained. In the Southwest Sector, many wells monitoring unaffected groundwater have higher SF's, due to the distance between these locations and locations on the edge of the plumes. Non-detect or intermittent detections are an example of conditions that result in statistical concentration uncertainty that can be explained by site data (in this case, censored data). Some wells with high SF have been recommended for elimination from routine monitoring based on qualitative issues as the software can identify non-detect wells as having higher concentration uncertainty.

Location PTX06-1006 is recommended for exclusion from routine monitoring as it is redundant with PTX06-1011. Perimeter locations PTX06-1087, PTX07-1P02, PTX07-1P03, PTX07-1Q02 and PTX10-1008 that monitoring unaffected groundwater are recommended for elimination from the monitoring network as well.

The well sufficiency analysis identified the area south of Zone 11 between wells PTX08-1006, PTX06-1012, PTX06-1053 and PTX06-1008 as having high concentration uncertainty. Location PTX06-1012 shows increasing concentration trends for perchlorate and TCE, and no downgradient wells currently exist to define the extent of the trend. A new monitoring location is recommended for the area south of PTX06-1012. One to two new monitoring locations are recommended for the area between PTX06-1012 and PTX08-1005 to account for uncertainty in groundwater flow directions in this area. A new location has been recommended to delineate groundwater near the DOE property boundary south of Zone 10. Groundwater south of Zone 10 is anticipated to be unaffected by COPCs above MSCs, with the new well functioning as a point of compliance (POC) well for the Southwest Sector.

3.2.4 Sampling Frequency

Detailed results of the sampling frequency analysis for the Southwest Sector are shown on Table 11 with final recommendations listed on Table 12. Table 12 lists the lines of evidence used in making sampling recommendations and a brief description of the function of the well in the network. Locations included in both the Southeast and Southwest spatial analyses were recommended for sampling at the more conservative frequency of the two analyses.

Sampling frequencies for 24 wells in the Southwest Sector were determined. The current sampling frequency for this sector is largely annual, with seven locations not sampled in the recent time-frame (2005-2007). Currently, 17 wells are sampled routinely in this sector.

Based on results of the redundancy and sufficiency analyses, six locations are recommended for formal elimination from the network while four new locations in perched groundwater are recommended. The proposed new locations are recommended for semiannual sampling until 4-6 sample results are collected to provide statistical trend information. The final proposed network is illustrated on Figure 8 and summarized in the table below. New wells are included under the sampling frequency recommendation (Total Wells below) as well as locations that have not been sampled frequently in the recent time period.

Based on results of the temporal analysis, four current locations are recommended for semiannual sampling. Wells monitoring groundwater with high or increasing concentrations of TCE and perchlorate, such as 1114-MW4 and PTX08-1005 are recommended for semiannual sampling to capture changes in concentrations in this area. Wells monitoring groundwater with stable trends or infrequent detections are recommended for annual sampling. Perimeter or POC wells are recommended for

9

5

27.5

 Tuture, but will provide for a statistically significant dataset within 5 years.

 Monitoring Wells
 Recommended Well Sampling Frequency

 Monitoring Wells
 Sampling Frequency
 Current Sampling Frequency
 Sampling Frequency Recommendation

 Quarterly
 0
 0
 0

 Semi-annual
 2
 8

14

1

18.5

Annual

Biennial

biennial sampling. The final proposed network increases sampling effort in the near future, but will provide for a statistically significant dataset within 5 years.

Total Wells1722The Sampling Frequency Recommendation includes 4 new locations to be sampled semiannually. The current sampling
frequency is estimated from the sample dates in the site analytical database (BWXT Pantex, 2007a).22

3.3 North Sector

Total Samples (average

per year)

3.3.1 COC Choice

Priority constituents for each individual well in the North Sector are indicated on Table 1. Eighteen locations were considered in the North Sector analysis. Two locations at the Pantex Lake property were not analyzed as perched groundwater in this area is not affected by COCs associated with site activities. As with the Southwest Sector, many locations do not exceed MSCs (risk ratios below 1) and the primary COC may not be detected routinely at a location.

A sector-wide evaluation of priority COCs was performed in the MAROS software. The only COC identified as a priority sector-wide was RDX. Other constituents are present in perched groundwater at low levels or over limited spatial extents. Isolated areas of perched groundwater are found underlying the Burning Grounds and in the far northeast area of the property. Perched groundwater in these areas is characterized by fairly low detections of site COPCs and limited opportunity for mobility.

The North Sector includes the area of the main perched groundwater unit north of Playa 1. Perched groundwater in this area is affected by waste water drained to Playa 1 from industrial operations in Zone 12. A groundwater mound located just to the north of Playa 1 (see Figure1) causes radial flow in the North Sector. The RDX and 4ADNT plumes that extend south from Playa 1 were evaluated under section 3.1 above. Analyses of the North Sector included the area between Playa 1 and the extent of the perched unit and the area around SWMU 68b.

<u>3.3.2 Plume Stability</u>

3.3.2.1 Concentration Trends

Selected individual well concentration trends for wells in the North Sector for various COPCs are listed on Table 13 and illustrated on Figure 7. The majority of locations do not have detections of COPCs above MSCs. The only area of groundwater routinely affected above MSCs is the RDX plume north of Playa 1. A summary of Mann-Kendall trend results for the North Sector is shown below. No locations in the North Sector show decreasing trends for RDX (while several locations in the northern Southeast and Southwest Sectors show decreasing trends). One location, PXT06-1050 shows an increasing trend, with average concentrations above the MSC. Well PTX06-1114 has been installed upgradient of PTX06-1050 to define trends in the area, but the location has insufficient data to evaluate a trend at this time. No wells are currently located downgradient of PTX06-1050.

COC	Total Wells	Pantex Plant Southwest Perched Groundwater Mann-Kendall Trend Results by Number of Wells Nondetect Decreasing or Probably Decreasing Stable Increasing or Probably No Trend or Insufficient Decreasing Decreasing Decreasing Decreasing Decreasing				
RDX	18	9 (50%)	0	3 (17%)	1 (5%)	5 (28%)

3.3.2.2 Moments

The moment analysis was not conducted for the North Sector as fewer than six wells were present in any individual network monitoring a common source area and groundwater flow direction. Outside of the main perched groundwater unit, COCs are not detected above MSCs on a consistent basis. Plume stability for affected groundwater in the North Sector was determined by evaluating delineation and individual well concentration trends.

3.3.3 Redundancy and Sufficiency

As with the moment analyses, network spatial redundancy and sufficiency analyses require greater than six monitoring locations with detections to evaluate stability within a network. For the North Sector, redundancy and sufficiency were evaluated using qualitative methods.

The area north of Playa 1 is the only area in the North Sector where groundwater consistently exceeds MSCs. RDX concentrations appear to be increasing downgradient of Playa 1 in the area of PTX06-1050. Addition of a well downgradient (west) of PTX06-1050 is recommended to define the extent and trend of RDX in the area. Wells in the main perched unit north of Playa 1 should be sampled semiannually until a sufficient dataset has been collected to evaluate dissolved RDX in the area.

3.3.4 Sampling Frequency

Detailed results of the sampling frequency analysis for the North Sector are shown on Table 14. Final recommendations are listed on Table 15, along with lines of evidence used to support the recommendation and a description of the function of each well in the network. Only data for the overall rate of change and overall concentration trends are shown on Table 14 as there were an insufficient number of sampling events to evaluate recent rates of change and trends (2005 - 2007). Analytical results from many locations show no detections or only intermittent detections of site COPCs.

Final sampling frequency recommendations are summarized in the table below. Due to the limited extent of affected groundwater, a reduction in monitoring effort over the majority of the North Sector is recommended.

	Recommended Well Sampling Frequency					
Monitoring Wells	Sampling Frequency	Current Sampling Frequency	Sampling Frequency Recommendation			
	Quarterly	0	0			
	Semi-annual	10	5			
	Annual	6	4			
	Biennial	4	5			
	5 year interval	4	7			
Total Samples (average per year)		29	18			
Total Wells		20	21			

The Sampling Frequency Recommendation includes 1 new location to be sampled semiannually. The current sampling frequency is estimated from the sample dates in the site analytical database (BWXT Pantex, 2007).

For wells located in the northeast corner of the DOE property boundary, a combination of biennial and 5-year sampling intervals was recommended. The perched groundwater in this area is isolated from the main perched groundwater unit, and is in an area where the FGZ is thick. COPCs are not detected above screening levels with regularity. A five-year sampling interval will provide data to demonstrate compliance with regulatory requirements over the long-term. A five-year sampling interval is also suggested for PTX07-1R03, located in an isolated area of perched groundwater.

Semiannual monitoring is recommended for wells monitoring RDX affected groundwater in the main perched unit (PTX06-1114, PTX06-1050, PTX07-1001 and PTX07-1002) and for the proposed new location. Annual monitoring is suggested for wells defining the outer edge of the plumes.

The final recommended sampling frequencies for all Pantex Plant sampling locations is provided on Table 16.

3.3.5 Data Sufficiency

Data sufficiency analysis is appropriate for sampling locations very close to meeting cleanup objectives. Several locations in the North Sector monitor groundwater with very few to no detections of COPCs. Data sufficiency analysis determines if and when a sufficient number of samples have been collected from a location to confirm that the groundwater is statistically below the cleanup goal and if the site has attained cleanup (USEPA, 1992). A Student's T-Test with power analysis and Sequential T-Test were performed on North Sector data. Results from these statistical tests are shown on Table 15. The Students T-test and power analysis identifies if groundwater locations statistically below the MSC with 80% power. The Sequential T-Test, a more rigorous analysis, identifies locations that have 'attained' cleanup, those where continued monitoring would provide a statistically significant dataset, and those locations far from achieving the cleanup goal.

Well locations where data meet the statistical standard of 'clean' can be used as POC or delineation points for regulatory purposes, or their monitoring frequency can be dramatically reduced without loss of information to support management decisions.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The primary goal of developing an optimized monitoring strategy at the Pantex Plant is to create a dataset that fully supports site management decisions and risk reduction goals while minimizing time and expense associated with collecting and interpreting analytical data. A summary of the final recommended monitoring network is presented on Table 16 and illustrated on Figure 8. The recommended network increases data collection effort in some areas to provide a dataset that fulfills statistical requirements for evaluating the effect of the remedies discussed in the CMS/FS (BWXT, 2007b). The recommended network reduces monitoring effort and cost in some areas, but recommends the addition of new wells in areas where further characterization would support site monitoring goals.

Tasks identified in Section 1 were performed for the current network. A summary of general results for each task is presented below:

• Evaluate well locations and screened intervals within the context of the hydrogeologic regime to determine if the site is well characterized.

Result: Part of the network optimization process is to identify possible gaps in site characterization that may require additional sampling locations or site investigation. Based on well locations, screened intervals and hydrogeologic characteristics, affected groundwater in perched units is well characterized and delineated, in most areas. In some areas, the extent of affected groundwater is defined by the extent of perched groundwater, with perimeter wells dry. Areas that may benefit from additional delineation have been identified in the Southwest Sector southwest of Zone 11, in the North Sector northwest of Playa 1 and in the far eastern area of perched groundwater. Areas recommended for additional delineation are all near the perimeter of the perched unit where saturated thickness decreases. Recommendations for new delineation locations are based on both qualitative and quantitative statistical evaluations.

Source areas have been well investigated and conceptual site models have been developed for all areas of affected groundwater (BWXT, 2007b). The majority of wells in the network have a sufficiently large dataset to perform statistical calculations.

Recommendation: Monitoring network optimization is appropriate for the site at this time; however, further network evaluation may be beneficial after the final remedies are instituted (including installation of new extraction and *in situ* redox manipulation systems). Network recommendations presented in this report focus on collecting information over the next five years to support future assessment of remedy efficacy and delineation of affected groundwater. The monitoring network should be reevaluated after five years to determine if the system can be further optimized.

Areas of perched groundwater that are recommended for additional delineation include the area east of the DOE property in the vicinity of well PTX06-1040. The perched groundwater pinches out in this area, so delineation may be a function of confirming the limit of saturation.

Two new groundwater delineation locations are recommended for the area south/southwest of the main perched unit in the Southwest Sector to delineate constituents in this area.

An additional delineation well is also recommended for the area north and west of Playa 1 to characterize the RDX plume west of PTX06-1050.

Evaluate overall plume stability through trend and moment analysis. Evaluate individual well concentration trends over time for target chemicals of potential concern (COPCs);

Result: The groundwater plumes in the Southeast Sector are largely stable under the influence of the extraction system and limited by the extent of saturation in the perched unit. Statistically increasing concentration trends are found for RDX and 4ADNT at downgradient locations in the Southeast Sector; however, the magnitude of increase is low compared with the overall concentrations at these locations.

An evaluation of moments in the Southeast Sector shows that total dissolved mass estimates are stable for RDX, and variable to possibly increasing for 4ADNT. Center of mass estimates for RDX and 4ADNT are statistically increasing (moving downgradient) slightly, consistent with increasing individual well trends at downgradient locations and decreasing concentration trends in the source and extraction well areas. The movement of the center of mass downgradient is not significant compared to the overall scale of the plume. Estimates of the distribution of mass about the center of mass (second moments) for RDX indicate some redistribution of mass from the center to the edge of the plume in the direction of groundwater flow. Overall results of the stability analysis indicate the plumes are largely stable with slow increases in the proportion of constituent mass in groundwater on the edges of the plume.

The primary plumes in the Southwest Sector include TCE and perchlorate affected groundwater near Zone 11 and HE plumes near Zone 12. Individual well trends for perchlorate are largely decreasing with the exception of an increasing trend found at downgradient location PTX06-1012. Moments for perchlorate show no trend to stable trends within the current network, indicating a fairly stable plume.

Individual well trends for TCE in the Southeast Sector are largely stable or show no trend. However, concentrations at wells 1114-MW4 and PTX06-1012 show probably increasing trends. Increasing trends at some downgradient locations are reflected in an increasing trend for the center of mass over time. Lines of evidence indicate some expansion of Zone 11 affected groundwater in the southerly direction.

The majority of monitoring locations in the North Sector are not affected by constituents above MSCs and statistical evaluation results indicate many locations where groundwater shows no detections or intermittent detections (no trend). Concentration trends for RDX in the North Sector show decreasing trends just south of Playa 1. An increasing RDX trend was found at PTX06-1050 indicating possible spread of the plume to the northwest of the main perched groundwater unit. Due to the limited number of monitoring locations, moment analysis was not conducted for the North Sector.

Recommendation: Monitoring frequency can be reduced for plumes where groundwater concentrations are not changing rapidly and where plumes are stable. Areas where reduced monitoring effort is appropriate have been identified in the North and Southwest Sectors (see Table 16 for final recommendations).

Concentrations are still changing in the Southeast, although the plume has been stabilized by installation of the PGPTS. The recommendation is to continue to collect data in Southeast Sector during the installation and early implementation of proposed remedies to provide a sufficient dataset to demonstrate the efficacy of future remedies.

 Develop sampling location recommendations based on an analysis of spatial uncertainty;

Result: Well redundancy analysis for the Southeast Sector indicates that wells installed along the DOE property boundary may provide redundant information when analyzed alongside data from the PGPTS. However, as these wells are the monitoring locations farthest downgradient to the east and monitor the property boundary, most are recommended for inclusion in the monitoring program until installation of additional remedy systems are completed. One investigation well in this area was recommended for elimination from routine monitoring.

Spatial uncertainty analysis for the Southeast Sector indicated high concentration uncertainty in the area south of Zone 12 and in the area east of the DOE property. High concentration uncertainty was found for RDX, Cr(VI) and 4ADNT for the southern location and for TNT and 2ADNT in the eastern area. Two new wells are recommended. Similarly, delineation of concentrations south of Zone 12 and east of PTX06-1053 would benefit from addition of a well to monitor possible transport of COCs through the area. The Southeast Sector will most likely be the focus of additional remedial activities, and providing data from the area immediately west of proposed remedial operations will support assessment of remedial effectiveness in this area (see Figure 8 for proposed new well locations).

For the Southwest Sector, wells monitoring unaffected groundwater on the western edge of the plume were found to provide redundant information based on a qualitative review and are formally recommended for removal from the routine monitoring program. Statistical redundancy was found in the area of PTX06-1006,

near Zone 12. The spatial sufficiency analysis for the Southwest Sector identified an area of unexplained concentration uncertainty in the vicinity of PTX06-1012, and three new monitoring locations are recommended for this area.

Rather than recommending wells for elimination in the North Sector, delineation or POC wells were identified for reduced sampling frequency.

Recommendation: For the Southeast Sector well PTX06-1014 was determined to be redundant with well PTX06-1042, and is recommended for elimination from the routine monitoring program.

Two new locations are recommended for the Southeast Sector. One new location is recommended for the area between PTX06-1036 and PTX06-1052. Another new location is recommended for the area east of PTX06-1039A.

Six locations were found to provide redundant information and are recommended for elimination from routine monitoring in the Southwest Sector: PTX06-1006, PTX06-1087, PTX07-1P02, PTX07-1P03, PTX07-1Q02, and PTX10-1008.

Overall, four new groundwater monitoring locations are recommended for the Southwest Sector. Two new wells are recommended to delineate affected groundwater in the southern area of the perched unit. The wells are outside the current network southwest of PTX06-1012 and southwest of PTX06-1035. Two new locations south of PTX08-1005 are recommended to decrease spatial uncertainty in the area of the TCE/perchlorate plume near Zone 11 between PTX08-1005 and PTX06-1012.

No wells are recommended for elimination from the North Sector networks. However, many locations are recommended for dramatically reduced sampling frequency. If low to non-detect conditions persist in isolated perched units in the future, some of these wells may be eliminated.

One new monitoring location is recommended to delineate the RDX plume in the North Sector. The new monitoring location is recommended for an area downgradient (west) of PTX06-1050 at the edge of the saturated unit.

 Develop sampling frequency recommendations based on both qualitative and quantitative statistical analysis results;

Result: Preliminary sampling frequency recommendations generated by MAROS for RDX in the Southeast Sector included many recommendations for quarterly sampling due to the small number of recent sampling events during the past two years and due to increasing concentration trends at sampling locations. Sampling frequency recommendations for 4ADNT affected wells were less frequent. After a qualitative review of the network, a semiannual sampling frequency was recommended for most monitoring locations in the Southeast Sector. The qualitative review considered that additional historic data were available for many

of the locations and that the perched groundwater unit is largely isolated from most exposure pathways, poses a limited risk and is covered by institutional controls to prevent contact with human or ecological receptors.

Locations in the Southeast Sector source area and in the northern area are recommended for annual sampling based on low rates of concentration change and decreasing concentration trends.

Many monitoring locations in the Southwest and North Sectors were recommended for reduced sampling frequency due to the number of non-detect results and the very low rate of change of concentrations in this sector.

Recommendation: Recommendations for sampling frequency were made based on the rate of concentration change, the magnitude and direction of concentration change and the need to acquire a statistically significant dataset over the next five years. Sampling frequency recommendations are summarized on Table 16 and Figure 8.

Southeast Sector investigation wells were recommended for a largely semiannual to annual sampling frequency. Of the 31 locations evaluated, 20 are recommended for semiannual sampling. Annual sampling frequency is appropriate for source area locations with decreasing trends and locations within the plume with low rates of concentration change.

Monitoring locations in the Southwest Sector that serve to delineate the extent of perched groundwater (outer edge wells) are recommended for biennial sampling. Interior monitoring locations that may characterize historic source areas or areas north of the source are recommended for annual sampling. Semiannual sampling is recommended for locations monitoring the perchlorate and TCE plume near Zone 11 and for recommended new locations.

In the North Sector, semiannual sampling is recommended for wells monitoring RDX affected groundwater in the main perched unit (PTX06-1114, PTX06-1050, PTX07-1001 and PTX07-1002) and for the proposed new location. Annual monitoring is suggested for wells defining the outer edge of the plumes.

Dramatically reduced monitoring is recommended for isolated perched groundwater near property boundaries in the North Sector. Biennial sampling is recommended for wells PTX01-1002, PTX04-1002, PTX06-1081, PTX07-1006 and PTX-BEG3, while 5 year intervals are recommended for PTX04-1001, PTX06-1071, PTX06-1080, PTX06-1082, PTX06-1083, PTX07-1R03 and PTX08-1010.

• Evaluate individual well analytical data for statistical sufficiency and identify locations that have achieved clean-up goals (North Sector only).

Result: Data sufficiency was evaluated for North Sector investigation wells for RDX (other COPCs were statistically below MSCs). 15 locations in the North Sector had sufficient data to perform the analysis and of those, 10 monitor groundwater statistically below the MSC for RDX (7.7 ug/L) with 80% statistical power. Nine of the 10 wells below MSCs had sufficient data to demonstrate that groundwater was not affected by RDX using the Sequential T-Test. Wells with sufficient data to demonstrated "attainment" of groundwater regulatory standards can be considered as POC locations or can be considered for reduced sampling frequency.

Recommendation: Results from the data sufficiency analysis were used as one 'line of evidence' to reduce sampling frequency for several North Sector groundwater monitoring locations (see Table 15).

Additional Recommendations

- Groundwater monitoring data as well as well construction and location information should continue to be managed in a site-wide relational database.
- Capture zone analysis for the PGPTS extraction system in the Southeast Sector is recommended and should continue to be presented annually, as required by Compliance Plan No. 50284.
- Additional monitoring locations for the Ogallala Aquifer are recommended to ensure vertical delineation of the perched groundwater plume and to provide early warning if affected groundwater migrates through the FGZ.
- Reevaluate the network in 5 years after any additional remedies have been implemented and a statistically significant dataset has been collected.

5.0 CITED REFERENCES

- AFCEE. (2003). Monitoring and Remediation Optimization System (MAROS) 2.2 Software Users Guide. Air Force Center for Environmental Excellence. http://www.gsi-net.com/software/MAROS_V2_1Manual.pdf
- AFCEE. (1997). Air Force Center for Environmental Excellence, AFCEE Long-Term Monitoring Optimization Guide, http://www.afcee.brooks.af.mil.
- Aziz, J. A., C. J. Newell, M. Ling, H. S. Rifai and J. R. Gonzales (2003). "MAROS: A Decision Support System for Optimizing Monitoring Plans." <u>Ground Water</u> 41(3): 355-367.
- BWXT Pantex/SAIC, 2006. Baseline Human Health Risk Assessment Report for Zones 10, 11, and 12, Fire Training Area, Ditches and Playas, Independent Sites and Groundwater for the U.S. Department of Energy/National Nuclear Security Administration, Pantex Plant, Amarillo, Texas. BWXT Pantex L.L.C., Texas, December 2006.
- BWXT Pantex, 2007a. Pantex Plant groundwater database. Accessed September, 2007.
- BWXT Pantex/ SAIC, 2007b. Corrective Measures Study/ Feasibility Study Modeling Report, Department of Energy/National Nuclear Security Administration, Pantex Plant, Amarillo, Texas, Volume 1. BWXT Pantex L.L.C., Texas September, 2007.
- Gilbert, R. O. (1987). <u>Statistical Methods for Environmental Pollution Monitoring</u>. New York. Van Norstrand Reinhold.
- Ridley, M.N., Johnson, V. M and Tuckfield, R. C.(1995). Cost-Effective Sampling of Ground Water Monitoring Wells. HAZMACON. San Jose, California.
- USEPA. 1992. *Methods for Evaluating the Attainment of Cleanup Standards Volume 2: Ground Water*. U.S. Environmental Protection Agency.

GROUNDWATER MONITORING NETWORK OPTIMIZATION Pantex Plant

TABLES	Carson County, Texas
Table 1	Pantex Plant Investigation Wells: Perched Groundwater
Table 2	Aquifer Input Parameters
Table 3	COC Assessment Southeast Sector
Table 4	Investigation Well Trend Summary Results Southeast Sector
Table 5	Well Redundancy Analysis Summary Results Southeast Sector
Table 6	Sampling Frequency Analysis Results Southeast Sector
Table 7	Final Recommended Groundwater Monitoring Network Southeast Sector
Table 8	COC Assessment Southwest Sector
Table 9	Investigation Well Trend Summary Results Southwest Sector
Table 10	Well Redundancy Analysis Summary Results Southwest Sector
Table 11	Sampling Frequency Analysis Results Southwest Sector
Table 12	Final Recommended Groundwater Monitoring Network Southwest Sector
Table 13	Investigation Well Trend Summary Results North Sector
Table 14	Sampling Frequency Analysis Results Southwest Sector
Table 15	Final Recommended Groundwater Monitoring Network North Sector
Table 16	Summary Monitoring Network Recommendations Perched Groundwater

GSI Job No. G-3262 Issued: 12-FEB-2008 Page 1 of 2

TABLE 1 PANTEX PLANT INVESTIGATION WELLS: PERCHED GROUNDWATER

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT Carson County, Texas

			Number of					Monitoring Co	onstituents		
Well Name	Earliest Sample Date	Most Recent Sample Date	Samples (2000-2007)	Primary COC at Well	Risk Ratio	RDX	Cr (VI)	Perchlorate	Boron	TCE	4ADNT
Southeast Sector	or										
PTX06-1002A	7/26/2000	5/7/2007	7	RDX	6.23E+00	Х				Х	
PTX06-1003	5/1/2000	10/25/2006	7	RDX	2.05E+00				Х		
PTX06-1005	1/26/2000	5/7/2007	8	RDX	1.74E+02	X	Х			Х	Х
PTX06-1010	5/8/2000	5/17/2007	8	Cr (VI)	1.17E+02	X	Х			X	
PTX06-1011 PTX06-1013*	10/23/2000 11/20/2000	5/17/2007 5/2/2007	7	RDX RDX	6.52E+00 1.49E+00	X X				Х	
PTX06-1013	11/30/2000	1/15/2007	14	RDX	2.31E+02	X			Х		Х
PTX06-1015	4/25/2000	2/15/2007	13	RDX	8.95E+01	X					X
PTX06-1023*	4/24/2000	1/17/2007	12	RDX	6.97E-01						~
PTX06-1030	2/7/2000	2/12/2007	15	RDX	2.70E+02	Х			Х		Х
PTX06-1031	2/7/2000	2/12/2007	15	RDX	8.71E+01	Х					Х
PTX06-1034	2/10/2000	2/12/2007	13	RDX	1.01E+01	Х					Х
PTX06-1036	3/20/2001	2/14/2007	13	4ADNT	9.17E-01						
PTX06-1037**	1/25/2000	5/17/2005	5	RDX	3.64E+02	Х	Х		Х		Х
PTX06-1038	1/31/2000	1/15/2007	14	RDX	1.79E+02	X					X
PTX06-1039A	1/31/2000	5/7/2007	11	RDX	1.77E+02	X	<u> </u>		X		X
PTX06-1040 PTX06-1041	1/31/2000 1/24/2000	1/15/2007 11/1/2006	14 12	RDX RDX	1.64E+02 1.69E+02	X			X X		X X
PTX06-1041 PTX06-1042	1/24/2000	1/15/2007	12	RDX	3.44E+02	X			X		X
PTX06-1042 PTX06-1045**	9/12/2000	10/23/2006	10	RDX	2.75E+02	X	1		~		X
PTX06-1045	1/5/2000	2/7/2007	17	RDX	1.24E+02	X	1	1			X
PTX06-1047A	3/20/2000	5/2/2007	14	RDX	5.84E+01	X					X
PTX06-1052	3/17/2000	2/14/2007	15	Cr (VI)	7.00E+01		Х				
PTX06-1053	3/17/2000	2/14/2007	17	4ADNT	5.25E+00						Х
PTX06-1069*	10/30/2001	7/26/2006	11	TNT	1.17E-01						
PTX06-1088	6/11/2003	5/17/2007	8	RDX	5.42E+01	Х	Х			Х	Х
PTX06-1095A	2/22/2007	5/8/2007	3	BORON	1.20E-01				Х		
PTX06-1102**	6/1/2000	10/23/2006	10	RDX	1.57E+02	Х					Х
PTX08-1002*	2/1/2000	10/25/2006	7	RDX	3.60E+01	Х			Х		
PTX08-1008	2/1/2000	1/17/2007	11	Cr (VI)	1.40E+02		Х				
PTX08-1009*	2/22/2001	5/22/2007	7	RDX	3.87E+00		Х				
Southwest Sect	or										
1114-MW4	4/22/2002	5/21/2007	3	PERCHLORATE	1.29E+01			х		Х	
PTX06-1006	7/27/2000	7/31/2003	3	Cr (VI)	1.00E-01						
PTX06-1007	4/17/2001	4/29/2003	3	4ADNT	1.23E+01			Х			Х
PTX06-1008	2/1/2000	10/27/2004	4	TCE	5.76E+00		Х			Х	
PTX06-1012	10/23/2000	1/30/2007	12	PERCHLORATE	1.68E+00			Х			
PTX06-1035	4/19/2001	1/30/2007	10	4ADNT	1.92E+00						Х
PTX06-1077A	2/20/2002	8/7/2006	4	TCE	3.04E+00					Х	
PTX06-1085	5/27/2003	2/26/2004	4	BORON	7.56E-03		1			-	
PTX06-1086	5/27/2003	5/16/2007	8	RDX	2.44E+00	х	1	1			
PTX06-1080	5/27/2003	2/26/2004	4	BORON	8.86E-03		1				<u>├</u> ──┤
PTX07-1Q01	4/16/2001	11/2/2004	5	26DNT	1.17E-01	╟───					<u>├</u>
PTX07-1Q01	5/3/2001	11/2/2006	5	Cr (VI)	1.00E-01		-				
		5/16/2007	5	RDX		~	-				<u>├</u> ──┤
PTX07-1Q03 PTX08-1003	4/16/2001		6		3.44E+00	X	ł	~			┨───┤
	10/19/2000	11/2/2006		PERCHLORATE	1.47E+00		-	Х		V	
PTX08-1005	4/25/2000	10/26/2006	6	TCE	2.52E+01			×		<u>X</u>	N N
PTX08-1006	4/25/2000	5/21/2007	8	4ADNT	3.87E+01	X		X		X	Х
PTX08-1007	10/23/2000	7/30/2003	2	TCE	3.20E+00	╟		Х		Х	l
PTX10-1008	10/30/2001	10/26/2004	6	BORON	1.49E-02	╟					
PTX10-1013	7/31/2000	10/26/2006	6	TCE	2.32E+01	∥				Х	<u> </u>
PTX06-1049*	3/16/2000	5/14/2007	11	TCE	3.08E-01						
PTX07-1P02*	1/23/2001	5/8/2007	6	RDX	5.45E-01		Х				
PTX07-1P03*	4/19/2000	7/31/2003	4	RDX	9.61E-01						
PTX07-1P06*	3/15/2000	10/25/2006	10	RDX	1.42E+01	Х					
PTX08-1001*	4/19/2001	5/8/2007	7	PERCHLORATE	2.71E+00		Х	Х			Х
Soo Notos End of 1						••	•	•			*

See Notes End of Table

GSI Job No. G-3262 Issued: 12-FEB-2008 Page 2 of 2

TABLE 1 PANTEX PLANT INVESTIGATION WELLS: PERCHED GROUNDWATER

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT

Carson County, Texas

			Number of			Monitoring Constituents					
Well Name	Earliest Sample Date	Most Recent Sample Date	Samples (2000-2007)	Primary COC at Well	- Risk Ratio	RDX	Cr (VI)	Perchlorate	Boron	TCE	4ADNT
North Sector											
PTX01-1001	2/8/2000	5/14/2007	27	PERCHLORATE	5.62E+00			Х			
PTX01-1002	4/17/2000	5/16/2007	26	PERCHLORATE	2.15E-01						
PTX01-1008**	8/1/2000	2/21/2007	13	TCE	1.46E+00						
PTX04-1001	1/26/2000	10/27/2003	6	TCE	4.00E-01						
PTX04-1002	1/22/2001	1/29/2007	12	26DNT	6.03E-01		Х				
PTX06-1048A	3/16/2000	1/17/2007	15	TCE	8.20E-01						
PTX06-1050	3/20/2000	10/24/2006	10	RDX	7.09E+01	Х			Х		
PTX06-1071	8/20/2001	10/28/2004	8	Cr(VI)	1.16E-01						
PTX06-1080	8/9/2005	1/31/2007	12			No COPCs from site activities					
PTX06-1081	7/18/2002	1/31/2007	12	26DNT	3.65E-01						
PTX06-1114	2/22/2007	5/21/2007	2	RDX	4.10E+00	Х					
PTX07-1001	4/24/2000	10/24/2006	6	RDX	6.83E+00	Х					
PTX07-1002	4/18/2001	10/24/2006	3	RDX	1.23E+00						
PTX07-1003	4/18/2001	5/14/2007	7	RDX	5.01E+00	Х					
PTX07-1006**	9/7/2000	10/28/2004	10	26DNT	2.40E-01						
PTX07-1R03**	5/29/2001	11/2/2006	8	Cr(VI)	1.90E-01						
PTX08-1010	8/9/2005	1/31/2007	15				No COO	Cs above analyt	tical detecti	on limits	
PTX-BEG3	3/22/2001	1/29/2007	13	4ADNT	3.17E-01						
PTX06-1082	5/15/2003	11/1/2006	7				N	o COPCs from	site activitie	es	
PTX06-1083	5/15/2003	11/1/2006	7				N	o COPCs from	site activitie	es	

Notes:

1. Wells listed are investigation wells in current monitoring program. Extraction wells used in the analysis are listed in Appendix B.

* = Well included in more than one Sector for spatial analysis.

** = Wells that are dry or intermittently dry, as indicated in database (BWXT, 2007a).

2. Data from B&W Pantex Plant database received September, 2007 (BWXT, 2007a).

3. Sampling dates for wells range from January 2000 (earliest sample dates) to July, 2007 (most recent sample dates). Data before 2000 may be available for some locations, but were not used in the analysis.

4. The priority chemical of concern (COC) at each well is the constituent detected at the highest level normalized by the MSC or appropriate RRS.

The ratio is the maximum concentration of the COC divided by the screening level concentration. Values below 1 indicate no groundwater affected above MSC.

5. Number of samples is the number of individual sample dates in the database, results from duplicate samples from the same date are averaged and counted as one sample.

6. Monitoring constituents are those where the average concentration 2000-2007 is above the MSC.

7. RDX = Hexahydro, 1,3,5-trinitro, 1,3,5-triazine; TCE = trichloroethene, 4ADNT = 4-Amino, 2,6-dinitrotoluene; Cr(VI) = Hexavalent Chromium. 26DNT = 2,6-dinitrotoluene.

TABLE 2 AQUIFER INPUT PARAMETERS

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT Carson County, Texas

Parameter	Units	Southeast	Southwest	North
Current Plume Length	ft	7000	6000	Various
Maximum Plume Length	ft	7000	6000	Various
Plume Width	ft	6400	6000	Various
Seepage Velocity (ft/yr)*	ft/yr	140	62	70
Distance to Receptors	ft	8000	10000	8000
Groundwater Fluctuations		No	No	No
Source Treatment			Pump and treat	
Plume Type			Explosives, VOCs	
NAPL Present		No	No	No
Number of investigation wells		31	29	29
Parameter		Value		
Groundwater flow direction		S/SE	S/SW	Various (45)
Porosity		0.25	0.25	0.25
Source Location near Well		PTX06-1010	PTX08-1006	Playa 1 (various)
Source X-Coordinate	ft	639886.625	636400.4375	639580.323
Source Y-Coordinate	ft	3758067	3756761.75	3764100.313
Coordinate System		N	AD 83 SP Texas North FT	
Average Saturated Thickness Perched Zone	ft		30	
Priority Constituents		MSC	Basis	Sectors Affected
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	ug/L	7.7	GW-Res _c	All
4-Amino-2,6-Dinitrotoluene (4ADNT)	ug/L	1.2	GW-Res _{NCAdj}	All
2-Amino-4,6-Dinitrotoluene (2ADNT)	ug/L	1.2	GW-Res _{NCAdj}	Southeast
2,4,6-Trinitrotoluene (TNT)	ug/L	3.6	GW-Res _{NCAdj}	Southeast
2,4-Dinitrotoluene (24DNT)	ug/L	1	PQL	Southeast
Chromium (VI)	ug/L	100	MCL	Southeast
Perchlorate	ug/L	26	GW-Res _{NC}	Southwest
Trichloroethene	ug/L	5	MCL	Southwest

Notes:

1. Aquifer data from CMS/FS (BWXT, 2007a).

2. Priority COCs defined by prevalence, toxicity and mobility.

3. Saturated thickness represents an estimated average for the perched unit, which ranges from 0 to 70 ft in saturated thickness.

4. * = a range of transmissivites are present in the aquifer, and groundwater velocity is estimated for each sector.

5. MSC = Medium Specific Concentration, from CMS/FS (BWXT, 2007b).

GW-Resc = TCEQ Standard No. 2 Groundwater MSC for Residential Use; NC = Noncarcinogenic; C = Carcinogenic; Adj = Value adjusted for a cumulative hazard index of 1; PQL = Practical Quantitation Limit; MCL = USEPA Maximum Contaminant Level.

MAROS COC Assessment

Project:	Pantex SE	User Name: MV					
Location:	SouthEast	State	e: Texas				
Toxicity:				_			
		Representative Concentration	PRG	Percent Above			
Contaminan	t of Concern	(mg/L)	(mg/L)	PRG			
HEXAHYDR	O-1,3,5-TRINITRO-1,3,5-TRIA	7.7E-01	7.7E-03	9948.3%			
4-AMINO-2,6	DINITROTOLUENE	7.5E-03	1.2E-03	524.2%			
CHROMIUM	, HEXAVALENT	5.8E-01	1.0E-01	480.9%			
2-AMINO-4,6	DINITROTOLUENE	6.9E-03	1.2E-03	474.7%			
2,4-DINITRO	TOLUENE	5.6E-03	1.0E-03	458.0%			
2,4,6-TRINIT	ROTOLUENE	9.7E-03	3.6E-03	170.2%			
2,6-DINITRO	TOLUENE	1.7E-03	1.0E-03	66.0%			
TRICHLORC	ETHYLENE (TCE)	6.8E-03	5.0E-03	35.6%			
1,4-DIOXANI	E (P-DIOXANE)	8.1E-03	7.7E-03	4.8%			

Note: Top COCs by toxicity were determined by examining a representative concentration for each compound over the entire site. The compound representative concentrations are then compared with the chosen PRG for that compound, with the percentage exceedance from the PRG determining the compound's toxicity. All compounds above exceed the PRG.

Prevalence:

Contaminant of Concern	Class	Total Wells	Total Exceedances	Percent Exceedances	Total detects
HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	ORG	79	69	87.3%	78
4-AMINO-2,6-DINITROTOLUENE	ORG	79	63	79.7%	74
2-AMINO-4,6-DINITROTOLUENE	ORG	79	55	69.6%	69
2,4-DINITROTOLUENE	ORG	79	51	64.6%	59
2,4,6-TRINITROTOLUENE	ORG	79	32	40.5%	58
CHROMIUM, HEXAVALENT	MET	55	16	29.1%	53
2,6-DINITROTOLUENE	ORG	78	20	25.6%	34
TRICHLOROETHYLENE (TCE)	ORG	79	19	24.1%	66
1,4-DIOXANE (P-DIOXANE)	ORG	34	0	0.0%	7

Note: Top COCs by prevalence were determined by examining a representative concentration for each well location at the site. The total exceedances (values above the chosen PRGs) are compared to the total number of wells to determine the prevalence of the compound.

Mobility:

Contaminant of Concern	Kd
1,4-DIOXANE (P-DIOXANE)	0.000479
HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZI	0.00741
4-AMINO-2,6-DINITROTOLUENE	0.0985
2-AMINO-4,6-DINITROTOLUENE	0.0985
2,4,6-TRINITROTOLUENE	0.0985
2,6-DINITROTOLUENE	0.15
2,4-DINITROTOLUENE	0.15
TRICHLOROETHYLENE (TCE)	0.297
CHROMIUM, HEXAVALENT	14

TABLE 3 COC Assessment Southeast Sector

Project: Pantex SE	User Name: MV
Location: SouthEast	State: Texas

Note: Top COCs by mobility were determined by examining each detected compound in the dataset and comparing their mobilities (Koc's for organics, assume foc = 0.001, and Kd's for metals).

Contaminants of Concern (COC's)

HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE

2,4-DINITROTOLUENE

2-AMINO-4,6-DINITROTOLUENE

2,4,6-TRINITROTOLUENE

2,6-DINITROTOLUENE

TABLE 4 INVESTIGATION WELL TREND SUMMARY RESULTS SOUTHEAST SECTOR LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT Carson County, Texas

	n								r r	
WellName	Number of Samples (2000 - 2007)	Number of Detects	Percent Detection	Maximum Concentration [ug/L]	Maximum Above MSC?	Average Concentration [ug/L]	Average Above MSC?	Mann- Kendall Trend	Linear Regression Trend	Overall Trend Result
RDX Southeast										
PTX06-1002A	7	7	100%	48	Yes	39.9	Yes	S	S	s
PTX06-1003	7	6	86%	16	Yes	3.0	No	NT	NT	NT
PTX06-1005	8	8	100%	1,340	Yes	581	Yes	PD	PD	PD
PTX06-1010	8	6	75%	673	Yes	181	Yes	D	D	D
PTX06-1011	7	2	29%	50	Yes	7.3	No	NT	NT	NT
PTX06-1013	11	11	100%	12	Yes	8.4	Yes	I	1	-
PTX06-1014	14	14	100%	1,780	Yes	1210	Yes	I.	1	I
PTX06-1015	13	13	100%	689	Yes	366	Yes	I	1	I
PTX06-1023	12	12	100%	5	No	3.9	No	S	S	S
PTX06-1030	15	15	100%	2,080	Yes	1340	Yes	I	1	I
PTX06-1031	15	15	100%	671	Yes	331.0	Yes	I	1	Ι
PTX06-1034	13	7	54%	78	Yes	11.5	Yes	I	1	1
PTX06-1036	13	6	46%	2	No	0.6	No	1	1	I
PTX06-1037	5	5	100%	2,800	Yes	1860	Yes	S	PD	S
PTX06-1038	14	14	100%	1,380	Yes	795	Yes	D	D	D
PTX06-1039A	11	11	100%	1,360	Yes	702	Yes	PD	D	D
PTX06-1040	14	14	100%	1,260	Yes	874	Yes	NT	NT	NT
PTX06-1041	12	12	100%	1,300	Yes	885	Yes	NT	D	S
PTX06-1042	16	16	100%	2,650	Yes	1020	Yes	S	PD	S
PTX06-1045	12	12	100%	2,120	Yes	1160	Yes	I I	1	U U
PTX06-1046	17	17	100%	952	Yes	692	Yes			1
PTX06-1047A	14	5	36%	450	Yes	66	Yes	i	i	i
PTX06-1052	15	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX06-1052	17	2	12%	7	No	0.5	No	NT	PI	PI
PTX06-1069	11	1	9%	0.1	No	0.1	No	S	s	ND*
PTX06-1088	8	8	100%	417	Yes	319	Yes	PD	S	S
PTX06-1088 PTX06-1095A	3	1	33%	0.6	No	0.3	No	N/A	N/A	N/A
PTX06-1095A	10	10	100%	1,210	Yes	288	Yes	PD	D	D
PTX08-1102 PTX08-1002	7	7	100%	277	Yes	132	Yes	PD	D	D
	11	2	18%	0.1	No	0.1	No	S	PD	S
PTX08-1008	7	4						NT	NT	NT
PTX08-1009 4ADNT Southeau		4	57%	30	Yes	2.6	No	IN I	NI	NI
	7	6	86%	1	No	0.619	No	S	NT	S
PTX06-1002A PTX06-1003	7	2	29%	0.31	No	0.13	No	S	PD	S
PTX06-1003 PTX06-1005	8	2 5	29% 63%		Yes	2.37		PI	NT	PI
				7.5			Yes			
PTX06-1010	8	3	38%	3.7	Yes	1.1	No	D	D	D
PTX06-1011	7	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX06-1013	11	1	9%	0.094	No	0.0995	No	S	1	ND*
PTX06-1014	13	12	92%	32.9	Yes	8.94	Yes	D	S	PD
PTX06-1015	13	13	100%	22.3	Yes	14.7	Yes	S	D	PD
PTX06-1023	12	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX06-1030	13	12	92%	10.1	Yes	5	Yes		PI	PI
PTX06-1031	14	14	100%	4.7	Yes	2.66	Yes	1	1	1
PTX06-1034	15	14	93%	3.9	Yes	1.81	Yes	1	1	
PTX06-1036	13	10	77%	1.1	No	0.387	No	D	D	D
PTX06-1037	5	5	100%	22	Yes	18.1	Yes	S	S	S
PTX06-1038	14	12	86%	32.9	Yes	13.3	Yes	NT	NT	NT
PTX06-1039A	11	9	82%	21.1	Yes	8.47	Yes	PI	NT	PI
PTX06-1040	14	14	100%	29.2	Yes	17.8	Yes	S	S	S
PTX06-1041	12	12	100%	28.4	Yes	18.2	Yes	NT	NT	NT
PTX06-1042	16	11	69%	10.1	Yes	3.32	Yes	I	I	I
PTX06-1045	11	7	64%	12.9	Yes	4.7	Yes	NT	NT	NT
PTX06-1046	17	11	65%	15.8	Yes	5.16	Yes	I	I	I
			36%	9.3	Yes	1.86	Yes	I	I	I
PTX06-1047A	14	5			NI-	0.1	No	ND		ND
	15	0	0%	0.1	No	0.1	110	ND	ND	ND
PTX06-1047A			76%	0.1 6.3	Yes	1.64	Yes	I.	1	I
PTX06-1047A PTX06-1052	15	0		-		-	-			
PTX06-1047A PTX06-1052 PTX06-1053	15 17	0 13	76%	6.3	Yes	1.64	Yes	I.	1	I
PTX06-1047A PTX06-1052 PTX06-1053 PTX06-1069	15 17 11	0 13 0	76% 0%	6.3 0.1	Yes No	1.64 0.1	Yes No	I ND	I ND	I ND
PTX06-1047A PTX06-1052 PTX06-1053 PTX06-1069 PTX06-1088	15 17 11 8	0 13 0 6	76% 0% 75%	6.3 0.1 4.6	Yes No Yes	1.64 0.1 1.98	Yes No Yes	I ND NT	I ND PI	I ND PI
PTX06-1047A PTX06-1052 PTX06-1053 PTX06-1069 PTX06-1088 PTX06-1095A	15 17 11 8 3	0 13 0 6 0	76% 0% 75% 0%	6.3 0.1 4.6 0.1	Yes No Yes No	1.64 0.1 1.98 0.1	Yes No Yes No	I ND NT ND	I ND PI ND	I ND PI ND
PTX06-1047A PTX06-1052 PTX06-1053 PTX06-1069 PTX06-1088 PTX06-1095A PTX06-1102	15 17 11 8 3 9	0 13 0 6 0 7	76% 0% 75% 0% 78%	6.3 0.1 4.6 0.1 8.51	Yes No Yes No Yes	1.64 0.1 1.98 0.1 3.35	Yes No Yes No Yes	I ND ND S	I ND PI ND NT	I ND PI ND S

Notes

Trends were evaluated for data collected between January 2000 and May 2007.
 Number of Samples is the number of samples for the compound at this location during 2000 - 2007.

Number of Samples is the number of samples where the compound at this location during 2000 - 2007.
 Number of Detects is the number of samples where the compound was detected at this location.
 The maximum concentration for the COC is the maximum analytical result analyzed between 2000 and 2007. Results above MSCs are indicated in Bold.
 MSCs = Medium Specific Concentration from Corrective Measure Study. RDX = 7.7 ug/L; 4ADNT = 1.2 ug/L.
 Maximum and average concentrations for wells with no detections are representative of the detection limits for the analyses.
 D = Decreasing: PD = Probably Decreasing; S = Stable; PI = Probably Increasing; I = Increasing; I/A = Insufficient Data to determine trend; NT = No Trend; ND = well has all non-detect results for COC; ND* = one detection for compound, may be unaffected.

7. Mann-Kendall trend results are illustrated on Figure 3.

TABLE 5 WELL REDUNDANCY ANALYSIS SUMMARY RESULTS SOUTHEAST SECTOR

LONG-TERM MONITORING OPTIMIZATION

PANTEX PLANT Carson County, Texas

	RDX Average	Preliminary	4ADNT Average	Preliminary	Recommendation After
Well Name	Slope Factor	Statistical Result	Slope Factor	Statistical Result	Qualitative Review
PTX06-1002A	0.31	Retain	0.34	Retain	Retain
PTX06-1003	0.88	Retain	1.00	Retain	Retain
PTX06-1005	0.20	Retain	0.19	Retain	Retain
PTX06-1010	0.39	Retain	1.00	Retain	Retain
PTX06-1011	0.64	Retain	1.00	Retain	Retain
PTX06-1013	0.59	Retain	1.00	Retain	Retain
PTX06-1014	0.04	Retain	0.09	Eliminate	Eliminate
					Retain, Consider future
PTX06-1015	0.05	Retain	0.14	Eliminate	elimination
PTX06-1023	0.45	Retain	1.00	Retain	Retain
PTX06-1030	0.07	Retain	0.13	Eliminate	Retain
PTX06-1031	0.03	Retain	0.25	Retain	Retain
PTX06-1034	0.32	Retain	0.14	Retain	Retain
PTX06-1036	0.51	Retain	0.72	Retain	Retain
PTX06-1037	N/A	Retain	N/A	Retain	Retain
					Retain, Consider future
PTX06-1038	0.04	Retain	0.05	Eliminate	elimination
					Retain, Consider future
PTX06-1039A	0.00	Eliminate	0.11	Retain	elimination
PTX06-1040	0.09	Retain	0.28	Retain	Retain
PTX06-1041	0.06	Retain	0.20	Retain	Retain
					Retain, Consider future
PTX06-1042	0.04	Retain	0.09	Eliminate	elimination
PTX06-1045	0.12	Retain	0.12	Retain	Retain
PTX06-1046	0.09	Retain	0.15	Retain	Retain
PTX06-1047A	0.12	Retain	0.08	Retain	Retain
PTX06-1052	1.00	Retain	1.00	Retain	Retain
PTX06-1053	0.66	Retain	0.82	Retain	Retain
PTX06-1069	1.00	Retain	1.00	Retain	Retain
PTX06-1088	0.30	Retain	0.51	Retain	Retain
PTX06-1095A	1.00	Retain	1.00	Retain	Retain
PTX06-1102	0.41	Retain	N/A	Retain	Retain
PTX08-1002	0.27	Retain	0.49	Retain	Retain
PTX08-1008	1.00	Retain	0.49	Retain	Retain
PTX08-1009	0.92	Retain	0.33	Retain	Retain

Notes:

 Slope Factor (SF) is the difference between the actual concentration and the concentration estimated from nearby wells normalized by the actual concentration. Slope factors close to 1 show the concentrations cannot be estimated from the adjacent wells, and the well is important in the network.

- 2. Slope factors were calculated using data collected between July 2005 and May 2007.
- 3. Well locations with slope factors below 0.3 and area ratios below 0.8 were considered for elimination.

4. N/A = Locations with insufficient data between 2005 - 2007 to calculate a slope factor.

5. Locations identified for future elimination should be reviewed, and possibly removed from the program after 5 years of data collection.

GSI Job No. G-3262 Issued: 12-FEB-2008 Page 1 of 2

TABLE 6 SAMPLING FREQUENCY ANALYSIS RESULTS SOUTHEAST SECTOR

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT Carson County, Texas

Well Name	Recent Concentration Rate of Change [mg/yr]	Recent MK Trend (2005- 2007)	Sampling Frequency Based on Recent Data (2005-2007)	Overall Concentration Rate of Change [mg/yr]	Overall MK Trend (2000 - 2007)	Sampling Frequency Based on Overall Data (2000 - 2007)	MAROS Recommended Sampling Frequency	Current Sampling Frequency
RDX Southeast	Sector							
PTX06-1002A		N/A		-9.85E-07	S	Quarterly	Quarterly	Annual
PTX06-1003		N/A		-3.56E-06	NT	Annual	Annual	Annual
PTX06-1005		N/A		-4.16E-04	PD	Quarterly	Quarterly	Annual
PTX06-1010		N/A		-2.26E-04	D	Quarterly	Quarterly	Annual
PTX06-1011		N/A		8.34E-06	NT	Quarterly	Quarterly	Annual
PTX06-1013		N/A		1.32E-06	I.	Quarterly	Quarterly	Annual
PTX06-1014	3.06E-04	S	Quarterly	2.30E-04	I	Quarterly	Quarterly	Semiannual
PTX06-1015	-3.23E-04	S	Annual	2.39E-04	I.	Quarterly	Quarterly	Semiannual
PTX06-1023	-4.84E-06	S	Annual	-3.68E-07	S	Annual	Annual	Semiannual
PTX06-1030	-2.47E-04	S	Annual	2.89E-04	I	Quarterly	Quarterly	Semiannual
PTX06-1031	1.03E-04	S	Quarterly	2.63E-04	I	Quarterly	Quarterly	Semiannual
PTX06-1034	-9.48E-05	S	Annual	1.45E-05	I	Semiannual	Semiannual	Semiannual
PTX06-1036	-4.28E-07	S	Annual	9.17E-07	I	Annual	Biennial	Semiannual
PTX06-1037*		N/A			S			Dry
PTX06-1038	2.44E-04	NT	Quarterly	-1.13E-04	D	Annual	Quarterly	Semiannual
PTX06-1039A		N/A		-1.51E-04	PD	Quarterly	Quarterly	Annual
PTX06-1040	-2.06E-04	S	Annual	4.17E-05	NT	Quarterly	Quarterly	Semiannual
PTX06-1041		N/A		-2.93E-06	NT	Quarterly	Quarterly	Annual
PTX06-1042	-5.64E-04	S	Annual	-1.83E-04	S	Annual	Annual	Semiannual
PTX06-1045*		N/A		4.56E-04	I	Quarterly	Quarterly	Annual
PTX06-1046	5.74E-05	NT	Quarterly	1.70E-04	I	Quarterly	Quarterly	Semiannual
PTX06-1047A		N/A		1.46E-04	I.	Quarterly	Quarterly	Annual
PTX06-1052		ND	Annual	-3.62E-39	ND	Annual	Biennial	Semiannual
PTX06-1053	-1.10E-05	NT	Annual	5.65E-07	NT	Annual	Annual	Semiannual
PTX06-1069		N/A		-5.04E-09	S	Annual	Annual	Semiannual
PTX06-1088		N/A		-4.63E-05	PD	Quarterly	Quarterly	Annual
PTX06-1095A		N/A			N/A		Annual	New Location
PTX06-1102*		N/A		-1.86E-04	PD	Quarterly	Quarterly	Biennial
PTX08-1002		N/A		-5.81E-05	PD	Quarterly	Quarterly	Annual
PTX08-1008		S	Annual	-6.51E-09	S	Annual	Biennial	Semiannual
PTX08-1009		N/A		2.06E-06	NT	Quarterly	Quarterly	Annual

See Notes End of Table

GSI Job No. G-3262 Issued: 12-FEB-2008 Page 2 of 2

TABLE 6 SAMPLING FREQUENCY ANALYSIS RESULTS SOUTHEAST SECTOR

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT Carson County, Texas

Well Name	Recent Concentration Rate of Change [mg/yr]	Recent MK Trend (2005- 2007)	Sampling Frequency Based on Recent Data (2005-2007)	Overall Concentration Rate of Change [mg/yr]	Overall MK Trend (2000 - 2007)	Sampling Frequency Based on Overall Data (2000 - 2007)	MAROS Recommended Sampling Frequency	Current Sampling Frequency
4ADNT Southea	ast Sector							
PTX06-1002A		N/A		5.68E-08	S	Semiannual	Semiannual	Annual
PTX06-1003		N/A		-4.91E-08	S	Annual	Annual	Annual
PTX06-1005		N/A		1.18E-06	PI	Quarterly	Quarterly	Annual
PTX06-1010		N/A		-1.43E-06	D	Annual	Annual	Annual
PTX06-1011		N/A		0.00E+00	S	Annual	Annual	Annual
PTX06-1013		N/A		1.36E-10	S	Annual	Annual	Annual
PTX06-1014	-9.81E-06	S	Annual	-3.31E-06	D	Annual	Annual	Semiannual
PTX06-1015	-6.14E-06	S	Annual	-3.77E-07	S	Annual	Annual	Semiannual
PTX06-1023	0.00E+00	S	Annual	0.00E+00	S	Annual	Biennial	Semiannual
PTX06-1030	1.18E-05	I	Quarterly	2.53E-06	I	Semiannual	Quarterly	Semiannual
PTX06-1031	-9.84E-07	S	Annual	7.25E-07	I	Annual	Annual	Semiannual
PTX06-1034	-5.49E-07	S	Annual	1.58E-06	I	Annual	Annual	Semiannual
PTX06-1036	-8.09E-09	S	Annual	-3.82E-07	D	Annual	Biennial	Semiannual
PTX06-1037*		N/A			N/A			Dry
PTX06-1038	1.09E-05	NT	Quarterly	2.76E-06	NT	Semiannual	Quarterly	Semiannual
PTX06-1039A		N/A		3.82E-06	PI	Quarterly	Quarterly	Annual
PTX06-1040	2.79E-06	NT	Semiannual	-1.38E-06	S	Annual	Semiannual	Semiannual
PTX06-1041		N/A		7.15E-08	NT	Quarterly	Quarterly	Annual
PTX06-1042	-3.42E-06	S	Annual	2.39E-06	I	Semiannual	Semiannual	Semiannual
PTX06-1045*		N/A		3.34E-06	NT	Quarterly	Quarterly	Annual
PTX06-1046	1.22E-05	NT	Quarterly	3.22E-06	I	Semiannual	Quarterly	Semiannual
PTX06-1047A		N/A		3.55E-06	I	Quarterly	Quarterly	Annual
PTX06-1052	0.00E+00	S	Annual	-3.62E-39	S	Annual	Biennial	Semiannual
PTX06-1053	-6.32E-06	D	Annual	1.63E-06	I	Annual	Annual	Semiannual
PTX06-1069		N/A		-4.26E-39	S	Annual	Annual	Semiannual
PTX06-1088		N/A		3.08E-06	NT	Quarterly	Quarterly	Annual
PTX06-1095A		N/A		0.00E+00	N/A	Annual	Annual	New Location
PTX06-1102*								Biennial
PTX08-1002		N/A		-1.22E-07	NT	Annual	Annual	Annual
PTX08-1008	-7.85E-07	D	Annual	1.43E-08	S	Annual	Biennial	Semiannual
PTX08-1009		N/A		1.12E-06	NT	Quarterly	Quarterly	Annual

Notes:

1. 'Recent' concentration rate of change and MK trends are calculated from data collected 2005 - 2007.

2. MK = Mann Kendall Trend; D = Decreasing, PD = Probably Decreasing, S = Stable, NT = No Trend, PI = Probably Increasing,

I = Increasing, ND = Non-detect, N/A = insufficient data, less than 4 sample events for time interval indicated.

3. Overall rate of change and MK trend are for the full data set (2000-2007) for each well.

4. MAROS Recommended Sampling Frequency is the sampling frequency from MAROS based on both recent and overall trends.

5. Current sampling frequency is the approximate sampling frequency currently implemented.

6. The final recommended sampling frequency is listed on Table 7, and is based on a combination of qualitative and statistical evaluations.

7. * = Well is dry or intermittently dry. Dry wells should be evaluated periodically for saturation.

TABLE 7

FINAL RECOMMENDED MONITORING NETWORK SOUTHEAST SECTOR

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT Carson County, Texas

		RDX			4ADNT			
Well Name	Percent Detection	Mann Kendall Trend	Average SF	Percent Detection	Mann Kendall Trend	Average SF	Sampling Recommendation	Rationale
Southeast Sect					_			
PTX06-1002A PTX06-1003	100% 86%	S NT	0.31	86% 29%	S S	0.34	Semiannual Annual	Source monitoring for RDX Downgradient from source, spatially important to track reduction in concentrations.
PTX06-1005	100%	PD	0.20	63%	PI	0.19	Semiannual	Downgradient from source, spatially important to track reduction in concentrations. Source area monitors decreasing
PTX06-1010	75%	D	0.39	38%	D	1.00	Semiannual	trends
PTX06-1011	29%	NT	0.64	0%	ND	1.00	Annual	Monitors near TCE plume, near variable groundwater flow direction. Monitors northern edge of Southeast
PTX06-1013	100%	Ι	0.59	9%	S	1.00	Semiannual	Sector near Playa1.
PTX06-1014	100%	I	0.04	92%	D	0.09	Eliminate	Redundant with PTX06-1030, PTX06 1042.
PTX06-1015	100%	I	0.05	100%	S	0.14	Semiannual	Downgradient, center of plume, monitors movement of COCs toward edge of unit.
PTX06-1023	100%	S	0.45	0%	ND	1.00	Annual	Delineates northern most area of Southeast Sector near Playa 1.
PTX06-1030	100%	I	0.07	92%	I	0.13	Semiannual	Easternmost well, monitors edge of plume before unit pinches out.
PTX06-1031	100%	I	0.03	100%	I	0.25	Semiannual	Easternmost well, monitors edge of plume before unit pinches out.
PTX06-1034	54%	I	0.32	93%	I	0.14	Semiannual	Easternmost well, monitors edge of plume before unit pinches out.
PTX06-1036	46%	I	0.51	77%	D	0.72	Annual	Delineates southern edge of plume, monitors movement of COCs from south of Zones 11 and 12 toward southern edge of perched unit.
PTX06-1037	100%	S	N/A	100%	s	N/A	Annual HG	Well possibly dry, perform hydrogeologic monitoring to confirm saturation status.
PTX06-1038	100%	D	0.04	86%	NT	0.05	Semiannual	Monitors decreasing trends along DOE property line, consider removing from program after 4 more sampling events.
PTX06-1039A	100%	PD	0.00	82%	PI	0.11	Semiannual	Monitors DOE property boundary, no wells east of this point, may be redundant, but more data required.
								Monitors high concentrations along DOE property line, no wells in saturated perched groundwater east
PTX06-1040	100%	NT	0.09	100%	S	0.28	Semiannual	of this point.
PTX06-1041	100%	NT	0.06	100%	NT	0.20	Semiannual	Monitors high concentrations along DOE property line, no wells in saturated perched groundwater east of this point.
PTX06-1042	100%	S	0.04	69%	I	0.09	Annual	Monitors high concentrations along DOE property line, no wells in saturated perched groundwater east of this point.

See Notes End of Table

TABLE 7

FINAL RECOMMENDED MONITORING NETWORK SOUTHEAST SECTOR

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT Carson County, Texas

		RDX			4ADNT			
Well Name	Percent Detection	Mann Kendall Trend	Average SF	Percent Detection	Mann Kendall Trend	Average SF	Sampling Recommendation	Rationale
Southeast Sect	or							
PTX06-1045	100%	Ι	0.12	64%	NT	0.12	Annual HG	Well possibly dry, perform hydrogeologic monitoring to confirm saturation status.
PTX06-1046	100%	Ι	0.09	65%	Ι	0.15	Semiannual	Monitors southern extent of perched unit, high and increasing concentrations of COCs.
PTX06-1047A	36%	I	0.12	36%	I	0.08	Semiannual	Monitors southern extent of perched unit, high and increasing concentrations of COCs.
PTX06-1052	0%	ND	1.00	0%	ND	1.00	Annual	Monitors unaffected groundwater south of source.
PTX06-1053	12%	NT	0.66	76%	Ι	0.82	Semiannual	Delineates 4ADNT plume to south, near groundwater flow divide, early warning for movement of COCs to south/southeastern extent of perched groundwater.
PTX06-1069	9%	S	1.00	0%	ND	1.00	Annual	Delineation of northern sector of perched groundwater.
PTX06-1088	100%	PD	0.30	75%	NT	0.51	Semiannual	Source area monitors decreasing trends, important for 1,3,5-trinitrobenzene.
PTX06-1095A	33%	N/A	1.00	0%	ND	1.00	Semiannual	Downgradient from source, spatially important to track reduction in concentrations.
PTX06-1102	100%	PD	0.41	78%	S	N/A	Annual HG	Well possibly dry, perform hydrogeologic monitoring to confirm saturation status.
PTX08-1002	100%	PD	0.27	57%	NT	0.49	Semiannual	Monitors decreasing source area near Playa 1
PTX08-1008 PTX08-1009	18% 57%	S NT	1.00 0.92	82% 43%	S NT	0.49 0.33	Semiannual Semiannual	Chromium monitoring location Chromium monitoring location

Notes:

HG = Well is either dry or intermittently dry; monitor well at indicated frequency for saturation.
 D = Decreasing; PD = Probably Decreasing; S = Stable; PI = Probably Increasing; I = Increasing; N/A = Insufficient Data to determine result;

Decompany, D = well has all non-detect results for COC indicated.
 Mann-Kendall trends for 2000 - 2007 are shown.

SF = Stoppe Factor. SF close to 1 indicates well provides unique information in network. SF near 0 indicates well may be redundant.
 Percent detection is the ratio of the number of detections to the number of samples for the compound indicated multiplied by 100.

MAROS COC Assessment

Project:	Pantex SW	User Name: MV					
Location:	Southwest Area	State	: Texas				
<u>Toxicity:</u> Contaminan	t of Concern	Representative Concentration (mg/L)	PRG (mg/L)	Percent Above PRG			
CHROMIUM	, HEXAVALENT	3.6E-01	1.0E-01	260.9%			
4-AMINO-2,6	DINITROTOLUENE	2.0E-03	1.2E-03	67.7%			
PERCHLOR	ATE	3.4E-02	2.6E-02	31.9%			
TRICHLORC	ETHYLENE (TCE)	6.1E-03	5.0E-03	21.4%			

Note: Top COCs by toxicity were determined by examining a representative concentration for each compound over the entire site. The compound representative concentrations are then compared with the chosen PRG for that compound, with the percentage exceedance from the PRG determining the compound's toxicity. All compounds above exceed the PRG.

Prevalence:

Contaminant of Concern	Class	Total Wells	Total Exceedances	Percent Exceedances	Total detects
TRICHLOROETHYLENE (TCE)	ORG	29	7	24.1%	14
PERCHLORATE	INO	29	6	20.7%	14
4-AMINO-2,6-DINITROTOLUENE	ORG	29	4	13.8%	11
CHROMIUM, HEXAVALENT	MET	29	2	6.9%	23

Note: Top COCs by prevalence were determined by examining a representative concentration for each well location at the site. The total exceedances (values above the chosen PRGs) are compared to the total number of wells to determine the prevalence of the compound.

Mobility:

Contaminant of Concern	Kd
PERCHLORATE	
4-AMINO-2,6-DINITROTOLUENE	0.0985
TRICHLOROETHYLENE (TCE)	0.297
CHROMIUM, HEXAVALENT	14

Note: Top COCs by mobility were determined by examining each detected compound in the dataset and comparing their mobilities (Koc's for organics, assume foc = 0.001, and Kd's for metals).

Contaminants of Concern (COC's)

TRICHLOROETHYLENE (TCE) PERCHLORATE 4-AMINO-2,6-DINITROTOLUENE HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE CHROMIUM, HEXAVALENT GSI Job No. G3262 Issued: 12-FEB-2008 Page 1 of 2

TABLE 9 INVESTIGATION WELL TREND SUMMARY RESULTS SOUTHWEST SECTOR LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT Carson, Texas

Well Name	Number of Samples (2000 - 2007)	Number of Detects	Percent Detection	Maximum Concentration [ug/L]	Maximum Above MSC?	Average Concentration [ug/L]	Average Above MSC?	Mann- Kendall Trend	Linear Regression Trend	Overall Trend Result
1114-MW4	6	6	100%	14.7	Yes	8.97	Yes	PI		PI
PTX06-1006	3	1	33%	0.5	No	0.5	No	N/A	N/A	N/A
PTX06-1007	6	5	83%	0.8	No	0.5	No	S	S	S
PTX06-1007	5	5	100%	28.8	Yes	15.1	Yes	S	S	s
	-	-				-			-	-
PTX06-1012	12	4	33%	2.3	No	0.8	No	PI	1	PI
PTX06-1035	10	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX06-1036	13	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX06-1049	11	1	9%	1.5	No	0.6	No	NT	PI	ND*
PTX06-1052	15	7	47%	1.4	No	0.7	No	D	D	D
PTX06-1053	17	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX06-1077A	6	5	83%	15.2	Yes	10.3	Yes	NT	NT	NT
PTX06-1085	4	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX06-1086	8	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX06-1087	4	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX07-1P02	7	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX07-1P03	4	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX07-1P06	10	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX07-1Q01	5	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX07-1Q02	5	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX07-1Q03	7	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX08-1001	7	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX08-1003	6	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX08-1005	6	6	100%	126.0	Yes	57.1	Yes	NT	NT	NT
PTX08-1006	8	8	100%	8	Yes	5.3	Yes	S	S	S
PTX08-1007	4	4	100%	16.0	Yes	13.6	Yes	S	S	S
PTX08-1008	11	3	27%	1	No	0.5	No	NT	PI	PI
PTX08-1009	8	6	75%	2.1	No	1.0	No	NT	NT	NT
PTX10-1008	6	0	0%	0.5	No	0.5	No	ND	ND	ND
PTX10-1013	7	7	100%	116.0	Yes	46.5	Yes	NT	PI	PI
Perchlorate Sou	uthwest Sector									
1114-MW4	5	5	100%	336	Yes	236	Yes	D	D	D
PTX06-1006	4	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX06-1007	6	6	100%	128	Yes	111	Yes	S	S	S
PTX06-1008	4	1	25%	5.04	No	2.39	No	NT	NT	ND*
PTX06-1012	12	4	33%	43.8	Yes	12.6	No	1	1	1
PTX06-1035	10	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX06-1036	10	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX06-1049	9	0 0	0%	1.5	No	1.5	No	ND	ND	ND
	-	-	7%		-	-		S	PD	ND*
PTX06-1052	14	1		4.57	No	1.72	No		D	D
PTX06-1053	16 4	4	25%	5.72	No	2.35 3.48	No	D NT	PI	PI
PTX06-1077A			50%	5.99	No		No			
PTX06-1085	4	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX06-1086	8	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX06-1087	4	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX07-1P02	7	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX07-1P03	4	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX07-1P06	9	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX07-1Q01	5	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX07-1Q02	5	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX07-1Q03	7	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX08-1001	7	7	100%	70.5	Yes	61.1	Yes	NT	PI	PI
PTX08-1003	7	7	100%	38.3	Yes	31.2	Yes	D	D	D
PTX08-1005	5	5	100%	386	Yes	230	Yes	D	D	D
PTX08-1006	9	9	100%	408	Yes	178	Yes	D	D	D
PTX08-1007	3	2	67%	12.3	No	7	No	N/A	N/A	N/A
PTX08-1008	12	1	8%	5.05	No	1.8	No	S	D	ND*
PTX08-1009	7	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX10-1008	6	0	0%	1.5	No	1.5	No	ND	ND	ND
PTX10-1008	7	2	29%	6.79	No	2.75	No	NT	ND	ND
1710-1013		2	23/0	0.19		2.10	INU	IN I	111	INT

PTX10-1013 See Notes End of Table

GSI Job No. G3262 Issued: 12-FEB-2008 Page 2 of 2

TABLE 9 INVESTIGATION WELL TREND SUMMARY RESULTS SOUTHWEST SECTOR

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT

Carson, Texas

Well Name	Number of Samples (2000 - 2007)	Number of Detects	Percent Detection	Maximum Concentration [ug/L]	Maximum Above MSC?	Average Concentration [ug/L]	Average Above MSC?	Mann- Kendall Trend	Linear Regression Trend	Overall Trend Result
4ADNT Southwe				r						•
1114-MW4	3	1	33%	0.545	No	0.248	No	N/A	N/A	N/A
PTX06-1006	3	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX06-1007	3	3	100%	14.8	Yes	11.7	Yes	N/A	N/A	N/A
PTX06-1008	4	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX06-1012	12	1	8%	0.079	No	0.0977	No	NT	NT	ND*
PTX06-1035	10	8	80%	48.5	Yes	5.65	Yes	NT	NT	NT
PTX06-1036	13	10	77%	1.1	No	0.387	No	D	D	D
PTX06-1049	11	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX06-1052	15	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX06-1053	17	13	76%	6.3	Yes	1.64	Yes	I	1	I.
PTX06-1077A	4	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX06-1085	4	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX06-1086	8	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX06-1087	4	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX07-1P02	6	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX07-1P03	4	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX07-1P06	10	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX07-1Q01	5	1	20%	0.072	No	0.1	No	S	S	ND*
PTX07-1Q02	5	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX07-1Q03	7	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX08-1001	7	1	14%	2.4	Yes	0.4	No	NT	PD	ND*
PTX08-1003	6	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX08-1005	6	6	100%	2.3	Yes	1.5	Yes	D	D	D
PTX08-1006	8	8	100%	47.8	Yes	38.1	Yes	NT	NT	NT
PTX08-1007	2	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX08-1008	11	9	82%	1.8	Yes	0.5	No	S	S	S
PTX08-1009	7	3	43%	3.02	Yes	0.8	No	NT	I I	PI
PTX10-1008	6	0	0%	0.1	No	0.1	No	ND	ND	ND
PTX10-1013	6	0	0%	0.1	No	0.1	No	ND	ND	ND

Notes

1. Trends were evaluated for data collected between January 2000 and May 2007.

2. Number of Samples is the number of samples for the compound at this location.

Number of Detects is the number of samples where the compound was detected at this location.

3. Maximum Result is the maximum concentration for the COC analyzed between 2000 and 2007. Results above MSCs are indicated in Bold.

4. Screening level from Corrective Measure Study. TCE = 5 ug/L; Perchlorate = 26 ug/L; 4ADNT = 1.2 ug/L.

5. Maximum and average concentrations for wells with no detections are representative of the detection limits for the analyses.

6. D = Decreasing; PD = Probably Decreasing; S = Stable; PI = Probably Increasing; I = Increasing; N/A = Insufficient Data to determine trend;

NT = No Trend; ND = well has all non-detect results for COC, ND* = one detection for compound, may be unaffected.

TABLE 10 WELL REDUNDANCY ANALYSIS SUMMARY RESULTS SOUTHWEST SECTOR

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT

Carson County, Texas

Well Name	Perchlorate Average Slope Factor	Preliminary Statistical Result	TCE Average Slope Factor	Preliminary Statistical Result	Recommendation After Qualitative Review
	1		0		
1114-MW4	0.49	Retain	0.43	Retain	Retain
					Eliminate (redundant with
PTX06-1006	N/A		N/A		PTX06-1011)
PTX06-1007	0.74	Retain	0.65	Retain	Retain
PTX06-1008	N/A		N/A		Retain (TCE)
PTX06-1012	0.89	Retain	0.39	Retain	Retain
PTX06-1035	0.83	Retain	0.33	Retain	Retain
PTX06-1036*	0.00	Retain	0.05	Retain	Retain (SE)
PTX06-1049	0.74	Retain	0.22	Retain	Retain
PTX06-1052*	0.00	Retain	0.17	Retain	Retain (SE)
PTX06-1053*	0.64	Retain	0.16	Retain	Retain (SE)
PTX06-1077A	N/A		0.56	Retain	Retain
PTX06-1085	N/A		N/A		Retain
PTX06-1086	0.79	Retain	0.41	Retain	Retain
PTX06-1087	N/A		N/A		Eliminate
PTX07-1P02	0.89	Retain	0.26	Retain	Eliminate
PTX07-1P03	N/A		N/A		Eliminate
PTX07-1P06	0.88	Retain	0.03	Retain	Retain
PTX07-1Q01	0.86	Retain	0.77	Retain	Retain
PTX07-1Q02	0.36	Retain	0.24	Retain	Eliminate
PTX07-1Q03	0.89	Retain	0.60	Retain	Retain
PTX08-1001	0.75	Retain	0.25	Retain	Retain
PTX08-1003	0.29	Retain	0.43	Retain	Retain
PTX08-1005	N/A	Retain	0.62	Retain	Retain
PTX08-1006	0.25	Retain	0.08	Eliminate	Retain (4ADNT)
PTX08-1007	N/A	Retain	N/A		Retain (TCE)
PTX08-1008*	0.74	Retain	0.18	Retain	Retain (SE)
PTX08-1009*	0.91	Retain	0.29	Retain	Retain (SE)
PTX10-1008	N/A		N/A		Eliminate
PTX10-1013	0.87	Retain	0.78	Retain	Retain

Notes:

 Slope Factor (SF) is the difference between the actual concentration and the concentration estimated from nearby wells normalized by the actual concentration. Slope factors close to 1 show the concentrations cannot be estimated from the nearby wells, and the well is important in the network.

- 2. Slope factors were calculated using data collected between July 2005 and May 2007.
- 3. Well locations with slope factors below 0.3 and area ratios below 0.8 were considered for elimination. () = well retained for Southeast (SE) or for other COC indicated.
- 4. N/A = Locations with insufficient data between 2005 2007 to calculate a slope factor.
- 5. Wells recommended for elimination are not recommended for plugging and abandonment, but should be retained for hydrogeologic monitoring.
- 6. * = Well included in Southeast network, recommendation based on COCs from Southeast Sector.

TABLE 11 SAMPLING FREQUENCY ANALYSIS RESULTS SOUTHWEST SECTOR

LONG-TERM MONITORING OPTIMIZATION

PANTEX PLANT Carson County, Texas

				······				
Well Name	Recent Concentration Rate of Change [mg/yr]	Recent MK Trend (2005- 2007)	Sampling Frequency Based on Recent Data (2005-2007)	Overall Concentration Rate of Change [mg/yr]	Overall MK Trend (2000 - 2007)	Sampling Frequency Based on Overall Data (2000 - 2007)	MAROS Recommended Sampling Frequency	Current Sampling Frequency
TCE Southwest	t Sector							
1114-MW4	6.52E-06	NT	Annual	5.62E-06	PI	Annual	Annual	Annual
PTX06-1006		N/A			N/A		N/A	Not Sampled
PTX06-1007		N/A	Annual	-7.70E-08	S	Annual	Annual	Annual
PTX06-1008		N/A	Semiannual	-3.60E-06	S	Semiannual	Semiannual	Annual (to 2004)
PTX06-1012	1.80E-06	PI	Annual	6.12E-07	PI	Annual	Biennial	Semiannual
PTX06-1035	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Semiannual
PTX06-1036	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Semiannual
PTX06-1049	2.85E-07	NT	Annual	1.49E-07	NT	Annual	Biennial	Annual
PTX06-1052	-6.16E-08	S	Annual	-2.97E-07	D	Annual	Biennial	Semiannual
PTX06-1053	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Semiannual
PTX06-1077A		N/A	Quarterly	4.61E-06	NT	Quarterly	Quarterly	Annual
PTX06-1085		ND	Annual	0.00E+00	ND	Annual	Annual	Not Sampled
PTX06-1086	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Annual
PTX06-1087		ND	Annual	0.00E+00	ND	Annual	Annual	Not Sampled
PTX07-1P02	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Annual
PTX07-1P03		ND			ND		N/A	Not Sampled
PTX07-1P06		ND	Annual	0.00E+00	ND	Annual	Annual	Annual
PTX07-1Q01		ND	Annual	0.00E+00	ND	Annual	Annual	Annual
PTX07-1Q02		ND	Annual	0.00E+00	ND	Annual	Annual	Biennial
PTX07-1Q03	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Annual
PTX08-1001	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Annual
PTX08-1003		ND	Annual	0.00E+00	ND	Annual	Annual	Annual
PTX08-1005		N/A	Quarterly	1.97E-05	NT	Quarterly	Quarterly	Annual
PTX08-1006	1.56E-07	S	Annual	-1.07E-06	S	Annual	Annual	Annual
PTX08-1007		N/A			N/A		N/A	Not Sampled
PTX08-1008	1.12E-07	NT	Annual	5.63E-08	NT	Annual	Biennial	Semiannual
PTX08-1009	1.05E-06	NT	Annual	1.90E-07	NT	Annual	Biennial	Annual
PTX10-1008		ND	Annual	0.00E+00	ND	Annual	Annual	Not Sampled
PTX10-1013		N/A	Quarterly	2.53E-05	NT	Quarterly	Quarterly	Annual

See Notes End of Table

TABLE 11 SAMPLING FREQUENCY ANALYSIS RESULTS SOUTHWEST SECTOR

LONG-TERM MONITORING OPTIMIZATION

PANTEX PLANT Carson County, Texas

				Carson County, re	Auo			
	Recent Concentration Rate of	Recent MK	Sampling Frequency Based on	Overall Concentration	Overall MK	Sampling Frequency Based on	MAROS Recommended	Current
	Change	Trend (2005-	Recent Data	Rate of Change	Trend	Overall Data	Sampling	Sampling
Well Name	[mg/yr]	2007)	(2005-2007)	[mg/yr]	(2000 - 2007)	(2000 - 2007)	Frequency	Frequency
Perchlorate So			(1	((
1114-MW4	-1.98E-04	D	Annual	-1.09E-04	D	Annual	Annual	Annual
PTX06-1006		ND			ND			Not Sampled
PTX06-1007		N/A	Quarterly	-5.84E-06	S	Quarterly	Quarterly	Annual
PTX06-1008		N/A	Annual	5.41E-07	NT	Annual	Annual	Annual (to 2004)
PTX06-1012	4.75E-05	PI	Annual	1.80E-05	I	Annual	Annual	Semiannual
PTX06-1035	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Semiannual
PTX06-1036	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Semiannual
PTX06-1049	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Annual
PTX06-1052	0.00E+00	S	Annual	-4.11E-07	S	Annual	Biennial	Semiannual
PTX06-1053	0.00E+00	S	Annual	-1.06E-06	D	Annual	Biennial	Semiannual
PTX06-1077A		N/A			N/A			Not Sampled
PTX06-1085		ND	Annual	0.00E+00	ND	Annual	Annual	Not Sampled
PTX06-1086	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Annual
PTX06-1087		ND	Annual	0.00E+00	ND	Annual	Annual	Not Sampled
PTX07-1P02	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Annual
PTX07-1P03		ND			ND		N/A	Not Sampled
PTX07-1P06	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Annual	Annual
PTX07-1Q01		ND	Annual	0.00E+00	ND	Annual	Annual	Annual
PTX07-1Q02		ND	Annual	0.00E+00	ND	Annual	Annual	Biennial
PTX07-1Q03	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Annual
PTX08-1001	4.63E-06	NT	Annual	1.12E-05	NT	Annual	Annual	Annual
PTX08-1003		N/A	Quarterly	-6.41E-06	D	Quarterly	Quarterly	Annual
PTX08-1005		N/A			N/A			Annual
PTX08-1006	1.79E-05	NT	Annual	-1.06E-04	D	Annual	Annual	Annual
PTX08-1007		ND			N/A		N/A	Not Sampled
PTX08-1008	0.00E+00	S	Annual	-7.34E-07	S	Annual	Biennial	Semiannual
PTX08-1009	0.00E+00	ND	Annual	0.00E+00	ND	Annual	Biennial	Annual
PTX10-1008		ND	Annual	0.00E+00	ND	Annual	Annual	Not Sampled
PTX10-1013		N/A	Annual	1.20E-06	NT	Annual	Annual	Annual

Notes:

1. 'Recent' concentration rate of change and MK trends are calculated from data collected 2005 - 2007.

2. MK = Mann Kendall Trend; D = Decreasing, PD = Probably Decreasing, S = Stable, NT = No Trend, PI = Probably Increasing,

I = Increasing, ND = Non-detect, N/A = insufficient data, less than 4 sample events for time interval indicated.

3. Overall rate of change and MK trend are for the full data set (2000-2007) for each well.

4. MAROS Recommended Sampling Frequency is the sampling frequency from MAROS based on both recent and overall trends.

5. Current sampling frequency is the approximate sampling frequency currently implemented.

6. The final recommended sampling frequency is based on a combination of qualitative and statistical evaluations.

7. * = Well is dry or intermittently dry. Dry wells should be evaluated periodically for saturation.

TABLE 12 FINAL RECOMMENDED MONITORING NETWORK SOUTHWEST SECTOR

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT Carson County, Texas

		TCE			Perchlorate			
Well Name	Percent Detection	Mann Kendall Trend	Average SF	Percent Detection	Mann Kendall Trend	Average SF	Sampling Recommendation	Rationale
Southwest Sect				•	•			
1114-MW4	100%	PI	0.43	100%	D	0.49	Semiannual	Monitors area of high TCE and Perchlorate, new well installation south of current location should require 2 yrs of semiannual monitoring, consider reducing to annual monitoring after 2 yrs.
	100%		0.40	10070		0.45	Germannuar	Largely non-detect, does not provide
PTX06-1006	33%	N/A	N/A	0%	ND	N/A	Eliminate	unique information.
PTX06-1007	83%	S	0.65	100%	s	0.74	Annual	Defines edge of perchlorate plume, stable trends.
PTX06-1008	100%	S	N/A	25%	NT	N/A	Annual	Defines western edge of TCE source; stable trends.
PTX06-1012	33%	PI	0.39	33%		0.89	Semiannual	Defines area of high concentrations for TCE and perchlorate, monitor semiannually after installation of new wells for approximately 3 years.
								Delineates plume to non-detect at
PTX06-1035 PTX06-1036*	0%	ND	0.33	0%	ND	0.83	Annual	southern edge. Delineates southern edge of Southeast Sector, monitors movement of COCs from south of Zones 11 and 12 toward southern edge of perched unit.
PTX06-1049	9%	NT	0.22	0%	ND	0.74	Biennial	Monitors far northern edge of Southwestern Sector, delineates some COCs to non-detect.
PTX06-1052*	47%	D	0.17	7%	s	0.00	Annual	Non-detect well, south of source area.
PTX06-1053*	0%	ND	0.16	25%	D	0.64	Semiannual	Delineates 4ADNT plume to south, near groundwater flow divide, early warning for movement of COCs to south/southeastern extent of perched groundwater.
PTX06-1077A	83%	NT	0.56	50%	NT	N/A	Annual	Delineated edge of perchlorate and TCE plume to west.
PTX06-1085	0%	ND	N/A	0%	ND	N/A	Biennial	Delineates perched unit to the west of Playa 2, largely non-detect for all COCs. Delineates western edge of plume,
PTX06-1086	0%	ND	0.41	0%	ND	0.79	Biennial	largely non-detect, reduce monitoring frequency.
PTX06-1087	0%	ND	N/A	0%	ND	N/A	Eliminate	area, delineates plume, keep for hydrogeologic monitoring.

See notes end of table.

TABLE 12 FINAL RECOMMENDED MONITORING NETWORK SOUTHWEST SECTOR

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT

Carson County, Texas

		TCE			Perchlorate			
Well Name	Percent Detection	Mann Kendall Trend	Average SF	Percent Detection	Mann Kendall Trend	Average SF	Sampling Recommendation	Rationale
Southwest Sect	or					1		
PTX07-1P02	0%	ND	0.26	0%	ND	0.89	Eliminate	Monitors area around SWMU 68c, largely non-detect and redundant with other locations.
PTX07-1P03	0%	ND	N/A	0%	ND	N/A	Eliminate	Monitors area around SWMU 68c, largely non-detect and redundant with other locations.
PTX07-1P06	0%	ND	0.03	0%	ND	0.88	Annual	Monitors area around SWMU 68c for RDX.
PTX07-1Q01	0%	ND	0.77	0%	ND	0.86	Biennial	Delineates Southwest Sector to southwest, retain as delineation point at reduced sampling frequency.
PTX07-1Q02	0%	ND	0.24	0%	ND	0.36	Eliminate	Redundant with PTX07-1Q01.
PTX07-1Q03	0%	ND	0.60	0%	ND	0.89	Biennial	Monitors upgradient of SWMU 68d, largely non-detect reduce frequency of sampling.
1 17.07 10200	070	ND	0.00	070	ND	0.00	Dictilia	or sampling.
PTX08-1001	0%	ND	0.25	100%	NT	0.75	Annual	Monitors northern edge of perchlorate plume.
PTX08-1003	0%	ND	0.43	100%	D	0.29	Annual	Monitors southern extent of perched unit, high and increasing concentrations of COCs.
PTX08-1005	100%	NT	0.62	100%	D	N/A	Semiannual	Defines area of high concentrations for TCE and perchlorate, monitor semiannually after installation of new wells for approximately 3 years.
PTX08-1006	100%	S	0.08	100%	D	0.25	Semiannual	Defines area of high concentrations for TCE and perchlorate, monitor semiannually after installation of new wells for approximately 3 years.
								Delineates edge of TCE plume,
PTX08-1007	100%	S	N/A	67%	N/A	N/A	Annual	largely stable trends.
PTX08-1008*	27%	NT	0.18	8%	S	0.74	Semiannual	Chromium monitoring location
PTX08-1009*	75%	NT	0.29	0%	ND	0.91	Semiannual	Chromium monitoring location Investigated groundwater at AOC 6b; non-detect so eliminate from
PTX10-1008	0%	ND	N/A	0%	ND	N/A	Eliminate	program.
PTX10-1013	100%	NT	0.78	29%	NT	0.87	Annual	Monitors decreasing source area near Playa 1

Notes:

1. HG = Well is either dry or intermittently dry; monitor well at indicated frequency for saturation.

D = Decreasing; D = Probably Decreasing; S = Stable; PI = Probably Increasing; I = Increasing; N/A = Insufficient Data to determine trend; NT = No Trend; ND = well has all non-detect results for COC indicated.
 Mann-Kendall trends for 2000 - 2007 are shown.

4. SF = Slope Factor. SF close to 1 indicates well provides unique information in network. SF near 0 indicates well may be redundant.

TABLE 13 INVESTIGATION WELL TREND SUMMARY RESULTS NORTH SECTOR

LONG-TERM MONITORING OPTIMIZATION

PANTEX PLANT Carson County, Texas

	n			r					r	
WellName	Number of Samples (2000 - 2007)	Number of Detects	Percent Detection	Maximum Concentration [ug/L]	Maximum Above MSC?	Average Concentration [ug/L]	Average Above MSC?	Mann- Kendall Trend	Linear Regression Trend	Overall Trend Result
RDX North Sector										
PTX04-1002	12	7	58%	0.4	No	0.2	No	S	S	S
PTX06-1013	10	10	100%	12	Yes	8.4	Yes	PI	1	PI
PTX06-1023	12	12	100%	5	No	3.9	No	S	S	S
PTX06-1050	10	10	100%	546	Yes	281	Yes	I	1	1
PTX06-1069	11	1	9%	0.2	No	0	No	S	S	ND*
PTX06-1114	2	1	50%	32	Yes	15.9	Yes	N/A	N/A	N/A
PTX07-1O01	6	6	100%	53	Yes	42	Yes	NT	NT	NT
PTX07-1002	3	3	100%	10	Yes	7	No	N/A	N/A	N/A
PTX07-1003	7	7	100%	39	Yes	31	Yes	S	PD	S
PTX07-1P02	6	5	83%	4	No	2	No	D	PD	D
PTX07-1P06	10	10	100%	109	Yes	41	Yes	D	D	D
PTX07-1R03	8	1	13%	0.2	No	0.1	No	NT	S	ND*
PTX08-1001	7	3	43%	0.9	No	0.3	No	NT	NT	NT
PTX08-1002	7	7	100%	277	Yes	132	Yes	PD	D	D
PTX08-1010	14	2	14%	0.3	No	0.1	No	S	S	S
4ADNT North See		-							· ·	
PTX01-1001	23	2	9%	0.20	No	0.11	No	NT	NT	NT
PTX06-1013	10	1	10%	0.09	No	0.10	No	NT	1	ND*
PTX06-1048A	15	5	33%	0.19	No	0.11	No	S	NT	S
PTX06-1050	10	8	80%	4.6	Yes	2.26	Yes	NT	NT	NT
PTX06-1114	2	2	100%	0.474	No	0.5	No	N/A	N/A	N/A
PTX07-1001	6	5	83%	0.74	No	0.5	No	NT	NT	NT
PTX07-1003	7	3	43%	0.1	No	0.1	No	NT	NT	NT
PTX08-1001	7	1	14%	2.4	Yes*	0.4	No	NT	PD	ND*
PTX08-1002	7	4	57%	2.8	Yes	0.6	No	NT	NT	NT
PTX-BEG3	13	11	85%	0.53	No	0.3	No	PI	NT	PI
Perchlorate Nort		10	070/					A 177	L	
PTX01-1001	24	16	67%	146	Yes	20.9	No	NT	NT	NT
PTX01-1002	24	2	8%	5.59	No	1.7	No	S	D	PD
PTX06-1048A	14	1	7%	4.93	No	1.76	No	S	S	ND*
TCE North Secto			0.001			1.0		DI		DI
PTX01-1001	25	15	60%	17	Yes	4.3	No	PI	1	PI
PTX01-1008	14	7	50%	7	Yes	1.3	No	D	D	D
PTX04-1001	7	7	100%	2	Yes	1.5	No	S	S	S
PTX04-1002	14	13	93%	1.4	No	0.9	No	D	D	D
PTX06-1048A	15	14	93%	4.1	No	2.9	No	D	S	PD
PTX06-1081	12	10	83%	0.8	No	0.6	No	PI	NT	PI
PTX07-1001	5	1	20%	0.4	No	0.5	No	S	PD	ND*
PTX07-1002	4	4	100%	1.0	No	0.9	No			
PTX07-1006	9	5	56%	0.9	No	0.6	No	NT	NT	NT
PTX08-1010	14	2	14%	0.4	No	0.5	No	NT		PI

Notes

1. Only wells where the COC indicated was detected are shown. Trends were evaluated for data collected between January 2000 and May 2007.

2. Number of Samples is the number of samples for the compound at this location during 2000 - 2007.

Number of Detects is the number of samples where the compound was detected at this location.

3. The maximum concentration for the COC is the maximum analytical result analyzed between 2000 and 2007. Results above MSCs are indicated in Bold.

4. MSCs = Medium Specific Concentration from Corrective Measure Study. RDX = 7.7 ug/L; 4ADNT = 1.2 ug/L; Cr = 100 ug/L; Perchlorate = 26ug/L.

5. No exceedances of Cr(VI) were found in North Sector wells.

6. D = Decreasing; PD = Probably Decreasing; S = Stable; PI = Probably Increasing; I = Increasing; N/A = Insufficient Data to determine trend;

NT = No Trend; ND = well has all non-detect results for COC; ND* = one detection for compound, may be unaffected.

GSI Job No. G-3262 Issued: 12-FEB-2008 Page 1 of 1

TABLE 14 SAMPLING FREQUENCY ANALYSIS RESULTS NORTH SECTOR

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT

Carson County, Texas

Well Name	Priority Constituent at Location	Overall Concentration Rate of Change [mg/yr]	Overall MK Trend (2000 - 2007)	Sampling Frequency Based on Overall Data (2000 - 2007)	MAROS Recommended Sampling Frequency	Current Sampling Frequency
TCE Southwest	Sector					
PTX01-1001	PERCHLORATE	-2.39E-06	NT	Annual	Biennial	Semiannual
PTX01-1002	PERCHLORATE	-2.53E-07	S	Annual	Biennial	Semiannual
PTX01-1008*	TCE	-1.51E-06	D	Annual	Biennial	Semiannual
PTX04-1001	TCE		S			Semiannual (to 2003)
PTX04-1002	26DNT	8.34E-08	NT	Annual	Annual	Semiannual
PTX06-1048A	TCE	-7.00E-07	D	Annual	Annual	Semiannual
PTX06-1050	RDX	7.74E-05	I.	Quarterly	Quarterly	Semiannual
PTX06-1071	Cr(VI)		N/A			Not Sampled
PTX06-1080	1,4-DIOXANE		N/A			Semiannual
PTX06-1081	26DNT	5.72E-08	NT	Annual	Biennial	Semiannual
PTX06-1114	RDX	0.00E+00	N/A	Quarterly	Quarterly	Semiannual
PTX07-1O01	RDX	1.69E-06	NT	Quarterly	Quarterly	Annual
PTX07-1O02	RDX	0.00E+00	N/A	Quarterly	Quarterly	Annual
PTX07-1O03	RDX	-2.90E-06	S	Annual	Annual	Annual
PTX07-1006*	26DNT	1.34E-08	NT	Annual	Annual	Semiannual (to 2004)
PTX07-1R03*	Cr(VI)		NT			Annual
PTX08-1010	1,4-DIOXANE		N/A			Semiannual
PTX-BEG3	4ADNT	-7.78E-08	S	Annual	Annual	Semiannual (to 2005)

Notes:

1. The priority chemical of concern (COC) at each well is the constituent detected at the highest level normalized by the MSC.

2. MK = Mann Kendall Trend; D = Decreasing, PD = Probably Decreasing, S = Stable, NT = No Trend, PI = Probably Increasing,

I = Increasing, ND = Non-detect, N/A = insufficient data, less than 4 sample events for time interval indicated.

3. Recent data frequency is the estimated sample frequency based on the recent trend.

4. Overall rate of change and MK trend are for the full data set (2000-2007) for each well.

5. MAROS Recommended Sampling Frequency is the sampling frequency from MAROS based on both recent and overall trends.

6. Current sampling frequency is the approximate sampling frequency currently implemented.

7. The final recommended sampling frequency is based on a combination of qualitative and statistical evaluations.

8. * = Well is dry or intermittently dry. Dry wells should be evaluated periodically for saturation.

TABLE 15

FINAL RECOMMENDED MONITORING NETWORK PERCHED NORTH SECTOR

LONG-TERM MONITORING OPTIMIZATION PANTEX PLANT Carson County, Texas

Well Name North Sector	Priority COPC	Maximum Above MSC?	Percent Detection	Below MSC (Student's T- Test)	Attained Cleanup to MSC (Sequential T- Test)	MK Trend	Sampling Frequency Recommendation	Rationale
PTX01-1001	PERCHLORATE	Yes	67%	NO	Continue Sampling	NT	Annual	Monitors area around SWMU 28-36, isolated perched groundwater in area, low level detections of perchlorate; reduced sampling frequency until statistically significant dataset is attained.
PTX01-1002	PERCHLORATE	No	8%	YES	Attained	S	Biennial	Monitors area around SWMU 28-36, isolated perched groundwater in area, perchlorate statistically below MSCs. Retain for infrequent monitoring.
PTX01-1008	TCE	Yes	50%	YES	Continue Sampling	D	Annual	Monitors area around SWMU 28-36, isolated perched groundwater in area, low level detections of TCE.
PTX04-1001	TCE	No	100%	N/C	N/C	S	Every 5 years	Detections of TCE below MSCs. Monitors SWMU 140, NE corner of DOE property. Sample for EPA 5 year review to confirm groundwater unaffected.
PTX04-1002	2,6DNT	No	8%	YES	Continue Sampling	NT	Biennial	Detections of TCE and RDX below MSCs. Monitors SWMU 140, NE corner of DOE property, reduced sampling frequency until statistically significant dataset is attained.
PTX06-1048A	TCE	No	93%	YES	Continue Sampling	D	Annual	Low level detections of TCE; Delineates north/northeast of perched unit.
PTX06-1050	RDX	Yes	100%	NO	Not Attained	Ι	Semiannual	Monitors area northwest of Playa 1, area of highest concentration in North Sector.
PTX06-1071	Cr(VI)	No	12%	N/C	N/C	NT	Every 5 years	Only one detection for Cr(VI), non- detect for other COPCs, Monitors SWMU 140, NE corner of DOE property. Sample for EPA 5 year review to confirm groundwater unaffected.
								No confirmed detections of COPCs, Monitors SWMU 140, NE corner of DOE property. Sample for EPA 5 year review to confirm groundwater
PTX06-1080	None 2.6DNT	No	8%	N/C YES	N/C Continue Sampling	ND NT	Every 5 years	unaffected. Only one detection of 26DNT, TCE detected below MSCs (but possibly increasing trend). Monitors SWMU 140, NE corner of DOE property. Sample to confirm TCE is not above MSCs.
PTX06-1114	RDX	Yes	50%	N/C	N/C	N/A	Semiannual	Monitors area between Playa 1 and PTX06-1050. Continue collecting data to evaluate RDX plume in this area.

See Notes End of Table

TABLE 15 FINAL RECOMMENDED MONITORING NETWORK PERCHED NORTH SECTOR

LONG-TERM MONITORING OPTIMIZATION

PANTEX PLANT Carson County, Texas

Well Name North Sector	Priority COPC	Maximum Above MSC?	Percent Detection	Below MSC (Student's T- Test)	Attained Cleanup to MSC (Sequential T- Test)	MK Trend	Sampling Frequency Recommendation	Rationale
PTX07-1O01	RDX	Yes	100%	NO	Not Attained	NT	Semiannual	Monitors SWMU 68b. Continue monitoring to characterize RDX plume in this area.
PTX07-1002	RDX	Yes	100%	N/C	N/C	N/A	Semiannual	Monitors SWMU 68b. Continue monitoring to characterize RDX plume in this area.
PTX07-1003	RDX	Yes	100%	NO	Not Attained	S	Annual	Monitors SWMU 68b. Continue monitoring to characterize RDX plume in this area.
PTX07-1O06	2,6DNT	No	20%	YES	Attained	NT	Biennial	Monitors SWMU 68b. Sporadic detections of COPCs below MSCs. Monitor to delineate RDX plume to south.
PTX07-1R03	Cr(VI)	No	50%	NO	Continue Sampling	PI	Every 5 years	Very low detections of Cr(VI), monitors SWMU 64, only well in vicinity
PTX08-1010	None	No		N/C	N/C		Every 5 years	Sporadic trace detections of COPCs, detections of HMX below MSCs, Monitors SWMU 140, NE corner of DOE property. Sample for EPA 5 year review to confirm groundwater unaffected.
PTX-BEG3	4ADNT	No	78%	YES	Continue Sampling	PI	Biennial	Detections of 4ADNT below MSCs near detection limits; Monitors SWMU 140, NE corner of DOE property. Retain to confirm groundwater below regulatory standards at property boundary.
PTX06-1082	None	No					Every 5 years	Monitor area to confirm no facility
PTX06-1083	None	No					Every 5 years	related COPCs are present.

Notes:

1. MSC = Medium Specific Concentration.

Mode = internation Specific Contentration.
 Student's T-test identifies groundwater statistically below MSC. N/C = Not calculated.
 Sequential T-test identifies groundwater that has statistically achieved cleanup with high confidence. Attained = groundwater has attained cleanup; Continue Sampling = dataset does not achieve statistical significance; Not Attained = groundwater above limit.
 D = Decreasing; PD = Probably Decreasing; S = Stable; PI = Probably Increasing; I = Increasing; N/A = Insufficient Data to determine trend; NT = No Trend; ND = well has all non-detect results for COC indicated; N/C not calculated.

5. Mann-Kendall trends for 2000 - 2007 are shown.

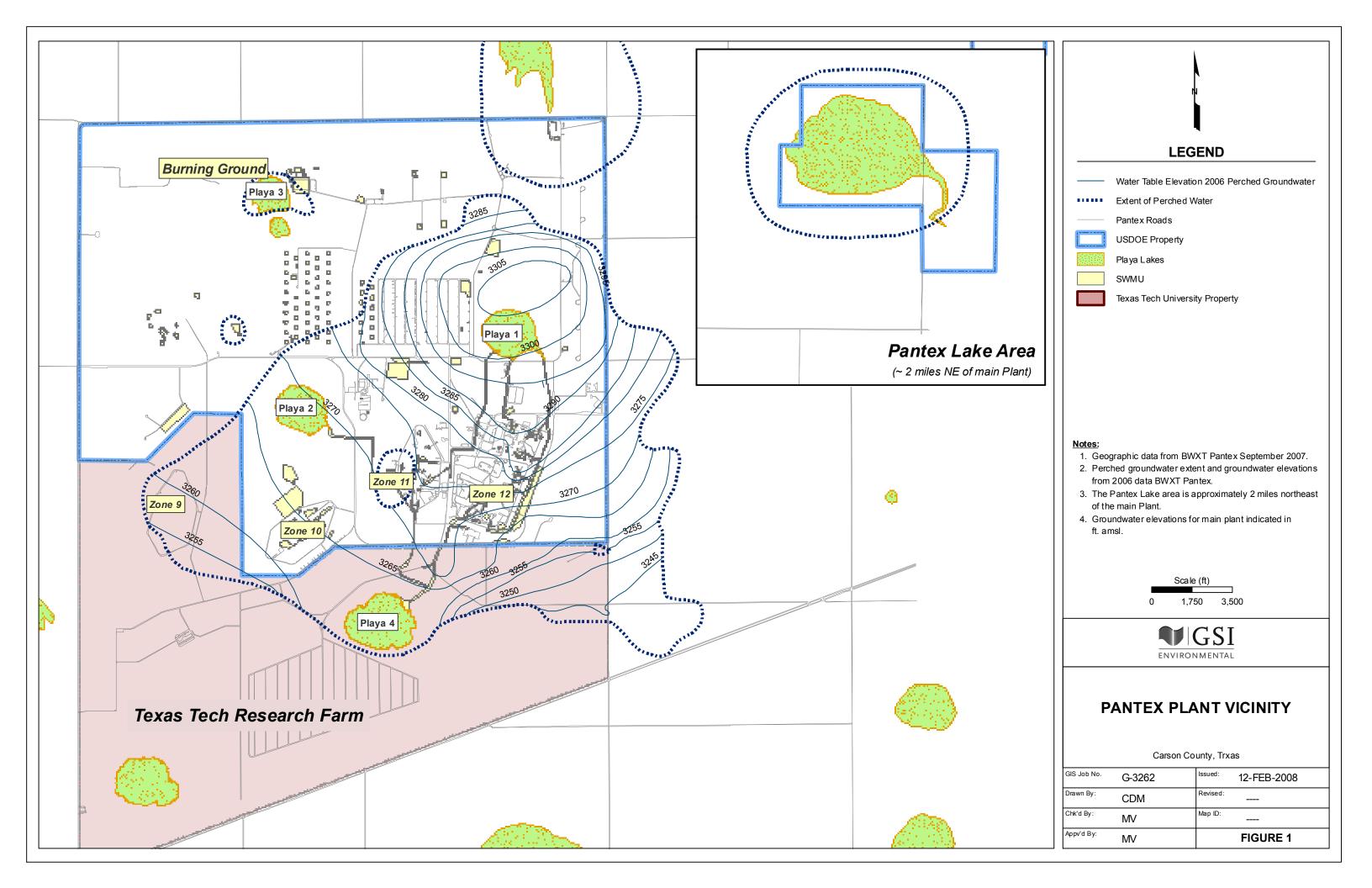
TABLE 16 SUMMARY MONITORING NETWORK RECOMMENDATIONS PERCHED GROUNDWATER

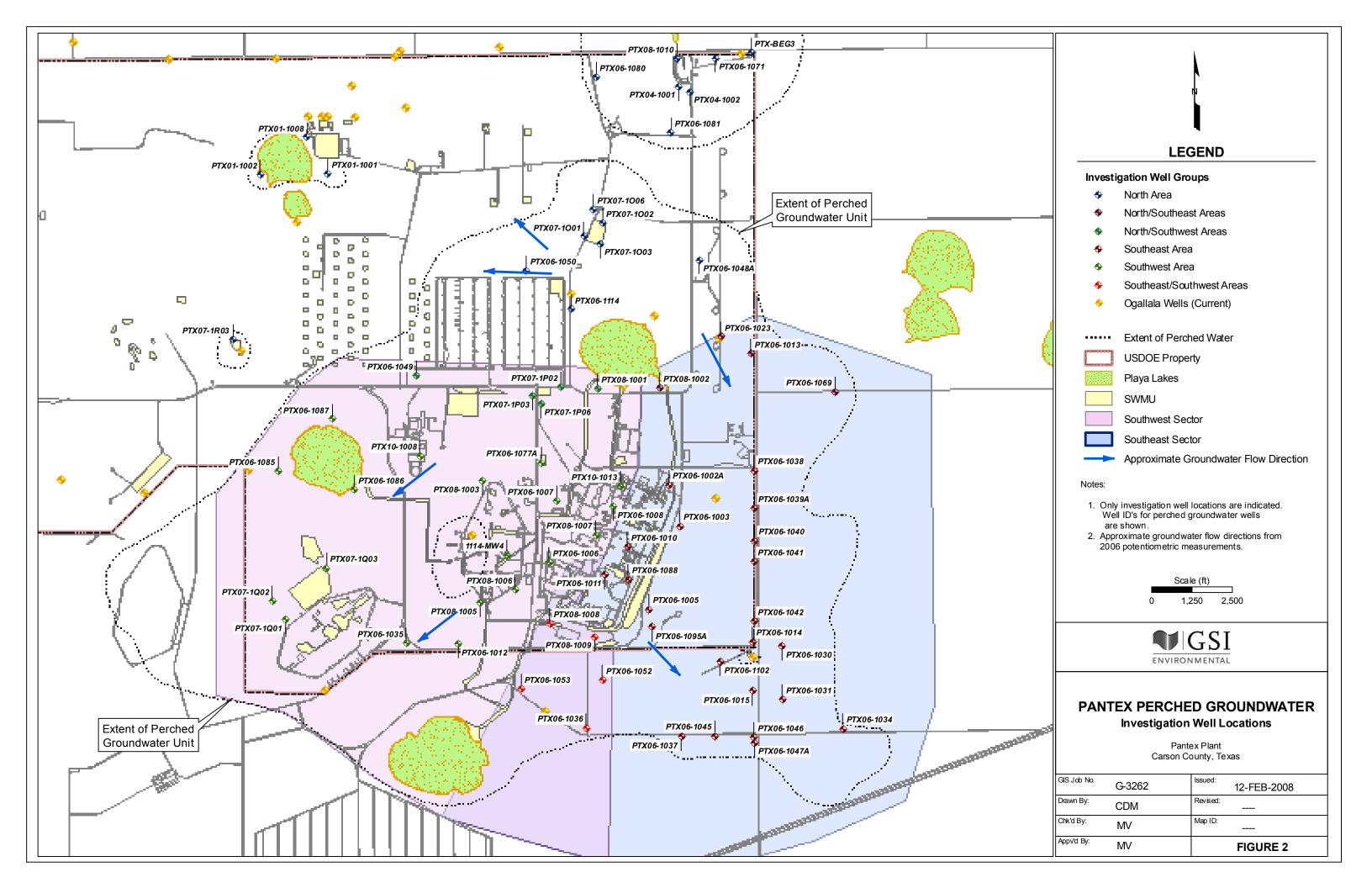
LONG-TERM MONITORING OPTIMIZATION

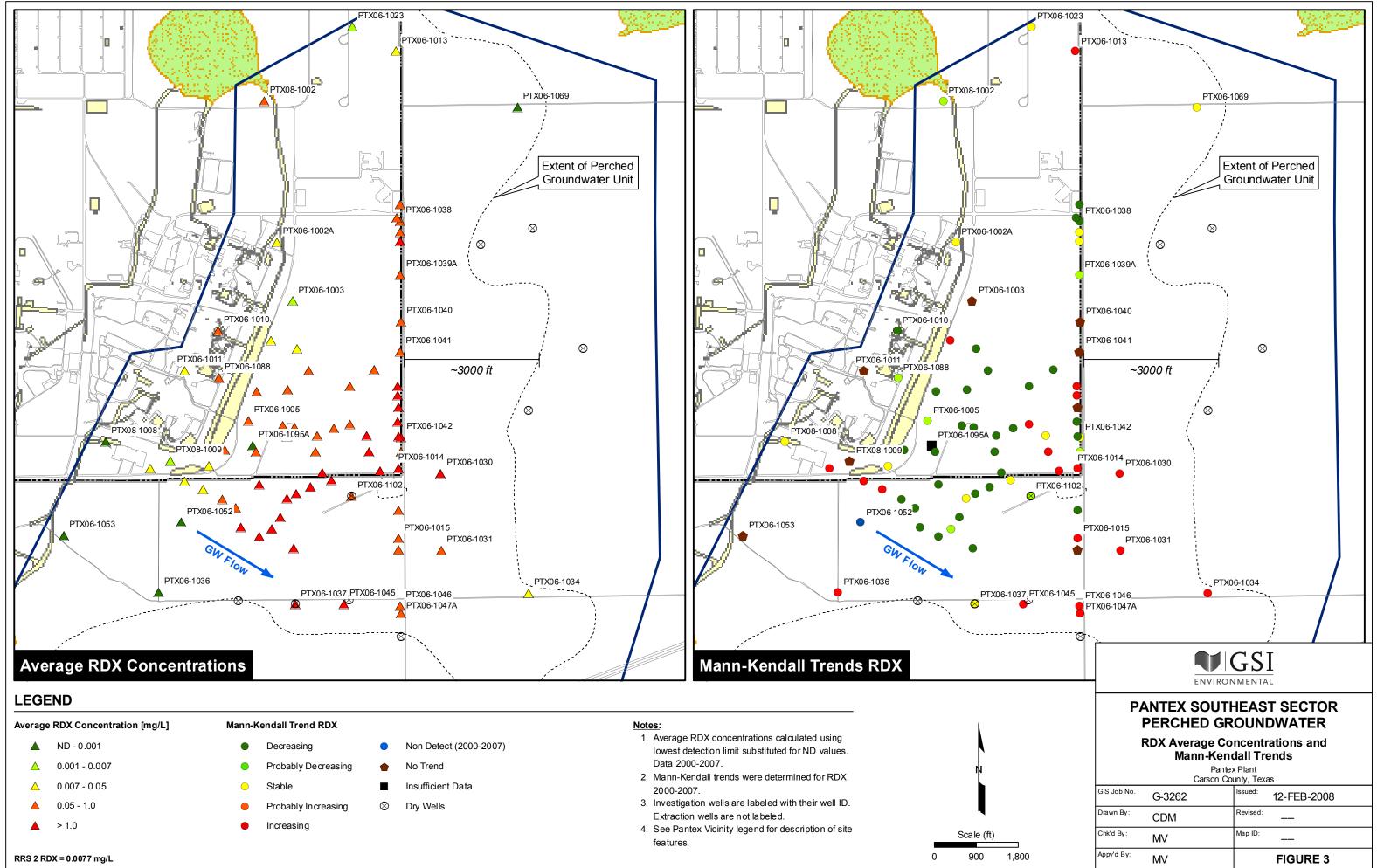
PANTEX PLANT Carson County, Texas

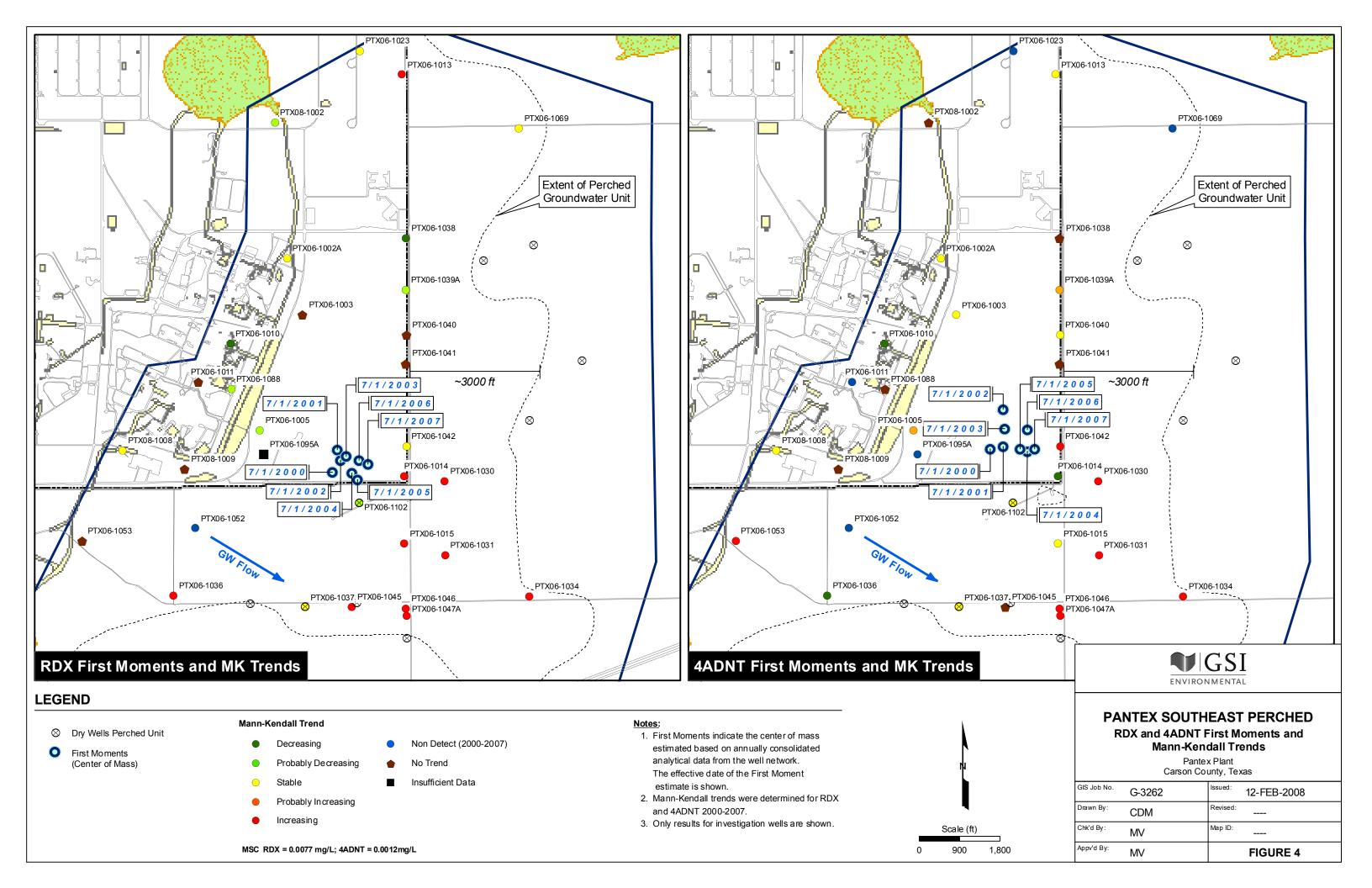
Investigation Well	ls Recommended f	or Semiannual N	lonitoring				
Southeast Sector	20	PTX06-1002A	PTX06-1005	PTX06-1010	PTX06-1013	PTX06-1015	PTX06-1030
		PTX06-1031	PTX06-1034	PTX06-1038	PTX06-1039A	PTX06-1040	PTX06-1041
		PTX06-1046	PTX06-1047A	PTX06-1053*	PTX06-1088	PTX06-1095A	PTX08-1002
		PTX08-1008*	PTX08-1009*				
Southwest Sector	4	1114-MW4	PTX06-1012	PTX08-1005	PTX08-1006		
North Sector	4	PTX06-1114	PTX06-1050	PTX07-1001	PTX07-1002		
Investigation Well	ls Recommended f	or Annual Monit	oring				
Southeast Sector	7	PTX06-1003	PTX06-1011	PTX06-1023	PTX06-1036	PTX06-1042	PTX06-1052
Southeast Sector	7	PTX06-1069					
Southwest Sector	9	PTX06-1007	PTX06-1008	PTX06-1035	PTX06-1077A	PTX07-1P06	PTX08-1001
Southwest Sector		PTX08-1003	PTX08-1007	PTX10-1013			
North Sector	4	PTX01-1001	PTX01-1008	PTX06-1048A	PTX07-1003		
Investigation Well	ls Recommended f	or Biennial or G	reater Monitoring	7			
Southeast Sector	0	None					
Southwest Sector	5	PTX06-1049	PTX06-1085	PTX06-1086	PTX07-1Q01	PTX07-1Q03	
North Sector	12	PTX04-1001	PTX06-1071	PTX06-1080	PTX07-1R03	PTX08-1010	PTX06-1083
North Sector		PTX06-1082	PTX01-1002	PTX04-1002	PTX06-1081	PTX07-1O06	PTX-BEG3
New Investigation	Wells Recommen	ded					
Southeast	2						
Southwest Sector	4						
North Sector	1						
Investigation Well	ls Recommended f	or Hydrogeologi	c Monitoring (dr	y or redundant lo	cations)		
Southeast	4	PTX06-1102	PTX06-1045	PTX06-1037	PTX06-1014		
Southwest Sector	6	PTX10-1008	PTX07-1Q02	PTX07-1P03	PTX07-1P02	PTX06-1087	PTX06-1006
North Sector	0	None					

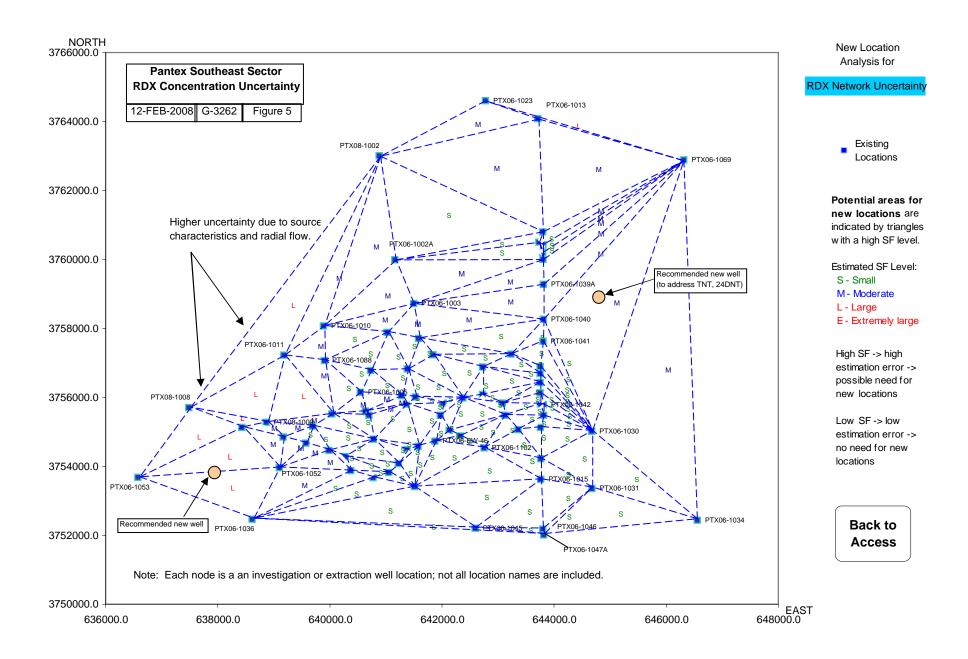
Notes: Lines of evidence supporting monitoring recommendations for each well are shown on Tables 7,12, and 15.

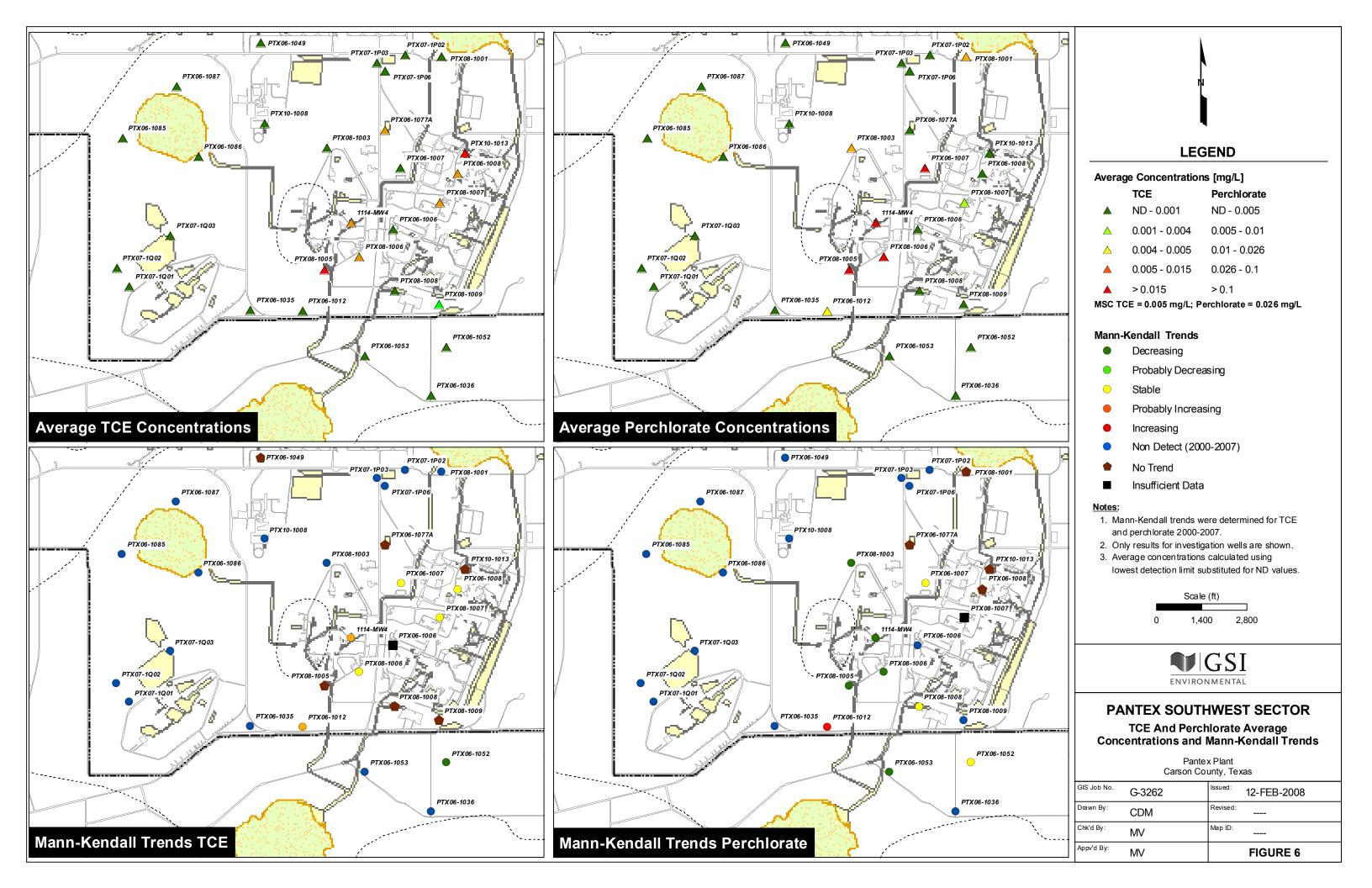

* Indicates well used to characterize more than one Sector.

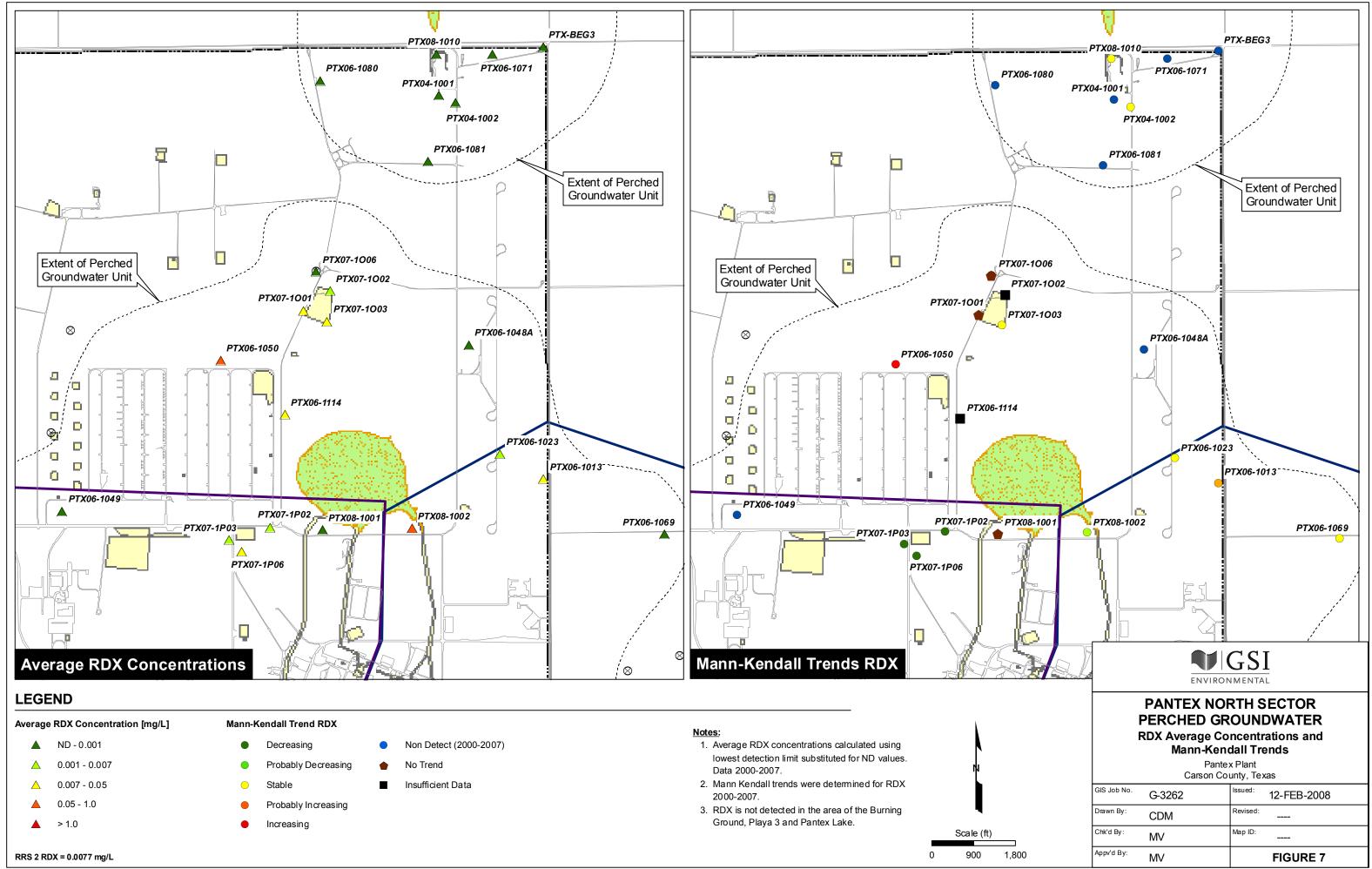

GROUNDWATER MONITORING NETWORK OPTIMIZATION Pantex Plant

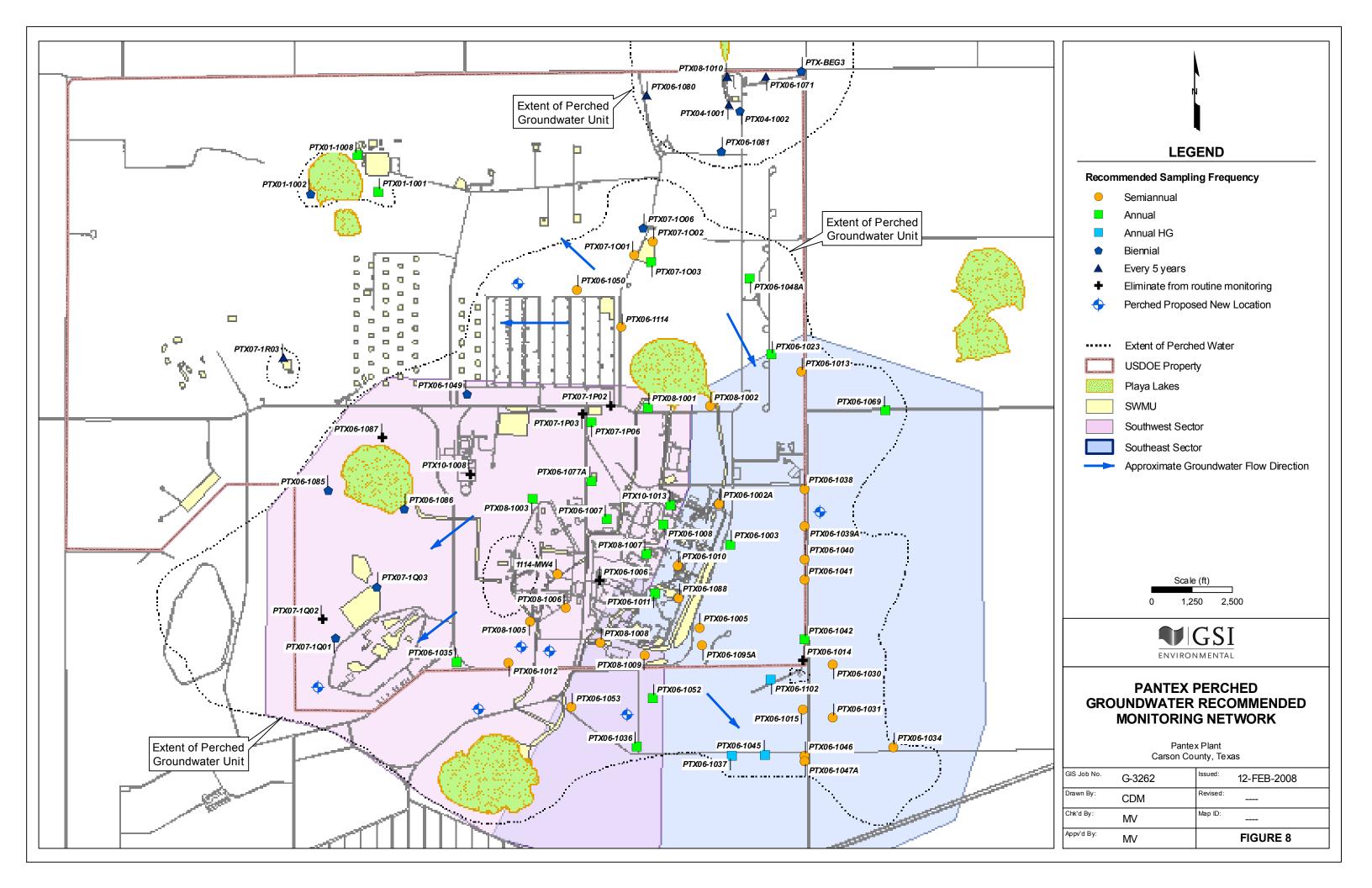

Carson County, Texas


FIGURES


Figure 1	Pantex Plant Vicinity
Figure 2	Pantex Perched Groundwater Investigation Well Locations
Figure 3	Pantex Southeast Sector Perched Groundwater: RDX Average Concentrations and Mann-Kendall Trends
Figure 4	Pantex Perched Groundwater Southeast Sector RDX and 4ADNT First Moments and Mann-Kendall Trends
Figure 5	Pantex Southeast Sector RDX Concentration Uncertainty
Figure 6	Pantex Perched Groundwater TCE and Perchlorate Average Concentrations and Mann-Kendall Trends
Figure 7	Pantex North Sector Perched Groundwater: RDX Average Concentrations and Mann-Kendall Trends
Figure 8	Pantex Perched Groundwater Final Recommended Monitoring Network







GROUNDWATER MONITORING NETWORK OPTIMIZATION Pantex Plant

APPENDIX A:

Carson County, Texas

MAROS 2.2 Methodology

APPENDIX A MAROS 2.2 METHODOLOGY

Contents

1.0 MAROS Conceptual Model	1
2.0 Data Management	2
3.0 Site Details	2
4.0 Constituent Selection	3
5.0 Data Consolidation	3
 6.0 Overview Statistics: Plume Trend Analysis	
 7.0 Detailed Statistics: Optimization Analysis	

Cited References

Tables

Table 1 Mann-Kendall Analysis Decision Matrix**Table 2** Linear Regression Analysis Decision Matrix

Figures

Figure 1 MAROS Decision Support Tool Flow Chart Figure 2 MAROS Overview Statistics Trend Analysis Methodology Figure 3 Decision Matrix for Determining Provisional Frequency

MAROS METHODOLOGY

MAROS is a collection of tools in one software package that is used in an explanatory, non-linear but linked fashion. The tool includes models, statistics, heuristic rules, and empirical relationships to assist the user in optimizing a groundwater monitoring network system. The final optimized network maintains adequate delineation while providing information on plume dynamics over time. Results generated from the software tool can be used to develop lines of evidence, which, in combination with expert opinion, can be used to inform regulatory decisions for safe and economical long-term monitoring of groundwater plumes. For a detailed description of the structure of the software and further utilities, refer to the MAROS 2.2 Manual (AFCEE, 2003; <u>http://www.gsinet.com/software/MAROS_V2_1Manual.pdf</u>) and Aziz et al., 2003.

1.0 MAROS Conceptual Model

In MAROS 2.2, two levels of analysis are used for optimizing long-term monitoring plans: 1) an overview statistical evaluation with interpretive trend analysis based on temporal trend analysis and plume stability information; and 2) a more detailed statistical optimization based on spatial and temporal redundancy reduction methods (see Figures A.1 and A.2 for further details). In general, the MAROS method applies to 2-D aquifers that have relatively simple site hydrogeology. However, for a multi-aquifer (3-D) system, the user has the option to apply the statistical analysis layer-by-layer.

The overview statistics or interpretive trend analysis assesses the general monitoring system category by considering individual well concentration trends, overall plume stability, hydrogeologic factors (e.g., seepage velocity, and current plume length), and the location of potential receptors (e.g., property boundaries or drinking water wells). The method relies on temporal trend analysis to assess plume stability, which is then used to determine the general monitoring system category. Since the monitoring system category is evaluated for both source and tail regions of the plume, the site wells are divided into two different zones: the source zone and the tail zone.

Source zone monitoring wells could include areas with non-aqueous phase liquids (NAPLs), contaminated vadose zone soils, and areas where aqueous-phase releases have been introduced into ground water. The source zone generally contains locations with historical high ground water concentrations of the COCs. The tail zone is usually the area downgradient of the contaminant source zone. Although this classification is a simplification of the plume conceptual model, this broadness makes the user aware on an individual well basis that the concentration trend results can have a different interpretation depending on the well location in and around the plume. The location and type of the individual wells allows further interpretation of the trend results, depending on what type of well is being analyzed (e.g., remediation well, leading plume edge well, or monitoring well). General recommendations for the monitoring network frequency and density are suggested based on heuristic rules applied to the source and tail trend results.

The detailed statistics level of analysis or sampling optimization consists of well redundancy and well sufficiency analyses using the Delaunay method, a sampling frequency analysis using the Modified Cost Effective Sampling (MCES) method and a

data sufficiency analysis including statistical power analysis. The well redundancy analysis is designed to minimize monitoring locations and the Modified CES method is designed to minimize the frequency of sampling. The data sufficiency analysis uses simple statistical methods to assess the sampling record to determine if groundwater concentrations are statistically below target levels and if the current monitoring network and record is sufficient in terms of evaluating concentrations at downgradient locations.

2.0 Data Management

In MAROS, ground water monitoring data can be imported from simple database-format Microsoft® Excel spreadsheets, Microsoft Access tables, previously created MAROS database archive files, or entered manually. Monitoring data interpretation in MAROS is based on historical analytical data from a consistent set of wells over a series of sampling events. The analytical data is composed of the well name, coordinate location, constituent, result, detection limit and associated data qualifiers. Statistical validity of the concentration trend analysis requires constraints on the minimum data input of at least four wells (ASTM 1998) in which COCs have been detected. Individual sampling locations need to include data from at least six most-recent sampling events. To ensure a meaningful comparison of COC concentrations over time and space, both data quality and data quantity need to be considered. Prior to statistical analysis, the user can consolidate irregularly sampled data or smooth data that might result from seasonal fluctuations or a change in site conditions. Because MAROS is a terminal analytical tool designed for long-term planning, impacts of seasonal variation in the water unit are treated on a broad scale, as they relate to multi-year trends.

Imported ground water monitoring data and the site-specific information entered in Site Details can be archived and exported as MAROS archive files. These archive files can be appended as new monitoring data becomes available, resulting in a dynamic long-term monitoring database that reflects the changing conditions at the site (i.e. biodegradation, compliance attainment, completion of remediation phase, etc.). For wells with a limited monitoring history, addition of information as it becomes available can change the frequency or identity of wells in the network.

3.0 Site Details

Information needed for the MAROS analysis includes site-specific parameters such as seepage velocity and current plume length and width. Information on the location of potential receptors relative to the source and tail regions of the plume is entered at this point. Part of the trend analysis methodology applied in MAROS focuses on where the monitoring well is located, therefore the user needs to divide site wells into two different zones: the source zone or the tail zone. Although this classification is a simplification of the well function, this broadness makes the user aware on an individual well basis that the concentration trend results can have a different interpretation depending on the well location in and around the plume. It is up to the user to make further interpretation of the trend results, depending on what type of well is being analyzed (e.g., remediation well, leading plume edge well, or monitoring well). The Site Details section of MAROS contains a preliminary map of well locations to confirm well coordinates.

4.0 Constituent Selection

A database with multiple COCs can be entered into the MAROS software. MAROS allows the analysis of up to 5 COCs concurrently and users can pick COCs from a list of compounds existing in the monitoring data. MAROS runs separate optimizations for each compound. For sites with a single source, the suggested strategy is to choose one to three priority COCs for the optimization. If, for example, the site contains multiple chlorinated volatile organic compounds (VOCs), the standard sample chemical analysis will evaluate all VOCs, so the sample locations and frequency should based on the concentration trends of the most prevalent, toxic or mobile compounds. If different chemical classes are present, such as metals and chlorinated VOCs, choose and evaluate the priority constituent in each chemical class.

MAROS includes a short module that provides recommendations on prioritizing COCs based on toxicity, prevalence, and mobility of the compound. The toxicity ranking is determined by examining a representative concentration for each compound for the entire site. The representative concentration is then compared to the screening level (PRG or MCL) for that compound and the COCs are ranked according to the representative concentrations percent exceedence of the screening level. The evaluation of prevalence is performed by determining a representative concentration for each well location and evaluating the total exceedences (values above screening levels) compared to the total number of wells. Compounds found over screening levels are ranked for mobility based on Kd (sorption partition coefficient). The MAROS COC assessment provides the relative ranking of each COC, but the user must choose which COCs are included in the analysis.

5.0 Data Consolidation

Typically, raw data from long-term monitoring have been measured irregularly in time or contain many non-detects, trace level results, and duplicates. Therefore, before the data can be further analyzed, raw data are filtered, consolidated, transformed, and possibly smoothed to allow for a consistent dataset meeting the minimum data requirements for statistical analysis mentioned previously.

MAROS allows users to specify the period of interest in which data will be consolidated (i.e., monthly, bi-monthly, quarterly, semi-annual, yearly, or a biennial basis). In computing the representative value when consolidating, one of four statistics can be used: median, geometric mean, mean, and maximum. Non-detects can be transformed to one half the reporting or method detection limit (DL), the DL, or a fraction of the DL. Trace level results can be represented by their actual values, one half of the DL, the DL, or a fraction of their actual values. Duplicates are reduced in MAROS by one of three ways: assigning the average, maximum, or first value. The reduced data for each COC and each well can be viewed as a time series in a graphical form on a linear or semi-log plot generated by the software.

6.0 Overview Statistics: Plume Trend Analysis

Within the MAROS software there are historical data analyses that support a conclusion about plume stability (e.g., increasing plume, etc.) through statistical trend analysis of

historical monitoring data. Plume stability results are assessed from time-series concentration data with the application of three statistical tools: Mann-Kendall Trend analysis, linear regression trend analysis and moment analysis. The two trend methods are used to estimate the concentration trend for each well and each COC based on a statistical trend analysis of concentrations versus time at each well. These trend analyses are then consolidated to give the user a general plume stability estimate and general monitoring frequency and density recommendations (see Figures A.1 through A.3 for further step-by-step details). Both qualitative and quantitative plume information can be gained by these evaluations of monitoring network historical data trends both spatially and temporally. The MAROS Overview Statistics are the foundation the user needs to make informed optimization decisions at the site. The Overview Statistics are designed to allow site personnel to develop a better understanding of the plume behavior over time and understand how the individual well concentration trends are spatially distributed within the plume. This step allows the user to gain information that will support a more informed decision to be made in the next level or detailed statistics optimization analysis.

6.1 Mann-Kendall Analysis

The Mann-Kendall test is a statistical procedure that is well suited for analyzing trends in data over time. The Mann-Kendall test can be viewed as a non-parametric test for zero slope of the first-order regression of time-ordered concentration data versus time. One advantage of the Mann-Kendall test is that it does not require any assumptions as to the statistical distribution of the data (e.g. normal, lognormal, etc.) and can be used with data sets which include irregular sampling intervals and missing data. The Mann-Kendall test is designed for analyzing a single groundwater constituent, multiple constituents are analyzed separately. The Mann-Kendall S statistic measures the trend in the data: positive values indicate an increase in concentrations over time and negative values indicate a decrease in concentrations over time. The strength of the trend is proportional to the magnitude of the Mann-Kendall statistic (i.e., a large value indicates a strong trend). The confidence in the trend is determined by consulting the S statistic and the sample size, n, in a Kendall probability table such as the one reported in Hollander and Wolfe (1973).

The concentration trend is determined for each well and each COC based on results of the S statistic, the confidence in the trend, and the Coefficient of Variation (COV). The decision matrix for this evaluation is shown in Table 3. A Mann-Kendall statistic that is greater than 0 combined with a confidence of greater than 95% is categorized as an Increasing trend while a Mann-Kendall statistic of less than 0 with a confidence between 90% and 95% is defined as a probably Increasing trend, and so on.

Depending on statistical indicators, the concentration trend is classified into six categories:

- Decreasing (D),
- Probably Decreasing (PD),
- Stable (S),
- No Trend (NT),
- Probably Increasing (PI)
- Increasing (I).

These trend estimates are then analyzed to identify the source and tail region overall stability category (see Figure 2 for further details).

6.2 Linear Regression Analysis

Linear Regression is a parametric statistical procedure that is typically used for analyzing trends in data over time. Using this type of analysis, a higher degree of scatter simply corresponds to a wider confidence interval about the average log-slope. Assuming the sign (i.e., positive or negative) of the estimated log-slope is correct, a level of confidence that the slope is not zero can be easily determined. Thus, despite a poor goodness of fit, the overall trend in the data may still be ascertained, where low levels of confidence correspond to "Stable" or "No Trend" conditions (depending on the degree of scatter) and higher levels of confidence indicate the stronger likelihood of a trend. The linear regression analysis is based on the first-order linear regression of the logtransformed concentration data versus time. The slope obtained from this logtransformed regression, the confidence level for this log-slope, and the COV of the untransformed data are used to determine the concentration trend. The decision matrix for this evaluation is shown in Table 4.

To estimate the confidence in the log-slope, the standard error of the log-slope is calculated. The coefficient of variation, defined as the standard deviation divided by the average, is used as a secondary measure of scatter to distinguish between "Stable" or "No Trend" conditions for negative slopes. The Linear Regression Analysis is designed for analyzing a single groundwater constituent; multiple constituents are analyzed separately, (up to five COCs simultaneously). For this evaluation, a decision matrix developed by Groundwater Services, Inc. is also used to determine the "Concentration Trend" category (plume stability) for each well.

Depending on statistical indicators, the concentration trend is classified into six categories:

- Decreasing (D),
- Probably Decreasing (PD),
- Stable (S),
- No Trend (NT),
- Probably Increasing (PI)
- Increasing (I).

The resulting confidence in the trend, together with the log-slope and the COV of the untransformed data, are used in the linear regression analysis decision matrix to determine the concentration trend. For example, a positive log-slope with a confidence of less than 90% is categorized as having No Trend whereas a negative log-slope is considered Stable if the COV is less than 1 and categorized as No Trend if the COV is greater than 1.

6.3 Overall Plume Analysis

General recommendations for the monitoring network frequency and density are suggested based on heuristic rules applied to the source and tail trend results.

Individual well trend results are consolidated and weighted by the MAROS according to user input, and the direction and strength of contaminant concentration trends in the source zone and tail zone for each COC are determined. Based on

- i) the consolidated trend analysis,
- ii) hydrogeologic factors (e.g., seepage velocity), and
- iii) location of potential receptors (e.g., wells, discharge points, or property boundaries),

the software suggests a general optimization plan for the current monitoring system in order to efficiently but effectively monitor groundwater in the future. A flow chart utilizing the trend analysis results and other site-specific parameters to form a general sampling frequency and well density recommendation is outlined in Figure 2. For example, a generic plan for a shrinking petroleum hydrocarbon plume (BTEX) in a slow hydrogeologic environment (silt) with no nearby receptors would entail minimal, low frequency sampling of just a few indicators. On the other hand, the generic plan for a chlorinated solvent plume in a fast hydrogeologic environment that is expanding but has very erratic concentrations over time would entail more extensive, higher frequency sampling. The generic plan is based on a heuristically derived algorithm for assessing future sampling duration, location and density that takes into consideration plume stability. For a detailed description of the heuristic rules used in the MAROS software, refer to the MAROS 2.2Manual (AFCEE, 2003).

6.4 Moment Analysis

An analysis of moments can help resolve plume trends, where the zeroth moment shows change in dissolved mass vs. time, the first moment shows the center of mass location vs. time, and the second moment shows the spread of the plume vs. time. Moment calculations can predict how the plume will change in the future if further statistical analysis is applied to the moments to identify a trend (in this case, Mann Kendall Trend Analysis is applied). The trend analysis of moments can be summarized as:

- Zeroth Moment: An estimate of the total mass of the constituent for each sample event
- First Moment: An estimate of the center of mass for each sample event
- Second Moment: An estimate of the spread of the plume around the center of mass

The role of moment analysis in MAROS is to provide a relative estimate of plume stability and condition within the context of results from other MAROS modules. The Moment analysis algorithms in MAROS are simple approximations of complex calculations and are meant to estimate changes in total mass, center of mass and spread of mass for complex well networks. The Moment Analysis module is sensitive to the number and arrangement of wells in each sampling event, so, changes in the number and identity of wells during monitoring events, and the parameters chosen for data consolidation can cause changes in the estimated moments.

Plume stability may vary by constituent, therefore the MAROS Moment analysis can be used to evaluate multiple COCs simultaneously which can be used to provide a quick way of comparing individual plume parameters to determine the size and movement of constituents relative to one another. Moment analysis in the MAROS software can also be used to assist the user in evaluating the impact on plume delineation in future sampling events by removing identified "redundant" wells from a long-term monitoring program (this analysis was not performed as part of this study, for more details on this application of moment analysis refer to the MAROS Users Manual (AFCEE, 2003)).

The **zeroth moment** is the sum of concentrations for all monitoring wells and is a mass estimate. The zeroth moment calculation can show high variability over time, largely due to the fluctuating concentrations at the most contaminated wells as well as varying monitoring well network. Plume analysis and delineation based exclusively on concentration can exhibit fluctuating temporal and spatial values. The mass estimate is also sensitive to the extent of the site monitoring well network over time. The zeroth moment trend over time is determined by using the Mann-Kendall Trend Methodology. The zeroth Moment trend test allows the user to understand how the plume mass has changed over time. Results for the trend include: Increasing, probably Increasing, no trend, stable, probably decreasing, decreasing or not applicable (N/A) (Insufficient Data). When considering the results of the zeroth moment trend, the following factors should be considered which could effect the calculation and interpretation of the plume mass over time: 1) Change in the spatial distribution of the wells sampled historically 2) Different wells sampled within the well network over time (addition and subtraction of well within the network). 3) Adequate versus inadequate delineation of the plume over time

The **first moment** estimates the center of mass, coordinates (Xc and Yc) for each sample event and COC. The changing center of mass locations indicate the movement of the center of mass over time. Whereas, the distance from the original source location to the center of mass locations indicate the movement of the center of mass over time relative to the original source. Calculation of the first moment normalizes the spread by the concentration indicating the center of mass. The first moment trend of the distance to the center of mass over time shows movement of the plume in relation to the original source location over time. Analysis of the movement of mass should be viewed as it relates to 1) the original source location of contamination 2) the direction of groundwater flow and/or 3) source removal or remediation. Spatial and temporal trends in the center of mass can indicate spreading or shrinking or transient movement based on season variation in rainfall or other hydraulic considerations. No appreciable movement or a neutral trend in the center of mass would indicate plume stability. However, changes in the first moment over time do not necessarily completely characterize the changes in the concentration distribution (and the mass) over time. Therefore, in order to fully characterize the plume the First Moment trend should be compared to the zeroth moment trend (mass change over time).

The **second moment** indicates the spread of the contaminant about the center of mass (Sxx and Syy), or the distance of contamination from the center of mass for a particular COC and sample event. The Second Moment represents the spread of the plume over time in both the x and y directions. The Second Moment trend indicates the spread of the plume about the center of mass. Analysis of the spread of the plume should be viewed as it relates to the direction of groundwater flow. An Increasing trend in the second moment indicates an expanding plume, whereas a declining trend in the second moment indicates a shrinking plume. No appreciable movement or a neutral trend in the center of mass would indicate plume stability. The second moment provides a measure of the spread of the concentration distribution about the plume's center of mass.

However, changes in the second moment over time do not necessarily completely characterize the changes in the concentration distribution (and the mass) over time. Therefore, in order to fully characterize the plume the Second Moment trend should be compared to the zeroth moment trend (mass change over time).

7.0 Detailed Statistics: Optimization Analysis

Although the overall plume analysis shows a general recommendation regarding sampling frequency reduction and a general sampling density, a more detailed analysis is also available with the MAROS 2.2 software in order to allow for further reductions on a well-by-well basis for frequency, well redundancy, well sufficiency and sampling sufficiency. The MAROS Detailed Statistics allows for a quantitative analysis for spatial and temporal optimization of the well network on a well-by-well basis. The results from the Overview Statistics should be considered along with the MAROS optimization recommendations gained from the Detailed Statistical Analysis described previously. The MAROS Detailed Statistics results should be reassessed in view of site knowledge and regulatory requirements as well as in consideration of the Overview Statistics (Figure 2).

The Detailed Statistics or Sampling Optimization MAROS modules can be used to determine the minimal number of sampling locations and the lowest frequency of sampling that can still meet the requirements of sampling spatially and temporally for an existing monitoring program. It also provides an analysis of the sufficiency of data for the monitoring program.

Sampling optimization in MAROS consists of four parts:

- Well redundancy analysis using the Delaunay method
- Well sufficiency analysis using the Delaunay method
- Sampling frequency determination using the Modified CES method
- Data sufficiency analysis using statistical power analysis.

The well redundancy analysis using the Delaunay method identifies and eliminates redundant locations from the monitoring network. The well sufficiency analysis can determine the areas where new sampling locations might be needed. The Modified CES method determines the optimal sampling frequency for a sampling location based on the direction, magnitude, and uncertainty in its concentration trend. The data sufficiency analysis examines the risk-based site cleanup status and power and expected sample size associated with the cleanup status evaluation.

7.1 Well Redundancy Analysis – Delaunay Method

The well redundancy analysis using the Delaunay method is designed to select the minimum number of sampling locations based on the spatial analysis of the relative importance of each sampling location in the monitoring network. The approach allows elimination of sampling locations that have little impact on the historical characterization of a contaminant plume. An extended method or wells sufficiency analysis, based on the Delaunay method, can also be used for recommending new sampling locations.

Details about the Delaunay method can be found in Appendix A.2 of the MAROS Manual (AFCEE, 2003).

Sampling Location determination uses the Delaunay triangulation method to determine the significance of the current sampling locations relative to the overall monitoring network. The Delaunay method calculates the network Area and Average concentration of the plume using data from multiple monitoring wells. A slope factor (SF) is calculated for each well to indicate the significance of this well in the system (i.e. how removing a well changes the average concentration.)

The Sampling Location optimization process is performed in a stepwise fashion. Step one involves assessing the significance of the well in the system, if a well has a small SF (little significance to the network), the well may be removed from the monitoring network. Step two involves evaluating the information loss of removing a well from the network. If one well has a small SF, it may or may not be eliminated depending on whether the information loss is significant. If the information loss is not significant, the well can be eliminated from the monitoring network and the process of optimization continues with fewer wells. However if the well information loss is significant then the optimization terminates. This sampling optimization process allows the user to assess "redundant" wells that will not incur significant information loss on a constituent-by-constituent basis for individual sampling events.

7.2 Well Sufficiency Analysis – Delaunay Method

The well sufficiency analysis, using the Delaunay method, is designed to recommend new sampling locations in areas *within* the existing monitoring network where there is a high level of uncertainty in contaminant concentration. Details about the well sufficiency analysis can be found in Appendix A.2 of the MAROS Manual (AFCEE, 2003).

In many cases, new sampling locations need to be added to the existing network to enhance the spatial plume characterization. If the MAROS algorithm calculates a high level of uncertainty in predicting the constituent concentration for a particular area, a new sampling location is recommended. The Slope Factor (SF) values obtained from the redundancy evaluation described above are used to calculate the concentration estimation error for each triangle area formed in the Delaunay triangulation. The estimated SF value for each area is then classified into four levels: Small, Moderate, Large, or Extremely large (S, M, L, E) because the larger the estimated SF value, the higher the estimation error at this area. Therefore, the triangular areas with the estimated SF value at the Extremely large or Large level can be candidate regions for new sampling locations.

The results from the Delaunay method and the method for determining new sampling locations are derived solely from the spatial configuration of the monitoring network and the spatial pattern of the contaminant plume. No parameters such as the hydrogeologic conditions are considered in the analysis. Therefore, professional judgment and regulatory considerations must be used to make final decisions.

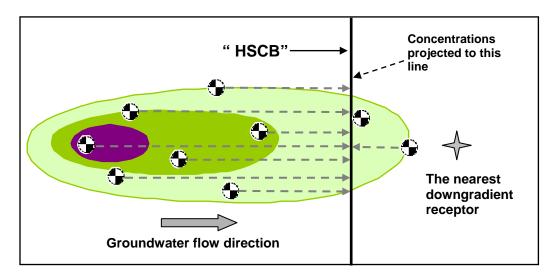
7.3 Sampling Frequency Determination - Modified CES Method

The Modified CES method optimizes sampling frequency for each sampling location based on the magnitude, direction, and uncertainty of its concentration trend derived from its recent and historical monitoring records. The Modified Cost Effective Sampling (MCES) estimates a conservative lowest-frequency sampling schedule for a given groundwater monitoring location that still provides needed information for regulatory and remedial decision-making. The MCES method was developed on the basis of the Cost Effective Sampling (CES) method developed by Ridley et al (1995). Details about the MCES method can be found in Appendix A.9 of the MAROS Manual (AFCEE, 2003).

In order to estimate the least frequent sampling schedule for a monitoring location that still provides enough information for regulatory and remedial decision-making, MCES employs three steps to determine the sampling frequency. The first step involves analyzing frequency based on recent trends. A preliminary location sampling frequency (PLSF) is developed based on the rate of change of well concentrations calculated by linear regression along with the Mann-Kendall trend analysis of the most recent monitoring data (see Figure 3). The variability within the sequential sampling data is accounted for by the Mann-Kendall analysis. The rate of change vs. trend result matrix categorizes wells as requiring annual, semi-annual or quarterly sampling. The PLSF is then reevaluated and adjusted based on overall trends. If the long-term history of change is significantly greater than the recent trend, the frequency may be reduced by one level.

The final step in the analysis involves reducing frequency based on risk, site-specific conditions, regulatory requirements or other external issues. Since not all compounds in the target being assessed are equally harmful, frequency is reduced by one level if recent maximum concentration for a compound of high risk is less than 1/2 of the Maximum Concentration Limit (MCL). The result of applying this method is a suggested sampling frequency based on recent sampling data trends and overall sampling data trends and expert judgment.

The final sampling frequency determined from the MCES method can be Quarterly, Semiannual, Annual, or Biennial. Users can further reduce the sampling frequency to, for example, once every three years, if the trend estimated from Biennial data (i.e., data drawn once every two years from the original data) is the same as that estimated from the original data.


7.4 Data Sufficiency Analysis – Power Analysis

The MAROS Data Sufficiency module employs simple statistical methods to evaluate whether the collected data are adequate both in quantity and in quality for revealing changes in constituent concentrations. The first section of the module evaluates individual well concentrations to determine if they are statistically below a target screening level. The second section includes a simple calculation for estimating projected groundwater concentrations at a specified point downgradient of the plume. A statistical Power analysis is then applied to the projected concentrations to determine if the downgradient concentrations are statistically below the cleanup standard. If the number of projected concentrations is below the level to provide statistical significance, then the number of sample events required to statistically confirm concentrations below standards is estimated from the Power analysis.

Before testing the cleanup status for individual wells, the stability or trend of the contaminant plume should be evaluated. Only after the plume has reached stability or is reliably diminishing can we conduct a test to examine the cleanup status of wells. Applying the analysis to wells in an expanding plume may cause incorrect conclusions and is less meaningful.

Statistical power analysis is a technique for interpreting the results of statistical tests. The Power of a statistical test is a measure of the ability of the test to detect an effect given that the effect actually exists. The method provides additional information about a statistical test: 1) the power of the statistical test, i.e., the probability of finding a difference in the variable of interest when a difference truly exists; and 2) the expected sample size of a future sampling plan given the minimum detectable difference it is supposed to detect. For example, if the mean concentration is lower than the cleanup goal but a statistical test cannot prove this, the power and expected sample size can tell the reason and how many more samples are needed to result in a significant test. The additional samples can be obtained by a longer period of sampling or an increased sampling frequency. Details about the data sufficiency analysis can be found in Appendix A.6 of the MAROS Manual (AFCEE, 2003).

When applying the MAROS power analysis method, a hypothetical statistical compliance boundary (HSCB) is assigned to be a line perpendicular to the groundwater flow direction (see figure below). Monitoring well concentrations are projected onto the HSCB using the distance from each well to the compliance boundary along with a decay coefficient. The projected concentrations from each well and each sampling event are then used in the risk-based power analysis. Since there may be more than one sampling event selected by the user, the risk-based power analysis results are given on an eventby-event basis. This power analysis can then indicate if target are statistically achieved at the HSCB. For instance, at a site where the historical monitoring record is short with few wells, the HSCB would be distant; whereas, at a site with longer duration of sampling with many wells, the HSCB would be close. Ultimately, at a site the goal would be to have the HSCB coincide with or be within the actual compliance boundary (typically the site property line).

In order to perform a risk-based cleanup status evaluation for the whole site, a strategy was developed as follows.

- Estimate concentration versus distance decay coefficient from plume centerline wells.
- Extrapolate concentration versus distance for each well using this decay coefficient.
- Comparing the extrapolated concentrations with the compliance concentration using power analysis.

Results from this analysis can be *Attained* or *Not Attained*, providing a statistical interpretation of whether the cleanup goal has been met on the site-scale from the risk-based point of view. The results as a function of time can be used to evaluate if the monitoring system has enough power at each step in the sampling record to indicate certainty of compliance by the plume location and condition relative to the compliance boundary. For example, if results are *Not Attained* at early sampling events but are *Attained* in recent sampling events, it indicates that the recent sampling record provides a powerful enough result to indicate compliance of the plume relative to the location of the receptor or compliance boundary.

CITED REFERENCES

AFCEE 2003. Monitoring and Remediation Optimization System (MAROS) 2.1 Software Users Guide. Air Force Center for Environmental Excellence. <u>http://www.gsinet.com/software/MAROS V2 1Manual.pdf</u>

AFCEE. 1997. Air Force Center for Environmental Excellence, AFCEE Long-Term Monitoring Optimization Guide, http://www.afcee.brooks.af.mil.

Aziz, J. A., C. J. Newell, M. Ling, H. S. Rifai and J. R. Gonzales (2003). "MAROS: A Decision Support System for Optimizing Monitoring Plans." <u>Ground Water</u> **41**(3): 355-367.

Gilbert, R. O., 1987, Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold, New York, NY, ISBN 0-442-23050-8.

Hollander, M. and Wolfe, D. A. (1973). Nonparametric Statistical Methods, Wiley, New York, NY.

Ridley, M.N. et al., 1995. Cost-Effective Sampling of Groundwater Monitoring Wells, the Regents of UC/LLNL, Lawrence Livermore National Laboratory.

U.S. Environmental Protection Agency, 1992. Methods for Evaluating the Attainment of Cleanup Standards Volume 2: Ground Water.

Weight, W. D. and J. L. Sonderegger (2001). <u>Manual of Applied Field Hydrogeology</u>. New York, NY, McGraw-Hill.

Mann-Kendall	TABLE 1 Analysis Decision Matrix	k (Aziz, et. al., 2003)
Mann-Kendall Statistic	Confidence in the Trend	Concentration Trend
S > 0	> 95%	Increasing
S > 0	90 - 95%	Probably Increasing
S > 0	< 90%	No Trend
$S \leq 0$	< 90% and COV \ge 1	No Trend
$S \leq 0$	< 90% and COV < 1	Stable
S < 0	90 - 95%	Probably Decreasing
S < 0	> 95%	Decreasing

TABLE 2 Linear Regression Analysis Decision Matrix (Aziz, et. al., 2003)								
Confidence in the	Log-	slope						
Trend	Positive	Negative						
< 90%	No Trend	COV < 1 Stable						
< 90 %	No riena	COV > 1 No Trend						
90 - 95%	Probably Increasing	Probably Decreasing						
> 95%	Increasing	Decreasing						

MAROS: Decision Support Tool

MAROS is a collection of tools in one software package that is used in an explanatory, non-linear fashion. The tool includes models, geostatistics, heuristic rules, and empirical relationships to assist the user in optimizing a groundwater monitoring network system while maintaining adequate delineation of the plume as well as knowledge of the plume state over time. Different users utilize the tool in different ways and interpret the results from a different viewpoint.

Overview Statistics

What it is: Simple, qualitative and quantitative plume information can be gained through evaluation of monitoring network historical data trends both spatially and temporally. The MAROS Overview Statistics are the foundation the user needs to make informed optimization decisions at the site.

What it does: The Overview Statistics are designed to allow site personnel to develop a better understanding of the plume behavior over time and understand how the individual well concentration trends are spatially distributed within the plume. This step allows the user to gain information that will support a more informed decision to be made in the next level of optimization analysis.

What are the tools: Overview Statistics includes two analytical tools:

- 1) Trend Analysis: includes Mann-Kendall and Linear Regression statistics for individual wells and results in general heuristically-derived monitoring categories with a suggested sampling density and monitoring frequency.
- 2) Moment Analysis: includes dissolved mass estimation (0th Moment), center of mass (1st Moment), and plume spread (2nd Moment) over time. Trends of these moments show the user another piece of information about the plume stability over time.

What is the product: A first-cut blueprint for a future long-term monitoring program that is intended to be a foundation for more detailed statistical analysis.

Detailed Statistics What it is: The MAROS Detailed Statistics allows for a quantitative analysis for spatial and temporal optimization of the well network on a well-by-well basis. What it does: The results from the Overview Statistics should be considered along side the MAROS optimization recommendations gained from the Detailed Statistical Analysis. The MAROS Detailed Statistics results should be reassessed in view of site knowledge and regulatory requirements as well as the Overview Statistics. What are the tools: Detailed Statistics includes four analytical tools: Sampling Frequency Optimization: uses the Modified CES method to establish a recommended future 1) sampling frequency. 2) Well Redundancy Analysis: uses the Delaunay Method to evaluate if any wells within the monitoring network are redundant and can be eliminated without any significant loss of plume information. 3) Well Sufficiency Analysis: uses the Delaunay Method to evaluate areas where new wells are recommended within the monitoring network due to high levels of concentration uncertainty. 4) Data Sufficiency Analysis: uses Power Analysis to assess if the historical monitoring data record has sufficient power to accurately reflect the location of the plume relative to the nearest receptor or compliance point. What is the product: List of wells to remove from the monitoring program, locations where monitoring wells may need to be added, recommended frequency of sampling for each well, analysis if the overall system is statistically

Figure 1. MAROS Decision Support Tool Flow Chart

powerful to monitor the plume.

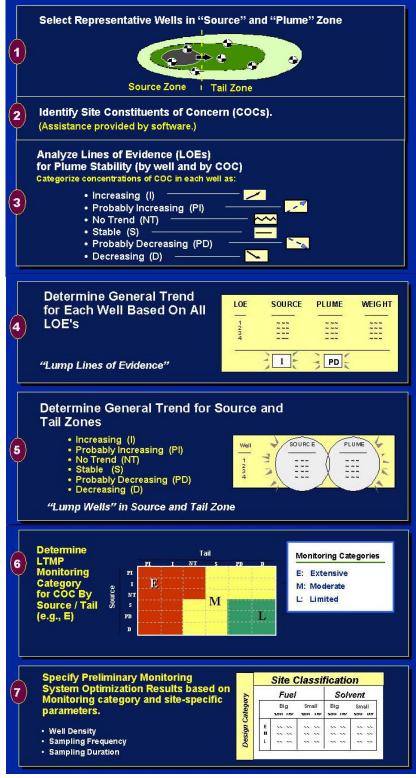


Figure 2: MAROS Overview Statistics Trend Analysis Methodology

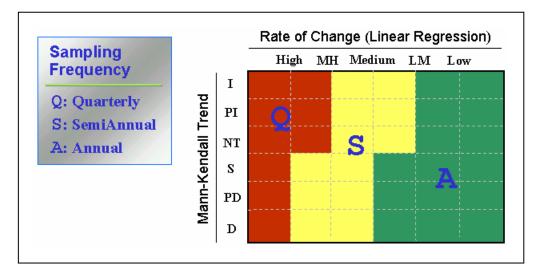


Figure 3. Decision Matrix for Determining Provisional Frequency (*Figure A.3.1 of the MAROS Manual (AFCEE 2003*)

GROUNDWATER MONITORING NETWORK OPTIMIZATION Pantex Plant

APPENDIX B:

Carson County, Texas

MAROS Supporting Information

 Table B.1
 Extraction Well Trend Summary Results RDX

GSI Job No. G-3262 Issued 12-FEB-2008 Page 1 of 1

TABLE B.1 EXTRACTION WELL TREND SUMMARY RESULTS RDX: 2000-2007

LONG-TERM MONITORING OPTIMIZATION

PANTEX FACILITY Carson County, Texas

r	1			1					
WellName	Number of Samples	Number of Detects	Percent Detection	Maximum Result [ug/L]	Max Result Above Standard?	Average Result [ug/L]	Average Result Above Standard?	Mann- Kendall Trend	Average Slope Factor
RDX Southeast S		2010010	2010011011	[[~3/=]	• tuitua u		
PTX06-EW-1	21	21	100%	1,600	Yes	926	Yes	D	0.08
PTX06-EW-10	22	19	86%	560	Yes	26	Yes	Ĩ	0.41
PTX06-EW-11	23	23	100%	1,300	Yes	794	Yes	D	0.07
PTX06-EW-12	22	20	100%	2,600	Yes	1,500	Yes	D	0.04
PTX06-EW-12	10	10	100%	1,360	Yes	674	Yes	NT	0.04
PTX06-EW-15	25	25	100%	62	Yes	37	Yes	S	0.16
PTX06-EW-16	23	23	100%	2,300	Yes	1,510	Yes	S	0.10
PTX06-EW-17	24	23	100%	970	Yes	722	Yes	S	0.03
PTX06-EW-18	18	18	100%	1,100	Yes	536	Yes	D	0.03
PTX06-EW-18 PTX06-EW-19	23	23	100%	920	Yes	662	Yes	D	0.02
PTX06-EW-19 PTX06-EW-2	23	23	100%	1.040	Yes	733	Yes	D	0.02
	21	21		,	Yes	46	Yes	I	0.02
PTX06-EW-20	23	-	100% 100%	180		40 40		D	
PTX06-EW-21	-	23		110	Yes	-	Yes		0.48
PTX06-EW-22A	22	22	100%	910	Yes	154	Yes	D	0.08
PTX06-EW-23A	21	21	100%	1,400	Yes	772	Yes	D	0.04
PTX06-EW-24	22	22	100%	1,600	Yes	732	Yes	D	0.20
PTX06-EW-25	21	21	100%	840	Yes	271	Yes	D	0.09
PTX06-EW-26	23	23	100%	2,200	Yes	710	Yes	D	0.07
PTX06-EW-27	21	21	100%	2,500	Yes	1,060	Yes	I	0.02
PTX06-EW-28	20	20	100%	1,500	Yes	721	Yes	D	0.29
PTX06-EW-29	24	24	100%	1,800	Yes	580	Yes	D	0.26
PTX06-EW-3	23	23	100%	2,260	Yes	1,330	Yes	D	0.08
PTX06-EW-30	22	22	100%	1,600	Yes	798	Yes	D	0.04
PTX06-EW-31	22	22	100%	1,000	Yes	486	Yes	D	0.10
PTX06-EW-32	23	23	100%	1,400	Yes	672	Yes	D	0.03
PTX06-EW-33	22	22	100%	1,200	Yes	673	Yes	I	0.04
PTX06-EW-34	23	23	100%	1,800	Yes	1,200	Yes	S	0.01
PTX06-EW-35	22	22	100%	2,700	Yes	1,480	Yes	D	0.02
PTX06-EW-36	21	21	100%	2,600	Yes	1,130	Yes	D	0.11
PTX06-EW-37	21	21	100%	400	Yes	35	Yes	I	0.20
PTX06-EW-38C	22	22	100%	6,800	Yes	409	Yes	D	0.08
PTX06-EW-39	24	24	100%	1,300	Yes	611	Yes	D	0.05
PTX06-EW-4	25	25	100%	1,800	Yes	1,050	Yes	NT	0.01
PTX06-EW-40	22	22	100%	7,100	Yes	1,100	Yes	D	0.12
PTX06-EW-41	16	16	100%	15,000	Yes	1,730	Yes	D	0.07
PTX06-EW-42A	24	24	100%	8,100	Yes	1,340	Yes	PD	0.06
PTX06-EW-43	19	19	100%	5,500	Yes	2,420	Yes	D	0.05
PTX06-EW-44	24	24	100%	25,000	Yes	4,020	Yes	S	0.07
PTX06-EW-45	22	22	100%	4,900	Yes	3,320	Yes	D	0.06
PTX06-EW-46	24	24	100%	8,600	Yes	1,260	Yes	D	0.04
PTX06-EW-47	17	17	100%	1,900	Yes	1,250	Yes	D	0.02
PTX06-EW-48	22	22	100%	2.000	Yes	1.080	Yes	ī	0.05
PTX06-EW-49	24	24	100%	10,000	Yes	1,380	Yes	S	0.04
PTX06-EW-5	18	18	100%	2,400	Yes	1,360	Yes	Ĩ	0.06
PTX06-EW-53	9	9	100%	1,400	Yes	923	Yes	PD	0.06
PTX06-EW-6	20	20	100%	5,920	Yes	2,540	Yes	D	0.00
PTX06-EW-7	25	25	100%	3,200	Yes	1,390	Yes	I	0.05
PTX06-EW-9	16	16	100%	290	Yes	32	Yes	1	0.03
11/00-200-3	10	10	100%	290	162	52	162	1	0.22

Notes:

1. Extraction wells part of PGPTS in Southest Sector. Values for RDX 2000-2007.

2. Number of Samples is the number of samples analyzed for the compound at this location.

Number of Detects is the number of samples where the compound has been detected at this location.

3. Maximum Result is the maximum concentration for the COC analyzed between 2000 and 2007.

4. Screening level from Corrective Measure Study. RDX = 7.7 ug/L.

6. D = Decreasing; PD = Probably Decreasing; S = Stable; PI = Probably Increasing; I = Increasing; N/A = Insufficient Data to determine trend;

NT = No Trend; ND = well has all non-detect results for COC; ND* = Non-detect except for one trace value.

7. Mann-Kendall trend results are illustrated on Figure 3.

GROUNDWATER MONITORING NETWORK OPTIMIZATION Pantex Plant

Carson County, Texas

APPENDIX B:

Southeast Sector MAROS Reports

Mann-Kendall Reports

MAROS Moment Reports Southeast Sector

Zeroth Moments First Moments Second Moments

MAROS Mann-Kendall Statistics Summary

Project: Pantex SE

Location: SouthEast

User Name: MV State: Texas

Time Period: 1/15/2000 to 7/15/2007 Consolidation Period: No Time Consolidation Consolidation Type: Geometric Mean Duplicate Consolidation: Average ND Values: Specified Detection Limit

J Flag Values : Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
2,4,6-TRINITROTOLUE	NE							
PTX06-1002A	т	7	0	0.00	0	43.7%	Yes	ND
PTX06-1003	S	7	6	0.86	-11	93.2%	No	PD
PTX06-1005	S	8	6	1.14	-9	83.2%	No	NT
PTX06-1010	S	6	2	1.91	-9	93.2%	No	PD
PTX06-1011	S	7	0	0.00	0	43.7%	Yes	ND
PTX06-1013	Т	11	0	0.00	0	46.9%	Yes	ND
PTX06-1014	т	13	0	0.00	0	47.6%	Yes	ND
PTX06-1015	Т	13	1	0.22	12	74.5%	No	NT
PTX06-1023	Т	12	0	0.00	0	47.3%	Yes	ND
PTX06-1030	Т	13	5	1.18	-30	96.2%	No	D
PTX06-1031	Т	13	0	0.00	0	47.6%	Yes	ND
PTX06-1034	Т	15	1	0.73	6	59.6%	No	NT
PTX06-1036	т	13	0	0.00	0	47.6%	Yes	ND
PTX06-1037	т	5	0	0.00	0	40.8%	Yes	ND
PTX06-1038	т	14	12	0.55	4	56.4%	No	NT
PTX06-1039A	т	11	6	1.52	23	95.7%	No	I
PTX06-1040	т	14	1	3.46	7	62.6%	No	NT
PTX06-1041	т	11	4	1.97	28	98.4%	No	I
PTX06-1042	т	15	0	0.00	0	48.0%	Yes	ND
PTX06-1045	т	12	0	0.00	0	47.3%	Yes	ND
PTX06-1046	т	16	0	0.00	0	48.2%	Yes	ND
PTX06-1047A	т	14	0	0.00	0	47.8%	Yes	ND
PTX06-1052	т	15	0	0.00	0	48.0%	Yes	ND
PTX06-1053	т	17	0	0.00	0	48.4%	Yes	ND
PTX06-1069	т	11	1	0.42	-4	59.0%	No	S
PTX06-1088	S	8	8	0.51	-24	99.9%	No	D
PTX06-1095A	т	3	0	0.00	0	0.0%	Yes	ND
PTX06-1102	т	8	0	0.00	0	45.2%	Yes	ND
PTX06-EW-1	т	21	21	0.73	-168	100.0%	No	D
PTX06-EW-10	т	20	1	3.53	13	65.0%	No	NT
PTX06-EW-11	т	21	3	1.14	-53	94.2%	No	PD
PTX06-EW-12	т	19	2	1.17	-35	88.1%	No	NT
PTX06-EW-14	т	8	1	1.57	-7	76.4%	No	NT
PTX06-EW-15		25	25	0.31	-113	99.6%	No	D
PTX06-EW-16	т	25	24	0.36	-95	98.7%	No	D
PTX06-EW-17		23	23	0.30	-88	99.0%	No	D
PTX06-EW-18	т	18	18	0.87	-104	100.0%	No	D
PTX06-EW-19	т	20	2	4.38	-37	87.7%	No	NT

Location: SouthEast

User Name: MV

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentratior Trend
2,4,6-TRINITROTOLUEN	E							
PTX06-EW-2	Т	21	21	0.14	-114	100.0%	No	D
PTX06-EW-20	Т	23	23	0.66	19	68.1%	No	NT
PTX06-EW-21	Т	23	23	0.47	-170	100.0%	No	D
PTX06-EW-22	Т	22	22	0.43	-83	99.0%	No	D
PTX06-EW-23	Т	22	22	0.25	-14	64.2%	No	S
PTX06-EW-24	Т	21	21	0.27	-90	99.7%	No	D
PTX06-EW-25	Т	21	21	0.63	-181	100.0%	No	D
PTX06-EW-26	Т	23	23	0.57	59	93.7%	No	PI
PTX06-EW-27	Т	17	0	0.00	0	48.4%	Yes	ND
PTX06-EW-28	т	20	20	0.33	-107	100.0%	No	D
PTX06-EW-29	т	23	22	0.49	-158	100.0%	No	D
PTX06-EW-3	т	23	23	0.49	-198	100.0%	No	D
PTX06-EW-30		20	2	0.91	31	83.3%	No	NT
PTX06-EW-31		19	8	1.45	111	100.0%	No	I
PTX06-EW-32		20	1	2.68	17	69.6%	No	NT
PTX06-EW-33		19	13	0.93	120	100.0%	No	1
PTX06-EW-34		20	18	0.53	119	100.0%	No	
PTX06-EW-35		19	5	0.84	73	99.5%	No	
PTX06-EW-36		19	18	0.57	-85	99.9%	No	D
PTX06-EW-37		21	3	3.91	-51	93.4%	No	PD
PTX06-EW-38		22	22	1.68	-187	100.0%	No	D
PTX06-EW-39		22	21	0.62	-20	70.2%	No	S
PTX06-EW-33	Т	21	10	1.04	108	100.0%	No	5
PTX06-EW-40		20	20	0.33	-10	61.3%	No	S
PTX06-EW-40	T	16	15	1.64	21	81.3%	No	NT
PTX06-EW-41		21	15		123	100.0%	No	1
				1.16	72			1
PTX06-EW-43		14	11	0.69		100.0%	No	1
PTX06-EW-44		20	20	0.39	145	100.0%	No	•
PTX06-EW-45		17	16	0.49	111	100.0%	No	I
PTX06-EW-46		20	10	1.06	91	99.9%	No	1
PTX06-EW-47		14	0	0.00	0	47.8%	Yes	ND
PTX06-EW-48		19	4	2.52	62	98.5%	No	I
PTX06-EW-49		21	1	4.41	-20	71.5%	No	NT
PTX06-EW-5	Т	16	4	3.71	24	84.7%	No	NT
PTX06-EW-53		9	0	0.00	0	46.0%	Yes	ND
PTX06-EW-6	Т	17	2	1.66	-29	87.4%	No	NT
PTX06-EW-7	Т	22	1	0.64	-21	71.1%	No	S
PTX06-EW-9	Т	14	0	0.00	0	47.8%	Yes	ND
PTX08-1002	Т	7	7	0.24	-9	88.1%	No	S
PTX08-1008	Т	11	0	0.00	0	46.9%	Yes	ND
PTX08-1009	Т	7	1	0.40	-2	55.7%	No	S
2,4-DINITROTOLUENE								
PTX06-1002A	Т	7	0	0.00	0	43.7%	Yes	ND
PTX06-1003	S	7	3	0.98	1	50.0%	No	NT
PTX06-1005	S	8	4	1.32	-14	94.6%	No	PD
PTX06-1010	S	7	0	0.00	0	43.7%	Yes	ND
PTX06-1011	S	7	0	0.00	0	43.7%	Yes	ND
PTX06-1013	Т	11	0	0.00	0	46.9%	Yes	ND
1 1/00 1010			-	0.00	0	+0.570	105	ND

Location: SouthEast

User Name: MV

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
2,4-DINITROTOLUENE								
PTX06-1015	Т	13	0	0.00	0	47.6%	Yes	ND
PTX06-1023	Т	12	0	0.00	0	47.3%	Yes	ND
PTX06-1030	Т	14	0	0.00	0	47.8%	Yes	ND
PTX06-1031	Т	14	0	0.00	0	47.8%	Yes	ND
PTX06-1034	Т	15	2	0.36	9	65.1%	No	NT
PTX06-1036	Т	13	0	0.00	0	47.6%	Yes	ND
PTX06-1037	Т	6	0	0.00	0	42.3%	Yes	ND
PTX06-1038	Т	14	11	1.15	-16	79.1%	No	NT
PTX06-1039A	Т	11	9	0.69	18	90.5%	No	PI
PTX06-1040	Т	13	2	0.71	19	86.1%	No	NT
PTX06-1041	Т	12	11	0.71	36	99.3%	No	I
PTX06-1042	Т	15	0	0.00	0	48.0%	Yes	ND
PTX06-1045	Т	11	0	0.00	0	46.9%	Yes	ND
PTX06-1046	т	17	1	0.04	4	54.8%	No	NT
PTX06-1047A	т	14	0	0.00	0	47.8%	Yes	ND
PTX06-1052	Т	15	1	0.15	-4	55.8%	No	S
PTX06-1053	Т	17	0	0.00	14	70.1%	Yes	ND
PTX06-1069	Т	11	0	0.00	0	46.9%	Yes	ND
PTX06-1088	S	8	2	1.75	7	76.4%	No	NT
PTX06-1095A	Т	3	0	0.00	0	0.0%	Yes	ND
PTX06-1102	Т	8	0	0.00	0	45.2%	Yes	ND
PTX06-EW-1	Т	20	20	1.03	-135	100.0%	No	D
PTX06-EW-10	Т	20	1	0.57	13	65.0%	No	NT
PTX06-EW-11	Т	20	1	0.57	3	52.6%	No	NT
PTX06-EW-12	Т	18	10	1.49	71	99.7%	No	I
PTX06-EW-14	Т	7	0	0.00	0	43.7%	Yes	ND
PTX06-EW-15	Т	25	23	0.54	-148	100.0%	No	D
PTX06-EW-16	Т	24	24	1.04	-213	100.0%	No	D
PTX06-EW-17	Т	23	23	1.13	-160	100.0%	No	D
PTX06-EW-18	Т	16	14	1.08	-91	100.0%	No	D
PTX06-EW-19		18	13	2.36	69	99.6%	No	I
PTX06-EW-2	т	20	20	0.97	-139	100.0%	No	D
PTX06-EW-20	Т	22	17	0.88	62	95.8%	No	I
PTX06-EW-21		23	22	0.86	-175	100.0%	No	D
PTX06-EW-22		21	20	1.17	-147	100.0%	No	D
PTX06-EW-23		21	21	1.13	-125	100.0%	No	D
PTX06-EW-24		20	20	0.62	-74	99.2%	No	D
PTX06-EW-25		20	20	1.21	-131	100.0%	No	D
PTX06-EW-26		21	20	1.21	-125	100.0%	No	D
PTX06-EW-27		17	15	0.98	2	51.6%	No	NT
PTX06-EW-28		20	19	1.02	-110	100.0%	No	D
PTX06-EW-29		22	19	1.51	-144	100.0%	No	D
PTX06-EW-3	T	22	22	1.35	-144	100.0%	No	D
PTX06-EW-30		18	7	0.64	42	93.9%	No	PI
PTX06-EW-31		18	17	0.78	-49	96.6%	No	D
PTX06-EW-32		19	5	3.23	-14	67.4%	No	NT
PTX06-EW-33		22	21	0.91	-88	99.4%	No	D
PTX06-EW-34		22	21	0.93	-130	100.0%	No	D
PTX06-EW-35		19	12	2.23	76	99.7%	No	1
PTX06-EW-36		19	18	1.55	-123	100.0%	No	D
PTX06-EW-37		21	2	4.03	-35	84.6%	No	NT

Location: SouthEast

User Name: MV

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentratio Trend
2,4-DINITROTOLUENE								
PTX06-EW-38	Т	22	21	3.00	-179	100.0%	No	D
PTX06-EW-39	Т	21	16	1.84	-52	93.8%	No	PD
PTX06-EW-4	Т	20	17	1.34	31	83.3%	No	NT
PTX06-EW-40	Т	21	21	2.73	-163	100.0%	No	D
PTX06-EW-41	т	15	15	3.07	-63	99.9%	No	D
PTX06-EW-42	Т	20	19	1.50	-113	100.0%	No	D
PTX06-EW-43	Т	17	16	1.00	-44	96.2%	No	D
PTX06-EW-44	Т	22	22	1.71	-150	100.0%	No	D
PTX06-EW-45	т	19	19	1.14	-125	100.0%	No	D
PTX06-EW-46	т	21	20	0.84	-106	99.9%	No	D
PTX06-EW-47	т	14	1	0.13	-7	62.6%	No	S
PTX06-EW-48	т	19	19	1.04	-46	94.2%	No	PD
PTX06-EW-49	т	21	2	4.50	-35	84.6%	No	NT
PTX06-EW-5	Т	18	16	1.01	-84	100.0%	No	D
PTX06-EW-53	T	9	9	0.43	9	79.2%	No	NT
PTX06-EW-6	T	16	11	0.94	57	99.5%	No	1
PTX06-EW-7	T	22	19	1.56	37	84.3%	No	NT
PTX06-EW-9	T	14	13	0.91	11	70.5%	No	NT
PTX08-1002	Ť	7	6	0.91	-1	50.0%	No	S
PTX08-1002 PTX08-1008	T	, 11	0	0.00	0	46.9%	Yes	ND
PTX08-1008	т Т	7	0	0.00	0	43.7%	Yes	ND
-AMINO-4,6-DINITROT								
PTX06-1002A	Т	7	0	0.00	0	43.7%	Yes	ND
PTX06-1003	S	7	2	0.17	-7	80.9%	No	S
PTX06-1005	S	8	4	1.06	6	72.6%	No	NT
PTX06-1010	S	7	4	1.17	-10	90.7%	No	PD
PTX06-1011	S	7	0	0.00	0	43.7%	Yes	ND
PTX06-1013	Т	11	0	0.00	0	46.9%	Yes	ND
PTX06-1014	Т	13	12	0.69				
PTX06-1015	Т				-56	100.0%	No	D
		13	4	1.41	12	74.5%	No	NT
PTX06-1023	т	13 12	4 2					
PTX06-1023 PTX06-1030	T T			1.41	12	74.5%	No	NT
PTX06-1030 PTX06-1031	T T T	12	2	1.41 0.06	12 -15	74.5% 82.8%	No No	NT S
PTX06-1030	T T	12 13	2 4	1.41 0.06 1.08	12 -15 36	74.5% 82.8% 98.5%	No No No	NT S I NT NT
PTX06-1030 PTX06-1031	T T T	12 13 14	2 4 6	1.41 0.06 1.08 1.38	12 -15 36 -3	74.5% 82.8% 98.5% 54.3%	No No No	NT S I NT
PTX06-1030 PTX06-1031 PTX06-1034	Т Т Т Т	12 13 14 15	2 4 6 9	1.41 0.06 1.08 1.38 1.10	12 -15 36 -3 10	74.5% 82.8% 98.5% 54.3% 66.9%	No No No No	NT S I NT NT
PTX06-1030 PTX06-1031 PTX06-1034 PTX06-1036	T T T T	12 13 14 15 13	2 4 6 9 0 2 12	1.41 0.06 1.08 1.38 1.10 0.00 1.71 0.50	12 -15 36 -3 10 0	74.5% 82.8% 98.5% 54.3% 66.9% 47.6% 82.1% 68.6%	No No No No Yes	NT S I NT ND NT S
PTX06-1030 PTX06-1031 PTX06-1034 PTX06-1036 PTX06-1037	T T T T T	12 13 14 15 13 5	2 4 6 9 0 2	1.41 0.06 1.08 1.38 1.10 0.00 1.71	12 -15 -3 10 0 5	74.5% 82.8% 98.5% 54.3% 66.9% 47.6% 82.1%	No No No No Yes No	NT S I NT ND NT
PTX06-1030 PTX06-1031 PTX06-1034 PTX06-1036 PTX06-1037 PTX06-1038	T T T T T T	12 13 14 15 13 5 14	2 4 6 9 0 2 12	1.41 0.06 1.08 1.38 1.10 0.00 1.71 0.50	12 -15 36 -3 10 0 5 -10	74.5% 82.8% 98.5% 54.3% 66.9% 47.6% 82.1% 68.6%	No No No No Yes No No	NT S I NT ND NT S
PTX06-1030 PTX06-1031 PTX06-1034 PTX06-1036 PTX06-1037 PTX06-1038 PTX06-1039A	T T T T T T T	12 13 14 15 13 5 14 11	2 4 6 9 0 2 12 10	1.41 0.06 1.08 1.38 1.10 0.00 1.71 0.50 0.46	12 -15 36 -3 10 0 5 -10 21	74.5% 82.8% 98.5% 54.3% 66.9% 47.6% 82.1% 68.6% 94.0%	No No No No Yes No No No	NT S NT NT ND NT S PI
PTX06-1030 PTX06-1031 PTX06-1034 PTX06-1036 PTX06-1037 PTX06-1038 PTX06-1039A PTX06-1040	T T T T T T T	12 13 14 15 13 5 14 11 14	2 4 9 0 2 12 10 8	1.41 0.06 1.08 1.38 1.10 0.00 1.71 0.50 0.46 1.13	12 -15 36 -3 10 0 5 -10 21 46	74.5% 82.8% 98.5% 54.3% 66.9% 47.6% 82.1% 68.6% 94.0% 99.4%	No No No Yes No No No	NT S NT NT ND NT S PI I
PTX06-1030 PTX06-1031 PTX06-1034 PTX06-1036 PTX06-1037 PTX06-1038 PTX06-1039A PTX06-1040 PTX06-1041	T T T T T T T T	12 13 14 15 13 5 14 11 14 11	2 4 6 9 0 2 12 10 8 8	1.41 0.06 1.08 1.38 1.10 0.00 1.71 0.50 0.46 1.13 0.68	12 -15 36 -3 10 0 5 -10 21 46 8	74.5% 82.8% 98.5% 54.3% 66.9% 47.6% 82.1% 68.6% 94.0% 99.4% 70.3%	No No No Yes No No No No	NT S NT NT ND NT S PI I NT
PTX06-1030 PTX06-1031 PTX06-1034 PTX06-1036 PTX06-1037 PTX06-1038 PTX06-1039A PTX06-1040 PTX06-1041 PTX06-1042	T T T T T T T T T	12 13 14 15 13 5 14 11 14 11 15	2 4 6 9 0 2 12 10 8 8 8 10	1.41 0.06 1.08 1.38 1.10 0.00 1.71 0.50 0.46 1.13 0.68 1.23	12 -15 36 -3 10 0 5 -10 21 46 8 47	74.5% 82.8% 98.5% 54.3% 66.9% 47.6% 82.1% 68.6% 94.0% 99.4% 70.3% 99.0%	No No No Yes No No No No No	NT S NT NT NT S PI NT I
PTX06-1030 PTX06-1031 PTX06-1034 PTX06-1036 PTX06-1037 PTX06-1038 PTX06-1039A PTX06-1040 PTX06-1041 PTX06-1042 PTX06-1045	T T T T T T T T T T	12 13 14 15 13 5 14 11 14 11 15 12	2 4 6 9 0 2 12 10 8 8 8 10 0	$ 1.41 \\ 0.06 \\ 1.08 \\ 1.38 \\ 1.10 \\ 0.00 \\ 1.71 \\ 0.50 \\ 0.46 \\ 1.13 \\ 0.68 \\ 1.23 \\ 0.00 $	12 -15 36 -3 10 0 5 -10 21 46 8 47 0	74.5% 82.8% 98.5% 54.3% 66.9% 47.6% 82.1% 68.6% 94.0% 99.4% 70.3% 99.0% 47.3%	No No No Yes No No No No Yes	NT S NT NT ND NT S PI NT ND
PTX06-1030 PTX06-1031 PTX06-1034 PTX06-1036 PTX06-1037 PTX06-1038 PTX06-1039A PTX06-1040 PTX06-1040 PTX06-1041 PTX06-1042 PTX06-1045 PTX06-1046	T T T T T T T T T T T	12 13 14 15 13 5 14 11 14 11 15 12 16	2 4 6 9 0 2 12 10 8 8 10 0 1	$ 1.41 \\ 0.06 \\ 1.08 \\ 1.38 \\ 1.10 \\ 0.00 \\ 1.71 \\ 0.50 \\ 0.46 \\ 1.13 \\ 0.68 \\ 1.23 \\ 0.00 \\ 0.26 $	12 -15 36 -3 10 0 5 -10 21 46 8 47 0 7	74.5% 82.8% 98.5% 54.3% 66.9% 47.6% 82.1% 68.6% 94.0% 99.4% 70.3% 99.0% 47.3% 60.5%	No No No Yes No No No No Yes No	NT S NT NT NT S PI NT ND NT
PTX06-1030 PTX06-1031 PTX06-1034 PTX06-1036 PTX06-1037 PTX06-1038 PTX06-1039A PTX06-1040 PTX06-1041 PTX06-1042 PTX06-1045 PTX06-1046 PTX06-1047A	T T T T T T T T T T T	12 13 14 15 13 5 14 11 14 11 15 12 16 14	2 4 6 9 0 2 12 10 8 8 10 0 1 0	$ 1.41 \\ 0.06 \\ 1.08 \\ 1.38 \\ 1.10 \\ 0.00 \\ 1.71 \\ 0.50 \\ 0.46 \\ 1.13 \\ 0.68 \\ 1.23 \\ 0.00 \\ 0.26 \\ 0.00 \\ $	12 -15 36 -3 10 0 5 -10 21 46 8 47 0 7 0	74.5% 82.8% 98.5% 54.3% 66.9% 47.6% 82.1% 68.6% 94.0% 99.4% 70.3% 99.0% 47.3% 60.5% 47.8%	No No No Yes No No No No Yes No Yes	NT S NT NT NT S P I NT ND NT ND
PTX06-1030 PTX06-1031 PTX06-1034 PTX06-1036 PTX06-1037 PTX06-1038 PTX06-1039A PTX06-1040 PTX06-1041 PTX06-1042 PTX06-1045 PTX06-1046 PTX06-1047A PTX06-1052	T T T T T T T T T T T T T	12 13 14 15 13 5 14 11 14 11 15 12 16 14 15	2 4 6 9 0 2 12 10 8 8 10 0 1 0 0	$ 1.41 \\ 0.06 \\ 1.08 \\ 1.38 \\ 1.10 \\ 0.00 \\ 1.71 \\ 0.50 \\ 0.46 \\ 1.13 \\ 0.68 \\ 1.23 \\ 0.00 \\ 0.26 \\ 0.00 \\ 0.00 \\ 0.00 $	12 -15 36 -3 10 0 5 -10 21 46 8 47 0 7 0 0 7	74.5% 82.8% 98.5% 54.3% 66.9% 47.6% 82.1% 68.6% 94.0% 99.4% 70.3% 99.0% 47.3% 60.5% 47.8% 48.0%	No No No Yes No No No Yes No Yes Yes	NT S I NT ND NT S P I NT ND ND ND ND
PTX06-1030 PTX06-1031 PTX06-1034 PTX06-1036 PTX06-1037 PTX06-1038 PTX06-1039A PTX06-1040 PTX06-1040 PTX06-1042 PTX06-1045 PTX06-1046 PTX06-1047A PTX06-1052 PTX06-1053	T T T T T T T T T T T T T T T T T T T	12 13 14 15 13 5 14 11 14 11 15 12 16 14 15 17	2 4 6 9 0 2 12 10 8 8 10 0 1 0 1 0 0 0	$ 1.41 \\ 0.06 \\ 1.08 \\ 1.38 \\ 1.10 \\ 0.00 \\ 1.71 \\ 0.50 \\ 0.46 \\ 1.13 \\ 0.68 \\ 1.23 \\ 0.00 \\ 0.26 \\ 0.00$	12 -15 36 -3 10 0 5 -10 21 46 8 47 0 7 0 7 0 0 0 0	74.5% 82.8% 98.5% 54.3% 66.9% 47.6% 82.1% 68.6% 94.0% 99.4% 70.3% 99.0% 47.3% 60.5% 47.8% 48.0% 48.4%	No No No Yes No No No Yes No Yes Yes Yes	NT S I N T N D N N N N D N D

Location: SouthEast

User Name: MV

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
2-AMINO-4,6-DINITROTO	DLUENE							
PTX06-1102	т	8	3	1.77	-6	72.6%	No	NT
PTX06-EW-1	Т	20	20	0.38	-90	99.8%	No	D
PTX06-EW-10	Т	20	1	3.33	13	65.0%	No	NT
PTX06-EW-11	Т	20	19	0.55	81	99.6%	No	I.
PTX06-EW-12	Т	22	22	0.50	118	100.0%	No	I.
PTX06-EW-14	Т	7	1	1.76	-6	76.4%	No	NT
PTX06-EW-15	Т	21	11	0.52	-37	86.0%	No	S
PTX06-EW-16	Т	25	25	0.36	-186	100.0%	No	D
PTX06-EW-17	Т	23	23	0.27	-144	100.0%	No	D
PTX06-EW-18	Т	18	18	0.39	-107	100.0%	No	D
PTX06-EW-19	Т	23	23	0.25	-56	92.6%	No	PD
PTX06-EW-2	Т	20	20	0.38	-143	100.0%	No	D
PTX06-EW-20	Т	20	11	0.86	64	98.0%	No	I
PTX06-EW-21	Т	23	21	0.70	-177	100.0%	No	D
PTX06-EW-22	Т	22	22	1.59	-82	99.0%	No	D
PTX06-EW-23	Т	22	22	0.22	-94	99.7%	No	D
PTX06-EW-24	Т	21	21	0.38	-36	85.3%	No	S
PTX06-EW-25	Т	20	20	0.51	-99	100.0%	No	D
PTX06-EW-26	Т	23	23	0.36	-7	56.2%	No	S
PTX06-EW-27	Т	21	21	0.40	-10	60.6%	No	S
PTX06-EW-28	Т	20	20	0.44	-48	93.6%	No	PD
PTX06-EW-29	Т	23	22	0.85	-188	100.0%	No	D
PTX06-EW-3	Т	23	23	0.58	-159	100.0%	No	D
PTX06-EW-30	Т	23	23	0.28	26	74.4%	No	NT
PTX06-EW-31	Т	22	22	0.38	-161	100.0%	No	D
PTX06-EW-32	Т	23	23	0.42	-98	99.6%	No	D
PTX06-EW-33	T	22	22	0.41	-55	93.6%	No	PD
PTX06-EW-34	T	23	23	0.45	-144	100.0%	No	D
PTX06-EW-35	T	20	19	0.52	-84	99.7%	No	D
PTX06-EW-36	T	21	20	0.58	-113	100.0%	No	D
PTX06-EW-37	T	21	1	2.05	-18	69.4%	No	NT
PTX06-EW-38	T -	22	22	1.88	-55	93.6%	No	PD
PTX06-EW-39	T -	24	24	0.75	-100	99.4%	No	D
PTX06-EW-4	T	25	25	0.26	-3	51.9%	No	S
PTX06-EW-40	Т	22	22	1.32	-138	100.0%	No	D
PTX06-EW-41	Т	16	16	1.96	-41	96.5%	No	D
PTX06-EW-42	Т	23	23	3.05	-202	100.0%	No	D
PTX06-EW-43	Т	19	19	0.75	-84	99.9%	No	D
PTX06-EW-44		23	23	1.85	-133	100.0%	No	D
PTX06-EW-45	Т	22	22	0.34	-55	93.6%	No	PD
PTX06-EW-46		24	24	0.97	-124	99.9% 05.7%	No	D
PTX06-EW-47	т т	16 22	16 22	0.39	39 -144	95.7% 100.0%	No	I
PTX06-EW-48 PTX06-EW-49	т Т	22 21	22 18	0.39 3.26	-144 151	100.0% 100.0%	No No	D
PTX06-EW-49 PTX06-EW-5	т Т	21 19	18 19	3.26 0.42	-97	100.0%	NO	D
PTX06-EW-5 PTX06-EW-53	Т	9	9	0.42	-97 -18	96.2%	No	D
PTX06-EW-53 PTX06-EW-6	Т	9 20	9 20	0.29	-18 -66	96.2% 98.3%	No	D
PTX06-EW-6 PTX06-EW-7	Т	20 25	20 25	0.47	-00	98.3% 99.3%	No	D
PTX06-EW-7 PTX06-EW-9	Т	25 14	25 1	2.40	-106	99.3% 70.5%	No	NT
PTX08-1002	Т	7	4	1.05	0	43.7%	No	NT
PTX08-1002 PTX08-1008	Т	, 11	4	0.42	-6	43.7 % 64.8%	No	S

User Name: MV

Location: SouthEast

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentratio Trend
-AMINO-4,6-DINITROT	OLUENE							
PTX08-1009	т	7	1	0.78	-2	55.7%	No	S
4-AMINO-2,6-DINITROT	OLUENE							
PTX06-1002A	т	7	6	0.45	0	43.7%	No	S
PTX06-1003	S	7	2	0.61	-5	71.9%	No	S
PTX06-1005	S	8	5	1.11	13	92.9%	No	PI
PTX06-1010	S	8	3	1.41	-16	96.9%	No	D
PTX06-1011	S	7	0	0.00	0	43.7%	Yes	ND
PTX06-1013	Т	11	1	0.02	0	46.9%	No	S
PTX06-1014	т	13	12	0.65	-29	95.6%	No	D
PTX06-1015	Ť	13	13	0.34	-8	66.2%	No	S
PTX06-1023	Ť	12	0	0.00	0	47.3%	Yes	ND
PTX06-1020	Ť	13	12	0.68	33	97.5%	No	I
PTX06-1031	Ť	14	14	0.37	37	97.6%	No	
PTX06-1034	Т	15	14	0.80	73	100.0%	No	
PTX06-1034	Т	13	14		-43	99.6%		D
				0.85			No	
PTX06-1037	Т	5	5	0.19	-4	75.8%	No	S
PTX06-1038	Т	14	12	0.59	22	87.2%	No	NT
PTX06-1039A		11	9	0.74	18	90.5%	No	PI
PTX06-1040	Т	14	14	0.31	-3	54.3%	No	S
PTX06-1041	Т	12	12	0.32	10	72.7%	No	NT
PTX06-1042	Т	16	11	0.90	60	99.7%	No	I
PTX06-1045	Т	11	7	1.22	5	61.9%	No	NT
PTX06-1046	Т	17	11	0.99	44	96.2%	No	I
PTX06-1047A		14	5	1.83	35	96.9%	No	I
PTX06-1052	т	15	0	0.00	0	48.0%	Yes	ND
PTX06-1053	Т	17	13	1.15	96	100.0%	No	I
PTX06-1069	Т	11	0	0.00	0	46.9%	Yes	ND
PTX06-1088	S	8	6	0.96	10	86.2%	No	NT
PTX06-1095A	т	3	0	0.00	0	0.0%	Yes	ND
PTX06-1102	т	9	7	0.95	-1	50.0%	No	S
PTX06-EW-1	т	19	18	0.50	-43	92.8%	No	PD
PTX06-EW-10) Т	20	12	2.76	109	100.0%	No	I.
PTX06-EW-11	т	24	23	0.29	29	75.4%	No	NT
PTX06-EW-12	2 Т	22	21	0.43	10	59.9%	No	NT
PTX06-EW-14		11	10	0.51	-6	64.8%	No	S
PTX06-EW-15	; т	25	23	0.63	-127	99.9%	No	D
PTX06-EW-16		25	24	0.39	-61	91.9%	No	PD
PTX06-EW-17		23	22	0.39	-83	98.5%	No	D
PTX06-EW-18		18	17	0.41	-34	89.3%	No	S
PTX06-EW-19		23	22	0.33	-61	94.3%	No	PD
PTX06-EW-2	T	19	14	0.66	-47	94.6%	No	PD
PTX06-EW-20		21	9	0.92	14	65.1%	No	NT
PTX06-EW-20		21	9 7	3.16	-62	95.8%		D
PTX06-EW-21 PTX06-EW-22		22	12	2.33	-62 -16	95.8% 67.3%	No No	NT
PTX06-EW-22 PTX06-EW-23								PD
		21	21	0.28	-45	90.7%	No	
PTX06-EW-24		19	16	0.54	89	99.9%	No	1
PTX06-EW-25		18	8	0.78	-24	80.6%	No	S
PTX06-EW-26		23	23	0.58	-105	99.7%	No	D
PTX06-EW-27	′ Т	21	21	0.41	100	99.9%	No	1

Location: SouthEast

User Name: MV

#AMINO-2.6-DINITROTOLUENE PTX06-EW-28 T 19 0.31 -30 94.3% No S PTX06-EW-28 T 23 20 0.70 -171 100.0% No D PTX06-EW-30 T 23 23 0.52 453 94.4% No PD PTX06-EW-31 T 22 22 0.55 -477 99.7% No D PTX06-EW-31 T 22 22 0.52 -453 94.4% No D PTX06-EW-34 T 23 0.32 -155 100.076 No D PTX06-EW-36 T 22 21 0.58 -140 100.076 No D PTX06-EW-36 T 22 21 0.59 -112 100.076 No D PTX06-EW-37 T 21 21 0.63 -132 100.076 No D PTX06-EW-44 T 25 24	Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
PTX06-EW-3 T 23 20 0.70 -171 100.0% N0 D PTX06-EW-30 T 23 0.52 -63 94.9% N0 PD PTX06-EW-31 T 23 0.52 -63 94.9% N0 PD PTX06-EW-34 T 23 0.52 -155 100.0% N0 D PTX06-EW-34 T 23 23 0.66 -140 100.0% N0 D PTX06-EW-35 T 22 21 0.58 105 99.9% N0 I PTX06-EW-35 T 22 21 0.50 -116 100.0% N0 D PTX06-EW-35 T 22 21 0.50 -112 100.0% N0 D PTX06-EW-35 T 22 21 0.43 -137 100.0% N0 D PTX06-EW-43 T 21 23 359 11 50.0% N0	4-AMINO-2,6-DINITROT	DLUENE							
PTX06-EW-30 T 22 21 0.44 -116 100 % No D PTX06-EW-31 T 22 22 0.55 -97 99.7% No D PTX06-EW-31 T 22 22 0.55 -97 99.7% No D PTX06-EW-33 T 22 22 0.52 -155 100.7% No S PTX06-EW-35 T 23 0.66 -140 100.0% No D PTX06-EW-35 T 20 0.39 -18 700.0% No D PTX06-EW-35 T 21 21 0.60 -116 100.0% No D PTX06-EW-39 T 22 21 0.43 -133 100.0% No D PTX06-EW-41 T 23 23 3.59 1 50.07% No NT PTX06-EW-44 T 23 23 1.46 -42 85.9%	PTX06-EW-28	т	19	19	0.31	-30	84.3%	No	S
PTX06-EW-30T23230.52-9394.9%NoPDPTX06-EW-31T23230.32-155100.0%NoDPTX06-EW-33T22220.32-32000.0%NoDPTX06-EW-34T23230.66-14000.0%NoDPTX06-EW-35T22210.5810599.9%NoIPTX06-EW-36T21220.68-112100.0%NoDPTX06-EW-37T21210.66-112100.0%NoDPTX06-EW-38T24240.63-182100.0%NoDPTX06-EW-40T22210.46-139100.0%NoDPTX06-EW-41T16150.75-3593.6%NoPTPTX06-EW-42T23231.66-4695.%NoDPTX06-EW-44T21210.27-4992.6%NoDPTX06-EW-44T2122-7696.9%NoDDPTX06-EW-45T19180.66-4098.9%NoDPTX06-EW-46T2016-144100.0%NoDDPTX06-EW-47T1770.87-3696.9%NoDPTX06-EW-48T20190.87-3696.9% <td>PTX06-EW-29</td> <td>Т</td> <td>23</td> <td>20</td> <td>0.70</td> <td>-171</td> <td>100.0%</td> <td>No</td> <td>D</td>	PTX06-EW-29	Т	23	20	0.70	-171	100.0%	No	D
PTX06-EW-31 T 22 22 0.55 -97 99.7% No D PTX06-EW-33 T 22 22 0.32 -32 90.7% No D PTX06-EW-33 T 22 22 0.32 -32 90.7% No D PTX06-EW-35 T 22 21 0.56 -140 100.0% No D PTX06-EW-36 T 20 0.03 -18 700.0% No D PTX06-EW-35 T 21 21 0.50 -116 100.0% No D PTX06-EW-33 T 22 21 0.43 -137 100.0% No D PTX06-EW-43 T 23 3.53 -16 50.0% No D PTX06-EW-44 T 23 23 1.46 -42 85.9% No D PTX06-EW-43 T 18 18 0.43 45 95.0%	PTX06-EW-3	Т	22	21	0.44	-116	100.0%	No	D
PTX06EW-32 T 23 23 0.32 -155 100.0% No D PTX06EW-34 T 23 23 0.66 -140 100.0% No D PTX06EW-35 T 22 21 0.58 105 99.9% No I PTX06EW-36 T 22 21 0.59 -112 100.0% No D PTX06EW-37 T 21 24 0.69 -112 100.0% No D PTX06EW-39 T 22 21 0.69 -112 100.0% No D PTX06EW-40 T 22 21 0.43 -137 100.0% No D PTX06EW-41 T 13 0.75 -35 93.6% No D PTX06EW-43 T 23 23 1.64 -42 85.9% No D PTX06EW-44 T 21 21 0.27 -49 92.6% No D PTX06EW-45 T 21 22 0.56	PTX06-EW-30	Т	23	23	0.52	-63	94.9%	No	PD
PTX06E-W-33 T 22 22 0.32 -32 80.7% No S PTX06E-W-35 T 22 21 0.66 -140 100.0% No I PTX06E-W-36 T 22 21 0.66 -140 100.0% No D PTX06E-W-36 T 20 0.39 -18 70.7% No S PTX06E-W-38 T 22 21 0.50 -116 100.0% No D PTX06E-W-40 T 22 21 0.50 -116 100.0% No D PTX06E-W-40 T 22 21 0.43 -45 95.2% No P PTX06E-W-42 T 23 23 3.59 1 50.0% NO P PTX06E-W-44 T 23 23 1.46 -42 85.5% No P PTX06E-W-44 T 23 23 1.46 -42 <t< td=""><td>PTX06-EW-31</td><td>Т</td><td>22</td><td>22</td><td>0.55</td><td>-97</td><td>99.7%</td><td>No</td><td>D</td></t<>	PTX06-EW-31	Т	22	22	0.55	-97	99.7%	No	D
PTX06EW-36 T 23 23 0.66 -140 100.0% No D PTX06EW-36 T 20 20 0.58 105 99.% No I PTX06EW-36 T 20 20 0.59 -18 70.7% No S PTX06EW-37 T 21 0.50 -112 100.0% No D PTX06EW-30 T 22 21 0.60 -112 100.0% No D PTX06EW-40 T 25 24 0.45 -137 100.0% No D PTX06EW-40 T 22 21 0.43 -137 100.0% No D PTX06EW-44 T 23 23 3.59 1 50.0% NO D PTX06EW-45 T 21 22 0.27 -49 92.6% NO D PTX06EW-47 T 17 17 0.28 -33 50.0% </td <td>PTX06-EW-32</td> <td>Т</td> <td>23</td> <td>23</td> <td>0.32</td> <td>-155</td> <td>100.0%</td> <td>No</td> <td>D</td>	PTX06-EW-32	Т	23	23	0.32	-155	100.0%	No	D
PTX0F-EW-35 T 22 21 0.58 105 99.9% No I PTX0F-EW-35 T 20 20 0.39 -112 10.0% No D PTX0F-EW-38 T 21 21 0.50 -116 100.0% No D PTX0F-EW-40 T 22 21 0.45 139 100.0% No L PTX0F-EW-41 T 25 24 0.45 139 100.0% No L PTX0F-EW-41 T 25 24 0.45 137 100.0% No PD PTX0F-EW-42 T 23 23 3.59 1 50.0% No PD PTX0F-EW-44 T 23 23 1.46 -42 85.9% No PD PTX0F-EW-46 T 24 2.22 76 96.9% No PD PTX0F-EW-47 T 23 23 1.60 -144	PTX06-EW-33	Т	22	22	0.32	-32	80.7%	No	S
PTX0F-EW-38 T 20 20 0.39 -112 100.0% No S PTX0F-EW-38 T 22 21 0.69 -112 100.0% No D PTX0F-EW-39 T 22 21 0.63 -112 100.0% No D PTX0F-EW-40 T 22 21 0.43 -137 100.0% No D PTX0F-EW-40 T 22 21 0.43 -137 100.0% No D PTX0F-EW-40 T 23 23 359 1 50.0% NO D PTX0F-EW-43 T 18 18 0.43 -45 95.2% No D PTX0F-EW-45 T 21 21 0.27 -49 92.6% No D PTX0F-EW-45 T 21 22 0.52 -100 99.8% No D PTX0F-EW-45 T 23 23 166 <t< td=""><td>PTX06-EW-34</td><td>Т</td><td>23</td><td>23</td><td>0.66</td><td>-140</td><td>100.0%</td><td>No</td><td>D</td></t<>	PTX06-EW-34	Т	23	23	0.66	-140	100.0%	No	D
PTX0F-EW-37 T 21 21 0.69 -116 100.0% No D PTX0F-EW-38 T 24 24 0.63 -118 100.0% No D PTX0F-EW-4 T 25 24 0.45 139 100.0% No D PTX0F-EW-41 T 25 24 0.45 137 100.0% No D PTX0F-EW-42 T 23 23 3.59 1 50.0% No D PTX0F-EW-44 T 23 23 1.46 42 25.9% No DT PTX0F-EW-46 T 24 24 2.22 -76 96.9% No D PTX0F-EW-48 T 22 23 1.60 -1.44 100.0% No D PTX0F-EW-48 T 23 23 1.60 -1.44 100.0% No D PTX0F-EW-47 T 17 7 0.28 <	PTX06-EW-35	т	22	21	0.58	105	99.9%	No	I
PTX0F-EW-37 T 21 21 0.69 -116 100.0% No D PTX0F-EW-38 T 24 24 0.63 -118 100.0% No D PTX0F-EW-4 T 25 24 0.45 139 100.0% No D PTX0F-EW-41 T 25 24 0.45 137 100.0% No D PTX0F-EW-42 T 23 23 3.59 1 50.0% No D PTX0F-EW-44 T 23 23 1.46 42 25.9% No DT PTX0F-EW-46 T 24 24 2.22 -76 96.9% No D PTX0F-EW-48 T 22 23 1.60 -1.44 100.0% No D PTX0F-EW-48 T 23 23 1.60 -1.44 100.0% No D PTX0F-EW-47 T 17 7 0.28 <	PTX06-EW-36	т	20	20	0.39	-18	70.7%	No	S
PTX06-EW-38 T 22 21 0.50 1-16 100.0% No D PTX06-EW-4 T 24 24 0.63 -162 100.0% No D PTX06-EW-40 T 22 21 0.43 -137 100.0% No D PTX06-EW-41 T 16 15 0.75 -335 93.6% No D PTX06-EW-42 T 23 23 3.59 1 50.0% No DT PTX06-EW-44 T 23 23 1.46 -422 85.5% No DT PTX06-EW-45 T 21 21 0.27 -49 92.6% No DD PTX06-EW-45 T 21 22 2.76 96.5% No DD PTX06-EW-47 T 23 23 1.60 -1.44 10.00% No S PTX06-EW-5 T 19 18 0.56 -60									
PTX06-EW-4 T 24 24 0.63 -182 100.0% No D PTX06-EW-4 T 22 21 0.43 -137 100.0% No D PTX06-EW-41 T 16 15 0.75 -35 93.6% No PD PTX06-EW-43 T 18 137 100.0% No NT PTX06-EW-43 T 18 0.43 -45 95.2% No D PTX06-EW-44 T 23 23 1.46 -42 85.9% No PD PTX06-EW-46 T 24 24 2.22 -76 96.9% No DD PTX06-EW-48 T 22 22 0.52 -100 98.8% No D PTX06-EW-48 T 22 23 1.60 -144 100.0% No S PTX06-EW-47 T 25 24 0.35 -3 58.0% No									
PTX06-EW-40 T 25 24 0.45 139 100.0% No I PTX06-EW-40 T 22 21 0.43 -137 100.0% No DP PTX06-EW-42 T 23 23 3.59 1 50.0% No NT PTX06-EW-43 T 18 0.43 -45 95.2% No DT PTX06-EW-44 T 23 23 1.46 -42 85.9% No PT PTX06-EW-45 T 21 21 0.27 -49 92.6% No PD PTX06-EW-46 T 22 22 0.62 -100 98.9% No DD PTX06-EW-48 T 22 22 0.62 -100 98.9% No DD PTX06-EW-49 T 20 19 0.35 -33 58.0% No DT PTX06-EW-5 T 19 18 0.56 -60									
PTX06-EV-40 T 22 21 0.43 -137 100.0% No D PTX06-EV-41 T 16 15 0.75 -35 93.6% No PTD PTX06-EV-43 T 18 18 0.43 -45 95.2% No DT PTX06-EV-44 T 23 23 1.46 -42 85.9% No PT PTX06-EV-45 T 21 21 0.27 -49 92.6% No PT PTX06-EV-45 T 21 22 7.6 96.9% No PT PTX06-EV-46 T 22 22 0.52 -100 99.8% No D PTX06-EV-43 T 23 23 1.60 -141 100.0% No D PTX06-EV-3 T 9 9 0.35 -36 98.9% No D PTX06-EV-7 T 25 24 0.35 104 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
PTX06-EV-41 T 16 15 0.75 -35 93.6% No PD PTX06-EV-42 T 23 23 3.59 1 50.0% No NT PTX06-EV-44 T 23 23 1.46 -42 25.9% No DT PTX06-EV-44 T 23 23 1.46 -42 25.9% No DT PTX06-EV-46 T 21 0.27 -49 92.6% No DD PTX06-EV-46 T 24 22 0.52 -100 99.8% No DD PTX06-EV-47 T 19 18 0.56 -90 98.1% No DC PTX06-EV-5 T 19 91 0.81 -86 99.8% No D PTX06-EV-6 T 20 19 0.81 -86 99.8% No D PTX06-EV-7 T 25 24 0.35 14 99									
PTX06-EW-42 T 23 23 3.59 1 50.0% No NT PTX06-EW-43 T 18 18 0.43 -45 95.2% No DT PTX06-EW-44 T 23 23 1.46 -42 85.9% No PT PTX06-EW-46 T 21 0.27 -49 92.6% No PD PTX06-EW-47 T 17 17 0.28 -35 91.8% No PD PTX06-EW-48 T 22 20.52 -100 99.8% No D PTX06-EW-53 T 9 9 0.35 -33 58.0% No D PTX06-EW-53 T 9 9 0.35 104 99.2% No I PTX06-EW-6 T 20 19 0.81 -86 99.8% No NT PTX06-EW-7 T 25 24 0.35 104 92.2% N									
PTX06-EW-43 T 18 18 0.43 -45 95.2% No D PTX06-EW-44 T 23 1.46 -4.2 85.9% No PD PTX06-EW-46 T 2.1 2.1 0.27 -49 92.6% No PD PTX06-EW-47 T 1.7 1.7 0.28 -35 91.8% No PD PTX06-EW-48 T 2.2 0.52 -100 99.9% No D PTX06-EW-48 T 2.2 0.52 -100 99.9% No D PTX06-EW-5 T 19 18 0.56 -60 98.1% No D PTX06-EW-5 T 20 19 0.81 -36 99.8% No D PTX06-EW-5 T 20 19 0.81 -39 95.7% No D PTX06-EW-5 T 7 7 4 1.53 4 66.7% <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
PTX06-EW-44 T 23 23 1.46 -42 85.9% No NT PTX06-EW-45 T 21 2.1 0.27 -49 92.6% No PD PTX06-EW-46 T 24 22 76 95.9% No PD PTX06-EW-47 T 17 17 0.28 -35 91.8% No PD PTX06-EW-49 T 22 22 0.52 -100 99.8% No D PTX06-EW-49 T 23 23 1.60 -144 100.0% No D PTX06-EW-5 T 19 9 0.35 -3 58.0% No D PTX06-EW-6 T 20 19 0.35 104 99.2% No I PTX06-EW-7 T 25 24 0.35 104 99.2% No S PTX06-EW-9 T 16 15 0.41 -39 95.7%									
PTX06-EW-46 T 21 21 0.27 -49 92.6% No PD PTX06-EW-46 T 24 24 2.22 -76 96.9% No D PTX06-EW-47 T 17 17 128 -35 91.8% No D PTX06-EW-48 T 22 22 0.52 -100 99.8% No D PTX06-EW-49 T 23 23 1.60 -144 100.0% No D PTX06-EW-49 T 20 19 0.81 -36 99.8% No D PTX06-EW-5 T 20 19 0.81 -36 99.8% No D PTX06-EW-7 T 25 24 0.35 104 99.2% No D PTX06-EW-7 T 7 0.81 -39 95.7% No S PTX06-1002 T 7 7 0.14 -5 71.9% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
PTX06-EW-46 T 24 22 -76 96.9% No D PTX06-EW-47 T 17 17 0.28 -35 91.9% No DD PTX06-EW-48 T 22 22 0.52 -100 99.8% No D PTX06-EW-48 T 23 23 1.60 -144 100.0% No D PTX06-EW-45 T 19 18 0.56 -60 98.1% No D PTX06-EW-53 T 9 0.81 -86 99.8% No D PTX06-EW-7 T 25 24 0.35 104 99.2% No D PTX06-EW-7 T 25 24 0.35 104 99.2% No S PTX06-EW-7 T 7 4 1.53 4 66.7% No No PTX06-1008 T 7 7 0.14 -5 71.9% No									
PTX06-EW-47 T 17 17 0.28 -35 91.8% No PD PTX06-EW-48 T 22 22 0.52 -100 99.8% No D PTX06-EW-49 T 23 23 1.60 -144 100.0% No D PTX06-EW-53 T 9 9 0.35 -3 58.0% No S PTX06-EW-53 T 9 9 0.35 -3 58.0% No D PTX06-EW-67 T 20 19 0.81 -86 99.8% No D PTX06-1002 T 7 4 1.53 4 66.7% No NT PTX08-1002 T 7 3 1.54 7 80.9% No NT PTX06-1003 S 7 6 1.93 -7 80.9% No NT PTX06-1003 S 7 2 2.59 1 56									
PTX06-EW-48 T 22 22 0.52 -100 99.8% No D PTX06-EW-49 T 23 23 1.60 -144 100.0% No D PTX06-EW-53 T 19 18 0.56 -60 98.1% No D PTX06-EW-53 T 9 9 0.35 -3 58.0% No D PTX06-EW-7 T 25 24 0.35 104 99.2% No I PTX06-EW-9 T 16 1.53 0.41 -39 95.7% No D PTX06-EW-9 T 16 0.41 -39 95.7% No NT PTX08-1008 T 11 9 0.87 -8 70.3% No S PTX08-1009 T 7 6 1.93 -7 80.9% No NT PTX06-1002A T 7 2 2.59 1 50.0%									
PTX06-EW-49 T 23 23 1.60 -144 100.0% No D PTX06-EW-5 T 19 18 0.56 -60 98.1% No D PTX06-EW-63 T 9 9 0.35 -33 58.0% No D PTX06-EW-6 T 20 19 0.81 -86 99.8% No I PTX06-EW-7 T 25 24 0.35 104 99.2% No I PTX06-EW-7 T 25 24 0.35 104 99.2% No I PTX06-EW-7 T 7 0.41 -53 70.3% No S PTX08-1008 T 11 9 0.87 -8 70.3% No S PTX06-1002A T 7 7 0.14 -5 71.9% No S PTX06-1002A S 7 6 1.93 -7 80.9%									
PTX06-EW-5 T 19 18 0.56 -60 98.1% No D PTX06-EW-53 T 9 9 0.35 -3 58.0% No S PTX06-EW-6 T 20 19 0.81 -86 99.8% No D PTX06-EW-7 T 25 24 0.35 104 99.2% No I PTX06-EW-9 T 16 15 0.41 -39 95.7% No D PTX06-EW-9 T 7 4 1.53 4 66.7% No NT PTX08-1009 T 7 3 1.54 7 80.9% No NT PTX06-1002 T 7 7 0.14 -5 71.9% No S PTX06-1002 S 7 6 1.93 -7 80.9% No NT PTX06-1010 S 8 6 1.25 15 95.8%									
PTX06-EW-53 T 9 9 0.35 -3 58.0% No S PTX06-EW-6 T 20 19 0.81 -86 99.8% No D PTX06-EW-7 T 25 24 0.35 104 99.2% No I PTX06-EW-9 T 16 15 0.41 -39 95.7% No D PTX08-1002 T 7 4 1.53 4 66.7% No NT PTX08-1008 T 11 9 0.87 -8 70.3% No S PTX06-1009 T 7 3 1.54 7 80.9% No NT HEXAHYDRO-1,3,5-TRINITR-TLAJS-TRIATE/ P P 7 0.14 -5 71.9% No S PTX06-1002A T 7 7 0.14 -5 71.9% No NT PTX06-1013 S 7 2 2.59 15 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
PTX06-EW-6 T 20 19 0.81 -86 99.8% No D PTX06-EW-7 T 25 24 0.35 104 99.2% No I PTX06-EW-9 T 16 15 0.41 -39 95.7% No DT PTX08-1002 T 7 4 1.53 4 66.7% No NT PTX08-1008 T 11 9 0.87 -8 70.3% No ST HEXAHYDRO-1.3,5-TRINET 7 3 1.54 7 80.9% No NT PTX06-1003 S 7 6 1.93 -7 80.9% No NT PTX06-1010 S 8 6 1.25 -15 95.8% No DT PTX06-1010 S 7 2 2.59 1 50.0% No I PTX06-1013 T 11 11 0.19 23 95.7%									
PTX06-EW-7 T 25 24 0.35 104 99.2% No I PTX06-EW-9 T 16 15 0.41 -39 95.7% No D PTX08-1002 T 7 4 1.53 4 66.7% No NT PTX08-1008 T 11 9 0.87 -8 70.3% No S PTX08-1009 T 7 3 1.54 7 80.9% No NT PTX06-1002A T 7 7 0.14 -5 71.9% No S PTX06-1002A T 7 6 1.93 -7 80.9% No NT PTX06-1003 S 7 6 1.93 -7 80.9% No DT PTX06-1010 S 8 6 1.25 -15 95.8% No I PTX06-1013 T 11 11 0.19 23 95.7%									
PTX06-EW-9 T 16 15 0.41 -39 95.7% No D PTX08-1002 T 7 4 1.53 4 66.7% No NT PTX08-1008 T 11 9 0.87 -8 70.3% No S PTX08-1009 T 7 3 1.54 7 80.9% No NT HEXAHYDRO-1,3,5-TRINTRO-1,3,5-TRIAZINE 7 0.14 -5 71.9% No S PTX06-1002A T 7 6 1.93 -7 80.9% No NT PTX06-1003 S 7 6 1.93 -7 80.9% No PT PTX06-1010 S 8 6 1.25 -15 95.8% No D PTX06-1011 S 7 2 2.59 1 50.0% No I PTX06-1014 T 14 14 0.26 35 96.9% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
PTX08-1002 T 7 4 1.53 4 66.7% No NT PTX08-1008 T 11 9 0.87 -8 70.3% No S PTX08-1009 T 7 3 1.54 7 80.9% No NT HEXAHYDRO-1,3,5-TRINTRO-1,3,5-TRINTRO-1,3,5-TRINTRO-1,3,5-TRINTRO-1,3,5-TRINTRO-1,3,5-TRINTRO-1,3,5-TRINTRO-1,3,5-TRINTRO-1,3,5 7 6 1.93 -7 80.9% No S PTX06-1002A T 7 6 1.93 -7 80.9% No S PTX06-1010 S 8 6 1.25 -15 95.8% No D PTX06-1010 S 8 6 1.25 -15 95.8% No I PTX06-1013 T 11 11 0.19 23 95.7% No I PTX06-1013 T 13 13 0.65 60 100.0% No I PTX06-1013 T <									-
PTX08-1008 PTX08-1009T1190.87-870.3%NoSHEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINEPTX06-1002AT770.14-571.9%NoSPTX06-1003S761.93-780.9%NoNTPTX06-1005S880.84-1494.6%NoPDPTX06-1011S722.59150.0%NoNTPTX06-1011S722.59150.0%NoNTPTX06-1013T11110.192395.7%NoIPTX06-1014T14140.263596.9%NoIPTX06-1015T13130.6560100.0%NoIPTX06-1030T15150.264799.0%NoIPTX06-1031T1371.8755100.0%NoIPTX06-1031T1361.174399.6%NoIPTX06-1037T550.36-688.3%NoSPTX06-1037T550.36-688.3%NoS									
PTX08-1009 T 7 3 1.54 7 80.9% No NT HEXAHYDRO-1,3,5-TRINITRO-1,3,5									
HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5-TRINITRO-1,3,5,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7									
PTX06-1002A T 7 7 0.14 -5 71.9% No S PTX06-1003 S 7 6 1.93 -7 80.9% No NT PTX06-1005 S 8 8 0.84 -14 94.6% No PD PTX06-1010 S 8 6 1.25 -15 95.8% No D PTX06-1011 S 7 2 2.59 1 50.0% No NT PTX06-1013 T 11 11 0.19 23 95.7% No I PTX06-1014 T 14 14 0.26 35 96.9% No I PTX06-1015 T 13 13 0.65 60 100.0% No I PTX06-1023 T 12 12 0.23 -10 72.7% No S PTX06-1030 T 15 15 0.26 47 99.0% </td <td>PTX08-1009</td> <td>Т</td> <td>7</td> <td>3</td> <td>1.54</td> <td>7</td> <td>80.9%</td> <td>No</td> <td>NT</td>	PTX08-1009	Т	7	3	1.54	7	80.9%	No	NT
PTX06-1003S761.93-780.9%NoNTPTX06-1005S880.84-1494.6%NoPDPTX06-1010S861.25-1595.8%NoDPTX06-1011S722.59150.0%NoNTPTX06-1013T11110.192395.7%NoIPTX06-1014T14140.263596.9%NoIPTX06-1015T13130.6560100.0%NoIPTX06-1023T12120.23-1072.7%NoSPTX06-1030T15150.6697100.0%NoIPTX06-1031T1371.8755100.0%NoIPTX06-1034T1361.174399.6%NoIPTX06-1037T50.36-688.3%NoSPTX06-1038T14140.20-3596.9%NoD	HEXAHYDRO-1,3,5-TRI	NITRO-1,3	,5-TRIAZINE						
PTX06-1005S880.84-1494.6%NoPDPTX06-1010S861.25-1595.8%NoDPTX06-1011S722.59150.0%NoNTPTX06-1013T11110.192395.7%NoIPTX06-1014T14140.263596.9%NoIPTX06-1015T13130.6560100.0%NoIPTX06-1023T12120.23-1072.7%NoSPTX06-1030T15150.264799.0%NoIPTX06-1031T1371.8755100.0%NoIPTX06-1034T1361.174399.6%NoIPTX06-1037T550.36-688.3%NoSPTX06-1038T14140.20-3596.9%NoD	PTX06-1002A	т	7	7	0.14	-5	71.9%	No	S
PTX06-1010S861.25-1595.8%NoDPTX06-1011S722.59150.0%NoNTPTX06-1013T11110.192395.7%NoIPTX06-1014T14140.263596.9%NoIPTX06-1015T13130.6560100.0%NoIPTX06-1023T12120.23-1072.7%NoSPTX06-1030T15150.264799.0%NoIPTX06-1031T1371.8755100.0%NoIPTX06-1034T1361.174399.6%NoIPTX06-1037T550.36-688.3%NoSPTX06-1038T14140.20-3596.9%NoD	PTX06-1003	S	7	6	1.93	-7	80.9%	No	NT
PTX06-1010S861.25-1595.8%NoDPTX06-1011S722.59150.0%NoNTPTX06-1013T11110.192395.7%NoIPTX06-1014T14140.263596.9%NoIPTX06-1015T13130.6560100.0%NoIPTX06-1023T12120.23-1072.7%NoSPTX06-1030T15150.264799.0%NoIPTX06-1031T1371.8755100.0%NoIPTX06-1034T1361.174399.6%NoIPTX06-1037T550.36-688.3%NoSPTX06-1038T14140.20-3596.9%NoD	PTX06-1005	S	8	8	0.84	-14	94.6%	No	PD
PTX06-1011S722.59150.0%NoNTPTX06-1013T11110.192395.7%NoIPTX06-1014T14140.263596.9%NoIPTX06-1015T13130.6560100.0%NoIPTX06-1023T12120.23-1072.7%NoSPTX06-1030T15150.264799.0%NoIPTX06-1031T1371.8755100.0%NoIPTX06-1034T1361.174399.6%NoIPTX06-1037T550.36-688.3%NoSPTX06-1038T14140.20-3596.9%NoD		S	8	6		-15		No	D
PTX06-1013T11110.192395.7%NoIPTX06-1014T14140.263596.9%NoIPTX06-1015T13130.6560100.0%NoIPTX06-1023T12120.23-1072.7%NoSPTX06-1030T15150.264799.0%NoIPTX06-1031T15150.6697100.0%NoIPTX06-1034T1371.8755100.0%NoIPTX06-1036T1361.174399.6%NoIPTX06-1037T550.36-688.3%NoSPTX06-1038T14140.20-3596.9%NoD									
PTX06-1014T14140.263596.9%NoIPTX06-1015T13130.6560100.0%NoIPTX06-1023T12120.23-1072.7%NoSPTX06-1030T15150.264799.0%NoIPTX06-1031T15150.6697100.0%NoIPTX06-1034T1371.8755100.0%NoIPTX06-1036T1361.174399.6%NoIPTX06-1037T550.36-688.3%NoSPTX06-1038T14140.20-3596.9%NoD									
PTX06-1015 T 13 13 0.65 60 100.0% No I PTX06-1023 T 12 12 0.23 -10 72.7% No S PTX06-1030 T 15 15 0.26 47 99.0% No I PTX06-1031 T 15 15 0.66 97 100.0% No I PTX06-1034 T 13 7 1.87 55 100.0% No I PTX06-1036 T 13 6 1.17 43 99.6% No I PTX06-1037 T 5 0.36 -6 88.3% No S PTX06-1038 T 14 0.20 -35 96.9% No D									1
PTX06-1023T12120.23-1072.7%NoSPTX06-1030T15150.264799.0%NoIPTX06-1031T15150.6697100.0%NoIPTX06-1034T1371.8755100.0%NoIPTX06-1036T1361.174399.6%NoIPTX06-1037T550.36-688.3%NoSPTX06-1038T14140.20-3596.9%NoD									1
PTX06-1030T15150.264799.0%NoIPTX06-1031T15150.6697100.0%NoIPTX06-1034T1371.8755100.0%NoIPTX06-1036T1361.174399.6%NoIPTX06-1037T550.36-688.3%NoSPTX06-1038T14140.20-3596.9%NoD									S
PTX06-1031T15150.6697100.0%NoIPTX06-1034T1371.8755100.0%NoIPTX06-1036T1361.174399.6%NoIPTX06-1037T550.36-688.3%NoSPTX06-1038T140.20-3596.9%NoD									ı
PTX06-1034T1371.8755100.0%NoIPTX06-1036T1361.174399.6%NoIPTX06-1037T550.36-688.3%NoSPTX06-1038T140.20-3596.9%NoD									
PTX06-1036 T 13 6 1.17 43 99.6% No I PTX06-1037 T 5 5 0.36 -6 88.3% No S PTX06-1038 T 14 14 0.20 -35 96.9% No D									1
PTX06-1037 T 5 5 0.36 -6 88.3% No S PTX06-1038 T 14 14 0.20 -35 96.9% No D									1
PTX06-1038 T 14 14 0.20 -35 96.9% No D									ı e
PTAUD-1039A I 11 11 0.31 -21 94.0% NO PD									
	PTX06-1039A	Т	11	11	0.31	-21	94.0%	No	PD

Location: SouthEast

User Name: MV

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
HEXAHYDRO-1,3,5-TRIN	IITRO-1,3,5	-TRIAZINE						
PTX06-1040	т	14	14	0.15	9	66.6%	No	NT
PTX06-1041	т	12	12	0.24	2	52.7%	No	NT
PTX06-1042	т	16	16	0.39	-18	77.5%	No	S
PTX06-1045	т	12	12	0.34	38	99.6%	No	I
PTX06-1046	т	17	17	0.22	88	100.0%	No	I
PTX06-1047A	т	14	5	2.31	37	97.6%	No	I
PTX06-1052	т	15	0	0.00	0	48.0%	Yes	ND
PTX06-1053	т	17	2	3.15	23	81.5%	No	NT
PTX06-1069	т	11	1	0.14	-4	59.0%	No	S
PTX06-1088	S	8	8	0.15	-14	94.6%	No	PD
PTX06-1095A	Т	3	1	0.00	0	0.0%	No	N/A
PTX06-1102	т	10	10	1.14	-16	90.7%	No	PD
PTX06-EW-1	Ť	21	21	0.37	-65	97.4%	No	D
PTX06-EW-10	т	22	19	4.55	87	99.3%	No	-
PTX06-EW-11	Ť	23	23	0.31	-202	100.0%	No	D
PTX06-EW-12	т	22	22	0.34	-94	99.7%	No	D
PTX06-EW-14	T	10	10	0.52	3	56.9%	No	NT
PTX06-EW-15	Ť	25	25	0.33	-43	83.5%	No	S
PTX06-EW-16	Ť	24	24	0.35	-40	83.1%	No	S
PTX06-EW-10	Ť	23	23	0.26	-16	65.3%	No	S
PTX06-EW-18	Ť	18	18	0.49	-78	99.9%	No	D
PTX06-EW-19	T	23	23	0.23	-120	100.0%	No	D
PTX06-EW-19	т Т	23	23	0.23	-85	99.5%	No	D
PTX06-EW-20	т	23	23	1.06	101	99.6%	No	I
PTX06-EW-20	Т	23	23	0.72	-211	99.0% 100.0%	No	D
PTX06-EW-21 PTX06-EW-22	Т	23	23	1.18	-120	100.0%	No	D
PTX06-EW-22 PTX06-EW-23	Т	22	22	0.27	-120	99.4%	No	D
PTX06-EW-23 PTX06-EW-24	Т		21	0.27		99.4 <i>%</i> 100.0%	No	D
	Т	22	22		-136		No	D
PTX06-EW-25	Т	21	21	0.88	-166	100.0%		
PTX06-EW-26		23		0.63	-104	99.7%	No	D
PTX06-EW-27	Т	21	21	0.41	111	100.0%	No	I
PTX06-EW-28	Т	20	20	0.47	-120	100.0%	No	D
PTX06-EW-29		24	24	0.69	-203	100.0%	No	D
PTX06-EW-3	T	23	23	0.38	-181	100.0%	No	D
PTX06-EW-30	Т	22	22	0.35	-92	99.6%	No	D
PTX06-EW-31	Т	22	22	0.47	-159	100.0%	No	D
PTX06-EW-32	T -	23	23	0.38	-123	100.0%	No	D
PTX06-EW-33		22	22	0.48	155	100.0%	No	1
PTX06-EW-34		23	23	0.31	-38	83.4%	No	S
PTX06-EW-35		22	22	0.41	-94	99.7%	No	D
PTX06-EW-36		21	21	0.56	-97	99.9%	No	D
PTX06-EW-37	Т	21	21	2.42	100	99.9%	No	1
PTX06-EW-38		22	22	1.95	-142	100.0%	No	D
PTX06-EW-39		24	24	0.60	-79	97.4%	No	D
PTX06-EW-4	Т	25	25	0.33	30	74.9%	No	NT
PTX06-EW-40	Т	22	22	0.67	-143	100.0%	No	D
PTX06-EW-41	Т	16	16	1.13	-47	98.2%	No	D
PTX06-EW-42		24	24	1.14	-57	91.7%	No	PD
PTX06-EW-43		19	19	0.54	-53	96.6%	No	D
PTX06-EW-44	т	24	24	0.65	-50	88.7%	No	S
PTX06-EW-45	т	22	22	0.22	-120	100.0%	No	D

Location: SouthEast

User Name: MV

State: Texas

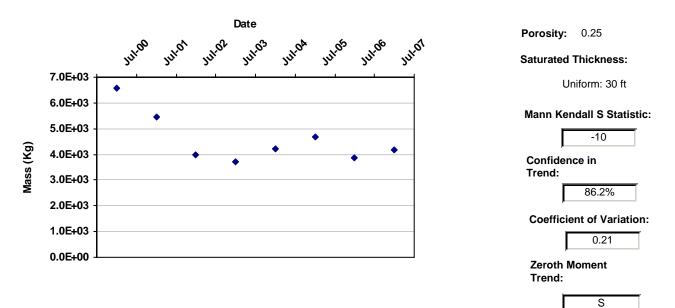
Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
HEXAHYDRO-1,3,5-TRIN	NITRO-1,3,5	-TRIAZINE						
PTX06-EW-46	Т	24	24	0.70	-100	99.4%	No	D
PTX06-EW-47	Т	17	17	0.31	-75	99.9%	No	D
PTX06-EW-48	Т	22	22	0.39	117	100.0%	No	I
PTX06-EW-49	Т	24	24	0.63	-8	56.8%	No	S
PTX06-EW-5	т	18	18	0.24	78	99.9%	No	I
PTX06-EW-53	Т	9	9	0.23	-16	94.0%	No	PD
PTX06-EW-6	т	20	20	0.64	-130	100.0%	No	D
PTX06-EW-7	т	25	25	0.32	127	99.9%	No	I
PTX06-EW-9	т	16	16	2.19	72	100.0%	No	I
PTX08-1002	Т	7	7	0.70	-11	93.2%	No	PD
PTX08-1008	Т	11	2	0.09	-15	85.9%	No	S
PTX08-1009	т	7	4	2.10	-8	84.5%	No	NT

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events); Source/Tail (S/T)

The Number of Samples and Number of Detects shown above are post-consolidation values.

MAROS Zeroth Moment Analysis

Project: Pantex SE Sector


Location: SouthEast

User Name: MV

State: Texas

COC: HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE

Change in Dissolved Mass Over Time

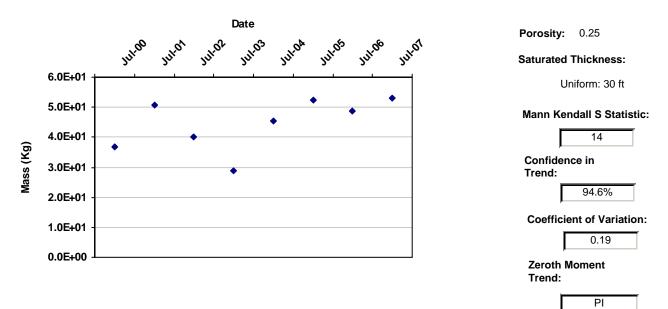
Data Table:

		Estimated	
Effective Date	Constituent	Mass (Kg)	Number of Wells
7/1/2000	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	6.6E+03	72
7/1/2001	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	5.5E+03	74
7/1/2002	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	4.0E+03	75
7/1/2003	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	3.7E+03	75
7/1/2004	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	4.2E+03	73
7/1/2005	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	4.7E+03	76
7/1/2006	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	3.9E+03	75
7/1/2007	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-T	4.2E+03	68

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); ND = Non-detect. Moments are not calculated for sample events with less than 6 wells.

MAROS Zeroth Moment Analysis

Project: Pantex SE 4ADNT


Location: Southeast

User Name: MV

State: Texas

COC: 4-AMINO-2,6-DINITROTOLUENE

Change in Dissolved Mass Over Time

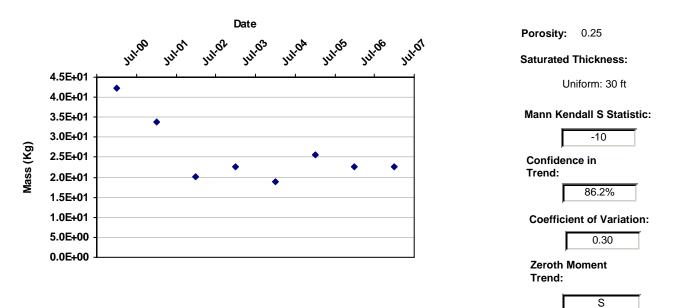
Data Table:

Effective Date Constituent Mass (Kg) Number of Wells 7/1/2000 4-AMINO-2,6-DINITROTOLUENE 3.7E+01 68 7/1/2001 4-AMINO-2,6-DINITROTOLUENE 5.1E+01 68 7/1/2002 4-AMINO-2,6-DINITROTOLUENE 4.0E+01 75 7/1/2003 4-AMINO-2,6-DINITROTOLUENE 2.9E+01 75 7/1/2004 4-AMINO-2,6-DINITROTOLUENE 4.5E+01 74 7/1/2005 4-AMINO-2,6-DINITROTOLUENE 5.2E+01 76 7/1/2006 4-AMINO-2,6-DINITROTOLUENE 4.9E+01 73 7/1/2007 4-AMINO-2,6-DINITROTOLUENE 5.3E+01 68			Estimated	
7/1/2001 4-AMINO-2,6-DINITROTOLUENE 5.1E+01 68 7/1/2002 4-AMINO-2,6-DINITROTOLUENE 4.0E+01 75 7/1/2003 4-AMINO-2,6-DINITROTOLUENE 2.9E+01 75 7/1/2004 4-AMINO-2,6-DINITROTOLUENE 4.5E+01 74 7/1/2005 4-AMINO-2,6-DINITROTOLUENE 5.2E+01 76 7/1/2006 4-AMINO-2,6-DINITROTOLUENE 4.9E+01 73	Effective Date	Constituent	Mass (Kg)	Number of Wells
7/1/2002 4-AMINO-2,6-DINITROTOLUENE 4.0E+01 75 7/1/2003 4-AMINO-2,6-DINITROTOLUENE 2.9E+01 75 7/1/2004 4-AMINO-2,6-DINITROTOLUENE 4.5E+01 74 7/1/2005 4-AMINO-2,6-DINITROTOLUENE 5.2E+01 76 7/1/2006 4-AMINO-2,6-DINITROTOLUENE 4.9E+01 73	7/1/2000	4-AMINO-2,6-DINITROTOLUENE	3.7E+01	68
7/1/2003 4-AMINO-2,6-DINITROTOLUENE 2.9E+01 75 7/1/2004 4-AMINO-2,6-DINITROTOLUENE 4.5E+01 74 7/1/2005 4-AMINO-2,6-DINITROTOLUENE 5.2E+01 76 7/1/2006 4-AMINO-2,6-DINITROTOLUENE 4.9E+01 73	7/1/2001	4-AMINO-2,6-DINITROTOLUENE	5.1E+01	68
7/1/2004 4-AMINO-2,6-DINITROTOLUENE 4.5E+01 74 7/1/2005 4-AMINO-2,6-DINITROTOLUENE 5.2E+01 76 7/1/2006 4-AMINO-2,6-DINITROTOLUENE 4.9E+01 73	7/1/2002	4-AMINO-2,6-DINITROTOLUENE	4.0E+01	75
7/1/2005 4-AMINO-2,6-DINITROTOLUENE 5.2E+01 76 7/1/2006 4-AMINO-2,6-DINITROTOLUENE 4.9E+01 73	7/1/2003	4-AMINO-2,6-DINITROTOLUENE	2.9E+01	75
7/1/2006 4-AMINO-2,6-DINITROTOLUENE 4.9E+01 73	7/1/2004	4-AMINO-2,6-DINITROTOLUENE	4.5E+01	74
	7/1/2005	4-AMINO-2,6-DINITROTOLUENE	5.2E+01	76
7/1/2007 4-AMINO-2,6-DINITROTOLUENE 5.3E+01 68	7/1/2006	4-AMINO-2,6-DINITROTOLUENE	4.9E+01	73
	7/1/2007	4-AMINO-2,6-DINITROTOLUENE	5.3E+01	68

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); ND = Non-detect. Moments are not calculated for sample events with less than 6 wells.

MAROS Zeroth Moment Analysis

Project: Pantex SE Sector


Location: SouthEast

User Name: MV

State: Texas

COC: 2-AMINO-4,6-DINITROTOLUENE

Change in Dissolved Mass Over Time

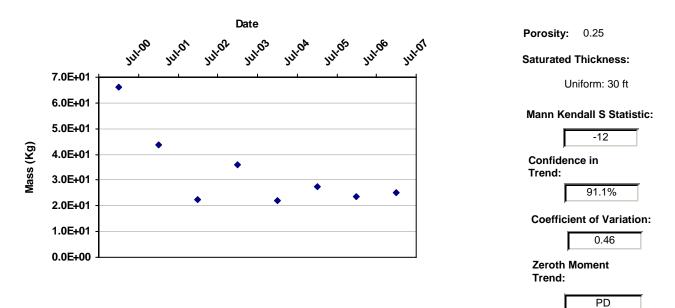
Data Table:

Bata rabior		Estimated	
Effective Date	Constituent	Mass (Kg)	Number of Wells
7/1/2000	2-AMINO-4,6-DINITROTOLUENE	4.2E+01	71
7/1/2001	2-AMINO-4,6-DINITROTOLUENE	3.4E+01	68
7/1/2002	2-AMINO-4,6-DINITROTOLUENE	2.0E+01	74
7/1/2003	2-AMINO-4,6-DINITROTOLUENE	2.3E+01	75
7/1/2004	2-AMINO-4,6-DINITROTOLUENE	1.9E+01	74
7/1/2005	2-AMINO-4,6-DINITROTOLUENE	2.6E+01	76
7/1/2006	2-AMINO-4,6-DINITROTOLUENE	2.3E+01	75
7/1/2007	2-AMINO-4,6-DINITROTOLUENE	2.3E+01	68

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); ND = Non-detect. Moments are not calculated for sample events with less than 6 wells.

MAROS Zeroth Moment Analysis

Project: Pantex SE Sector


Location: SouthEast

User Name: MV

State: Texas

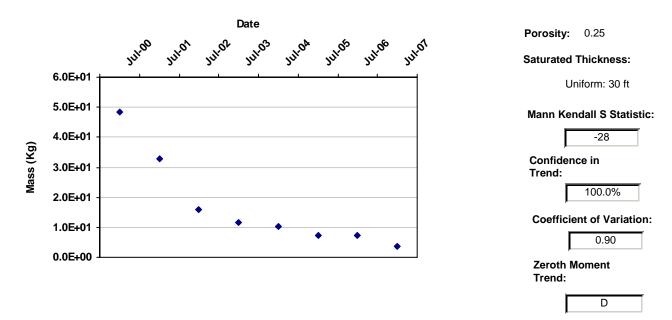
COC: 2,4,6-TRINITROTOLUENE

Change in Dissolved Mass Over Time

Data Table:

		Estimated	
Effective Date	Constituent	Mass (Kg)	Number of Wells
7/1/2000	2,4,6-TRINITROTOLUENE	6.6E+01	58
7/1/2001	2,4,6-TRINITROTOLUENE	4.4E+01	46
7/1/2002	2,4,6-TRINITROTOLUENE	2.3E+01	74
7/1/2003	2,4,6-TRINITROTOLUENE	3.6E+01	75
7/1/2004	2,4,6-TRINITROTOLUENE	2.2E+01	74
7/1/2005	2,4,6-TRINITROTOLUENE	2.8E+01	76
7/1/2006	2,4,6-TRINITROTOLUENE	2.3E+01	75
7/1/2007	2,4,6-TRINITROTOLUENE	2.5E+01	68

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); ND = Non-detect. Moments are not calculated for sample events with less than 6 wells.


MAROS Zeroth Moment Analysis

Project: Pantex SE Sector

Location: SouthEast

COC: 2,4-DINITROTOLUENE

Change in Dissolved Mass Over Time

User Name: MV State: Texas

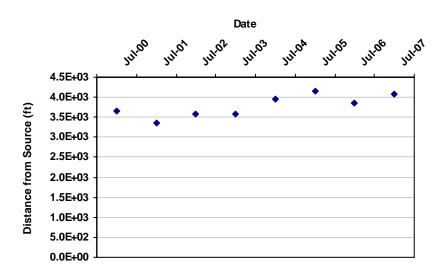
Data Table:

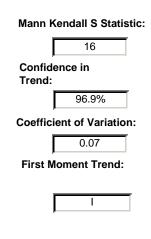
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Estimated	
Effective Date	Constituent	Mass (Kg)	Number of Wells
7/1/2000	2.4-DINITROTOLUENE	4.8E+01	61
7/1/2001	2,4-DINITROTOLUENE	3.3E+01	60
7/1/2002	2,4-DINITROTOLUENE	1.6E+01	75
7/1/2003	2,4-DINITROTOLUENE	1.2E+01	75
7/1/2004	2,4-DINITROTOLUENE	1.0E+01	74
7/1/2005	2,4-DINITROTOLUENE	7.2E+00	76
7/1/2006	2,4-DINITROTOLUENE	7.1E+00	75
7/1/2007	2,4-DINITROTOLUENE	3.7E+00	68

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); ND = Non-detect. Moments are not calculated for sample events with less than 6 wells.

MAROS Version 2.2, 2006, AFCEE

Project: Pantex SE Sector


Location: SouthEast


User Name: MV

State: Texas

COC: HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE

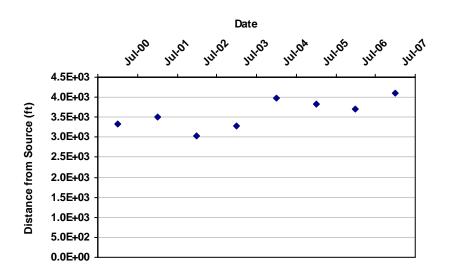
Distance from Source to Center of Mass

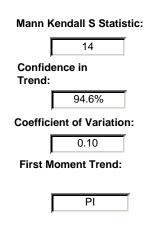
Data Table:

Effective Date	Effective Date Constituent		Yc (ft)	Distance from Source (ft)	Number of Wells
7/1/2000	HEXAHYDRO-1,3,5-TRINITRO	642,159	3,755,213	3,648	72
7/1/2001	HEXAHYDRO-1,3,5-TRINITRO	642,270	3,755,709	3,352	74
7/1/2002	HEXAHYDRO-1,3,5-TRINITRO	642,347	3,755,474	3,575	75
7/1/2003	HEXAHYDRO-1,3,5-TRINITRO	642,462	3,755,563	3,592	75
7/1/2004	HEXAHYDRO-1,3,5-TRINITRO	642,602	3,755,185	3,959	73
7/1/2005	HEXAHYDRO-1,3,5-TRINITRO	642,726	3,755,051	4,143	76
7/1/2006	HEXAHYDRO-1,3,5-TRINITRO	642,751	3,755,476	3,862	75
7/1/2007	HEXAHYDRO-1,3,5-TRINITRO	642,962	3,755,385	4,080	68

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) -Due to insufficient Data (< 4 sampling events). Moments are not calculated for sample events with less than 6 wells.

Project: Pantex SE 4ADNT


Location: Southeast


User Name: MV

State: Texas

COC: 4-AMINO-2,6-DINITROTOLUENE

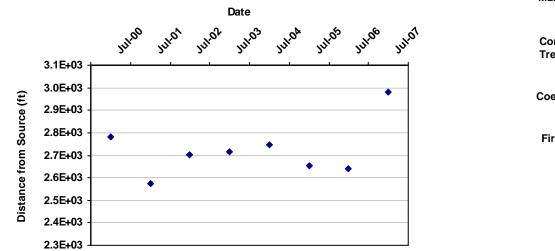
Distance from Source to Center of Mass

Data Table:

Effective Date	Effective Date Constituent		Yc (ft)	Distance from Source (ft)	Number of Wells
7/1/2000	4-AMINO-2,6-DINITROTOLUE	642,251	3,755,727	3,327	68
7/1/2001	4-AMINO-2,6-DINITROTOLUE	642,537	3,755,791	3,493	68
7/1/2002	4-AMINO-2,6-DINITROTOLUE	642,537	3,756,604	3,027	75
7/1/2003	4-AMINO-2,6-DINITROTOLUE	642,578	3,756,182	3,285	75
7/1/2004	4-AMINO-2,6-DINITROTOLUE	643,070	3,755,680	3,979	74
7/1/2005	4-AMINO-2,6-DINITROTOLUE	642,920	3,755,726	3,831	76
7/1/2006	4-AMINO-2,6-DINITROTOLUE	643,074	3,756,165	3,712	73
7/1/2007	4-AMINO-2,6-DINITROTOLUE	643,250	3,755,727	4,097	68

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events). Moments are not calculated for sample events with less than 6 wells.

Project: Pantex SE Sector


Location: SouthEast

User Name: MV

State: Texas

COC: 2-AMINO-4,6-DINITROTOLUENE

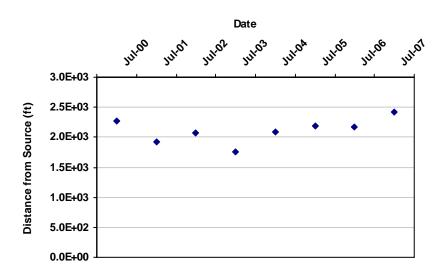
Distance from Source to Center of Mass

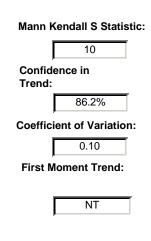
Data Table:

Effective Date	Effective Date Constituent		Yc (ft)	Distance from Source (ft)	t) Number of Wells	
7/1/2000	2-AMINO-4,6-DINITROTOLUE	641,928	3,756,175	2,783	71	
7/1/2001	2-AMINO-4,6-DINITROTOLUE	642,076	3,756,716	2,572	68	
7/1/2002	2-AMINO-4,6-DINITROTOLUE	642,123	3,756,552	2,701	74	
7/1/2003	2-AMINO-4,6-DINITROTOLUE	642,339	3,756,903	2,714	75	
7/1/2004	2-AMINO-4,6-DINITROTOLUE	642,406	3,756,970	2,747	74	
7/1/2005	2-AMINO-4,6-DINITROTOLUE	642,414	3,757,263	2,652	76	
7/1/2006	2-AMINO-4,6-DINITROTOLUE	642,460	3,757,468	2,641	75	
7/1/2007	2-AMINO-4,6-DINITROTOLUE	642,434	3,756,517	2,982	68	

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) -Due to insufficient Data (< 4 sampling events). Moments are not calculated for sample events with less than 6 wells.

Project: Pantex SE Sector


Location: SouthEast


User Name: MV

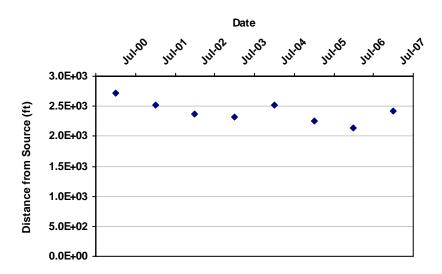
State: Texas

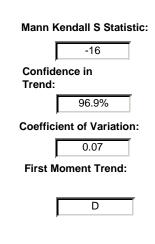
COC: 2,4,6-TRINITROTOLUENE

Distance from Source to Center of Mass

Data Table:

Effective Date Constituent		Xc (ft) Yc (ft)		Distance from Source (ft)	Number of Wells	
7/1/2000	2,4,6-TRINITROTOLUENE	641,619	3,756,608	2,264	58	
7/1/2001	2,4,6-TRINITROTOLUENE	641,636	3,757,256	1,928	46	
7/1/2002	2,4,6-TRINITROTOLUENE	641,598	3,756,904	2,069	74	
7/1/2003	2,4,6-TRINITROTOLUENE	641,506	3,757,403	1,750	75	
7/1/2004	2,4,6-TRINITROTOLUENE	641,473	3,756,697	2,096	74	
7/1/2005	2,4,6-TRINITROTOLUENE	641,783	3,756,986	2,182	76	
7/1/2006	2,4,6-TRINITROTOLUENE	641,887	3,757,209	2,176	75	
7/1/2007	2,4,6-TRINITROTOLUENE	641,861	3,756,676	2,415	68	


Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) -Due to insufficient Data (< 4 sampling events). Moments are not calculated for sample events with less than 6 wells.


Project: Pantex SE Sector

Location: SouthEast

COC: 2,4-DINITROTOLUENE

Distance from Source to Center of Mass

User Name: MV State: Texas

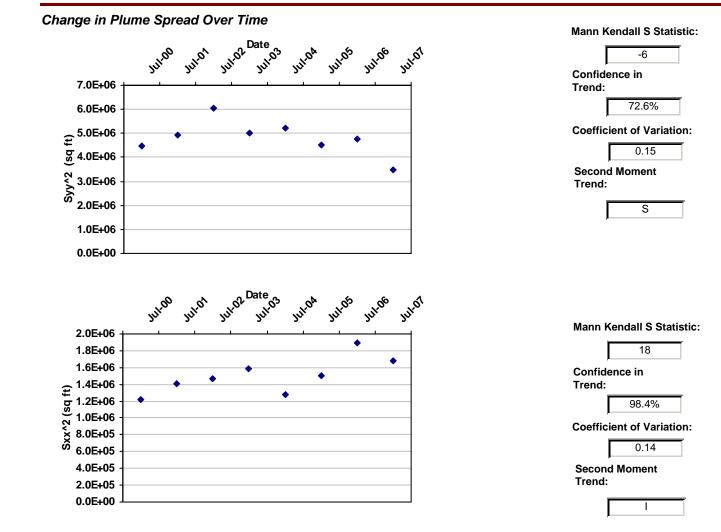
Data Table:

Effective Date Constituent		Xc (ft) Yc (ft)		Distance from Source (ft)	Number of Wells	
7/1/2000	2,4-DINITROTOLUENE	641,558	3,755,913	2,726	61	
7/1/2001	2,4-DINITROTOLUENE	641,475	3,756,119	2,513	60	
7/1/2002	2,4-DINITROTOLUENE	641,641	3,756,462	2,377	75	
7/1/2003	2,4-DINITROTOLUENE	642,023	3,757,168	2,317	75	
7/1/2004	2,4-DINITROTOLUENE	642,333	3,757,491	2,513	74	
7/1/2005	2,4-DINITROTOLUENE	642,100	3,757,609	2,259	76	
7/1/2006	2,4-DINITROTOLUENE	642,015	3,757,844	2,140	75	
7/1/2007	2,4-DINITROTOLUENE	641,934	3,756,772	2,422	68	

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) -Due to insufficient Data (< 4 sampling events). Moments are not calculated for sample events with less than 6 wells.

COC. 2,4-DINITROTOLUENE

MAROS Second Moment Analysis


Project: Pantex SE Sector

COC: HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE

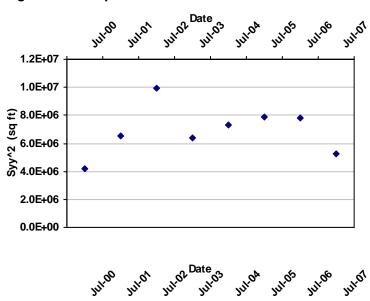
Location: SouthEast

User Name: MV

State: Texas

Data Table:

Effective Date	Constituent	Sigma XX (sq ft)	Sigma YY (sq ft)	Number of Wells	
7/1/2000	HEXAHYDRO-1,3,5-TRINITRO	1,214,949	4,460,930	72	
7/1/2001	HEXAHYDRO-1,3,5-TRINITRO	1,404,749	4,939,131	74	
7/1/2002	HEXAHYDRO-1,3,5-TRINITRO	1,471,765	6,057,858	75	
7/1/2003	HEXAHYDRO-1,3,5-TRINITRO	1,580,992	4,991,454	75	
7/1/2004	HEXAHYDRO-1,3,5-TRINITRO	1,280,090	5,203,529	73	
7/1/2005	HEXAHYDRO-1,3,5-TRINITRO	1,497,309	4,513,285	76	
7/1/2006	HEXAHYDRO-1,3,5-TRINITRO	1,892,321	4,762,973	75	
7/1/2007	HEXAHYDRO-1,3,5-TRINITRO	1,680,100	3,486,567	68	


MAROS Second Moment Analysis

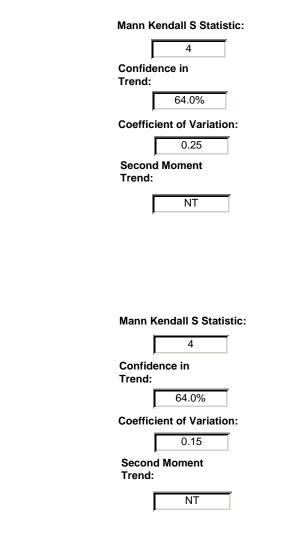
Project: Pantex SE 4ADNT

Location: Southeast

COC: 4-AMINO-2,6-DINITROTOLUENE

Change in Plume Spread Over Time

JULOS


4

Julion

٠

JU1-00

User Name: MV State: Texas

Data Table:

3.5E+06

3.0E+06

2.5E+06

2.0E+06

1.5E+06

1.0E+06

5.0E+05

0.0E+00

Sxx^2 (sq ft)

Effective Date	Constituent	Sigma XX (sq ft)	Sigma YY (sq ft)	Number of Wells	
7/1/2000	4-AMINO-2,6-DINITROTOLUE	1,968,575	4,185,079	68	
7/1/2001	4-AMINO-2,6-DINITROTOLUE	2,533,682	6,533,223	68	
7/1/2002	4-AMINO-2,6-DINITROTOLUE	2,168,864	9,937,686	75	
7/1/2003	4-AMINO-2,6-DINITROTOLUE	3,207,589	6,400,940	75	
7/1/2004	4-AMINO-2,6-DINITROTOLUE	2,466,528	7,298,288	74	
7/1/2005	4-AMINO-2,6-DINITROTOLUE	2,454,444	7,895,568	76	
7/1/2006	4-AMINO-2,6-DINITROTOLUE	2,744,309	7,786,041	73	
7/1/2007	4-AMINO-2,6-DINITROTOLUE	2,335,936	5,270,230	68	

JU1-06

٠

JULOI

JU1-05

JU1-04

GROUNDWATER MONITORING NETWORK OPTIMIZATION Pantex Plant

Carson County, Texas

APPENDIX B:

Southwest Sector MAROS Reports

MAROS Mann-Kendall Statistics Summary

Project: Pantex SW

Location: Southwest Area

User Name: MV State: Texas

Time Period: 1/15/2000 to 4/15/2007 Consolidation Period: No Time Consolidation Consolidation Type: Geometric Mean Duplicate Consolidation: Average ND Values: Specified Detection Limit

J Flag Values : Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
4-AMINO-2,6-DINITROT	OLUENE							
1114-MW4	S	3	1	0.00	0	0.0%	No	N/A
PTX06-1006	Т	3	0	0.00	0	0.0%	Yes	ND
PTX06-1007	S	3	3	0.00	0	0.0%	No	N/A
PTX06-1008	т	4	0	0.00	0	37.5%	Yes	ND
PTX06-1012	т	12	1	0.08	5	60.6%	No	NT
PTX06-1035	Т	10	8	2.67	-8	72.9%	No	NT
PTX06-1036	Т	13	10	0.85	-43	99.6%	No	D
PTX06-1049	Т	11	0	0.00	0	46.9%	Yes	ND
PTX06-1052	S	15	0	0.00	0	48.0%	Yes	ND
PTX06-1053	т	17	13	1.15	96	100.0%	No	I
PTX06-1077A	Т	4	0	0.00	0	37.5%	Yes	ND
PTX06-1085	Т	4	0	0.00	0	37.5%	Yes	ND
PTX06-1086	Т	8	0	0.00	0	45.2%	Yes	ND
PTX06-1087	т	4	0	0.00	0	37.5%	Yes	ND
PTX07-1P02	т	6	0	0.00	0	42.3%	Yes	ND
PTX07-1P03	т	4	0	0.00	0	37.5%	Yes	ND
PTX07-1P06	S	10	0	0.00	0	46.4%	Yes	ND
PTX07-1Q01	т	5	1	0.13	-2	59.2%	No	S
PTX07-1Q02	т	5	0	0.00	0	40.8%	Yes	ND
PTX07-1Q03	т	7	0	0.00	0	43.7%	Yes	ND
PTX08-1001	т	7	1	2.03	-6	76.4%	No	NT
PTX08-1003	т	6	0	0.00	0	42.3%	Yes	ND
PTX08-1005	S	6	6	0.47	-13	99.2%	No	D
PTX08-1006	S	8	8	0.25	4	64.0%	No	NT
PTX08-1007	Т	2	0	0.00	0	0.0%	Yes	ND
PTX08-1008	S	11	9	0.87	-8	70.3%	No	S
PTX08-1009	S	7	3	1.54	7	80.9%	No	NT
PTX10-1008	Т	6	0	0.00	0	42.3%	Yes	ND
PTX10-1013	S	6	0	0.00	0	42.3%	Yes	ND
HEXAHYDRO-1,3,5-TRI	NITRO-1,3	,5-TRIAZINE						
1114-MW4	S	3	0	0.00	0	0.0%	Yes	ND
PTX06-1006	т	3	0	0.00	0	0.0%	Yes	ND
PTX06-1007	S	3	2	0.00	0	0.0%	No	N/A
PTX06-1008	Т	4	0	0.00	0	37.5%	Yes	ND
PTX06-1012	т	12	0	0.00	0	47.3%	Yes	ND
PTX06-1035	т	10	0	0.00	0	46.4%	Yes	ND
PTX06-1036	т	13	6	1.17	43	99.6%	No	I

Project: Pantex SW

User Name: MV

Location: Southwest Area

State: Texas

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentratio Trend
EXAHYDRO-1,3,5-TRI	NITRO-1,3,	5-TRIAZINE						
PTX06-1049	Т	11	0	0.00	0	46.9%	Yes	ND
PTX06-1052	S	15	0	0.00	0	48.0%	Yes	ND
PTX06-1053	т	17	2	3.15	23	81.5%	No	NT
PTX06-1077/	А Т	4	0	0.00	0	37.5%	Yes	ND
PTX06-1085	т	4	0	0.00	0	37.5%	Yes	ND
PTX06-1086	Т	8	1	2.61	5	68.3%	No	NT
PTX06-1087	т	4	0	0.00	0	37.5%	Yes	ND
PTX07-1P02	т	6	5	0.79	-13	99.2%	No	D
PTX07-1P03	т	4	4	0.20	-6	95.8%	No	D
PTX07-1P06	S	10	10	0.84	-33	99.9%	No	D
PTX07-1Q01	Т	5	0	0.00	0	40.8%	Yes	ND
PTX07-1Q02	т	5	0	0.00	0	40.8%	Yes	ND
PTX07-1Q02	T	7	1	2.51	4	66.7%	No	NT
PTX08-1001	Ť	7	3	0.99	1	50.0%	No	NT
PTX08-1003	Ť	6	0	0.00	0	42.3%	Yes	ND
PTX08-1005	S	6	6	0.99	-13	99.2%	No	D
PTX08-1005	S	8	8	0.33	26	100.0%	No	I
PTX08-1000 PTX08-1007	З Т	2	2	0.00	0	0.0%	No	N/A
	S		2		-15	85.9%		S
PTX08-1008 PTX08-1009	S	11 7	4	0.09 2.10	-15 -8	84.5%	No	NT
							No	
PTX10-1008 PTX10-1013	T S	6 6	1 4	0.00 1.48	-1 -4	50.0% 70.3%	No No	S NT
1114-MW4	s T	5	5	0.38	-8	95.8%	No	D
PTX06-1006	Т	4	0	0.00	0	37.5%	Yes	ND
						76.5%	No	S
PTX06-1007	S	6	6	0.09	-5			
PTX06-1008	т	4	1	0.74	1	50.0%	No	NT
PTX06-1008 PTX06-1012	T T	4 12	1 4	0.74 1.46	1 32	50.0% 98.4%	No No	I
PTX06-1008 PTX06-1012 PTX06-1035	T T T	4 12 10	1 4 0	0.74 1.46 0.00	1 32 0	50.0% 98.4% 46.4%	No No Yes	l ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036	T T T	4 12 10 12	1 4 0 0	0.74 1.46 0.00 0.00	1 32 0 0	50.0% 98.4% 46.4% 47.3%	No No Yes Yes	I ND ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049	T T T T	4 12 10 12 9	1 4 0 0 0	0.74 1.46 0.00 0.00 0.00	1 32 0 0 0	50.0% 98.4% 46.4% 47.3% 46.0%	No No Yes Yes Yes	I ND ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052	T T T T S	4 12 10 12 9 14	1 4 0 0 0 1	0.74 1.46 0.00 0.00 0.00 0.00 0.48	1 32 0 0 0 -13	50.0% 98.4% 46.4% 47.3% 46.0% 74.1%	No No Yes Yes No	I ND ND S
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1030 PTX06-1052 PTX06-1053	T T T T S T	4 12 10 12 9 14 16	1 4 0 0 0 1 4	0.74 1.46 0.00 0.00 0.00 0.48 0.66	1 32 0 0 -13 -38	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2%	No No Yes Yes No No	I ND ND S D
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1077/	T T T T S T A T	4 12 10 12 9 14 16 4	1 4 0 0 1 4 2	0.74 1.46 0.00 0.00 0.00 0.48 0.66 0.67	1 32 0 0 -13 -38 5	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6%	No No Yes Yes No No No	I ND ND S D NT
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1030 PTX06-1049 PTX06-1052 PTX06-1053	T T T T S T	4 12 10 12 9 14 16	1 4 0 0 0 1 4	0.74 1.46 0.00 0.00 0.00 0.48 0.66	1 32 0 0 -13 -38 5 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5%	No No Yes Yes No No	I ND ND S D NT ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1077/	T T T S T T T T	4 12 10 12 9 14 16 4	1 4 0 0 1 4 2 0 0	0.74 1.46 0.00 0.00 0.00 0.48 0.66 0.67	1 32 0 0 -13 -38 5 0 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5% 45.2%	No No Yes Yes No No No Yes Yes	I ND ND S D NT ND ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1077/ PTX06-1085	T T T S T T T T T	4 12 10 12 9 14 16 4 4 4 8 4	1 4 0 0 1 4 2 0 0 0 0	0.74 1.46 0.00 0.00 0.48 0.66 0.67 0.00 0.00 0.00 0.00	1 32 0 0 -13 -38 5 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5%	No No Yes Yes No No No Yes	I ND ND S D NT ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1077/ PTX06-1085 PTX06-1086	T T T S T T T T T T	4 12 10 12 9 14 16 4 4 4 8	1 4 0 0 1 4 2 0 0	0.74 1.46 0.00 0.00 0.00 0.48 0.66 0.67 0.00 0.00	1 32 0 0 -13 -38 5 0 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5% 45.2%	No No Yes Yes No No No Yes Yes	I ND ND S D NT ND ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1077/ PTX06-1085 PTX06-1086 PTX06-1087	T T T S T T T T T	4 12 10 12 9 14 16 4 4 4 8 4	1 4 0 0 1 4 2 0 0 0 0	0.74 1.46 0.00 0.00 0.48 0.66 0.67 0.00 0.00 0.00 0.00	1 32 0 0 -13 -38 5 0 0 0 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5% 45.2% 37.5%	No No Yes Yes No No Yes Yes Yes	I ND ND S D NT ND ND ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1053 PTX06-1085 PTX06-1086 PTX06-1087 PTX06-1087 PTX07-1P02	T T T S T T T T T T	4 12 10 12 9 14 16 4 4 8 4 7	1 4 0 0 1 4 2 0 0 0 0 0 0	0.74 1.46 0.00 0.00 0.48 0.66 0.67 0.00 0.00 0.00 0.00 0.00	1 32 0 0 -13 -38 5 0 0 0 0 0 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5% 45.2% 37.5% 43.7%	No No Yes Yes No No Yes Yes Yes Yes	I ND ND S D NT ND ND ND ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1053 PTX06-1085 PTX06-1086 PTX06-1087 PTX07-1P02 PTX07-1P03	T T T T S T T T T T T S T	4 12 10 12 9 14 16 4 4 8 4 7 4 9 5	1 4 0 0 1 4 2 0 0 0 0 0 0 0 0	0.74 1.46 0.00 0.00 0.48 0.66 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1 32 0 0 -13 -38 5 0 0 0 0 0 0 0 0 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5% 45.2% 37.5% 43.7% 37.5%	No No Yes Yes No No Yes Yes Yes Yes Yes	I ND ND S D NT ND ND ND ND ND ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1053 PTX06-1085 PTX06-1086 PTX06-1087 PTX07-1P02 PTX07-1P03 PTX07-1P06	T T T T S T T T T T T S T	4 12 10 12 9 14 16 4 4 8 4 7 4 9	1 4 0 0 1 4 2 0 0 0 0 0 0 0 0 0 0	0.74 1.46 0.00 0.00 0.48 0.66 0.67 0.00	1 32 0 0 -13 -38 5 0 0 0 0 0 0 0 0 0 0 0 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5% 45.2% 37.5% 43.7% 37.5% 46.0%	No No Yes Yes No No Yes Yes Yes Yes Yes Yes	I ND ND S D NT ND ND ND ND ND ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1077/ PTX06-1085 PTX06-1086 PTX06-1087 PTX07-1P02 PTX07-1P03 PTX07-1P06 PTX07-1Q01	T T T T S T T T T T T S T	4 12 10 12 9 14 16 4 4 8 4 7 4 9 5	1 4 0 0 1 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.74 1.46 0.00 0.00 0.48 0.66 0.67 0.00	1 32 0 0 -13 -38 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5% 45.2% 37.5% 43.7% 37.5% 46.0% 40.8%	No No Yes Yes No No Yes Yes Yes Yes Yes Yes	I ND ND S D NT ND ND ND ND ND ND ND ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1053 PTX06-1085 PTX06-1086 PTX06-1087 PTX07-1P02 PTX07-1P03 PTX07-1P04 PTX07-1Q01 PTX07-1Q02	T T T T T T T T T T T T T T T	4 12 10 12 9 14 16 4 8 4 7 4 9 5 5 5	1 4 0 0 1 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.74 1.46 0.00 0.00 0.48 0.66 0.67 0.00	1 32 0 0 -13 -38 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5% 45.2% 37.5% 43.7% 37.5% 46.0% 40.8%	No No Yes Yes No No Yes Yes Yes Yes Yes Yes Yes	I ND ND S D NT ND ND ND ND ND ND ND ND ND ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1053 PTX06-1085 PTX06-1086 PTX06-1087 PTX07-1P02 PTX07-1P03 PTX07-1P04 PTX07-1Q01 PTX07-1Q03	T T T T T T T T T T T T T T T	4 12 10 12 9 14 16 4 8 4 7 4 9 5 5 7	1 4 0 0 1 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.74 1.46 0.00 0.00 0.48 0.66 0.67 0.00	1 32 0 0 -13 -38 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5% 45.2% 37.5% 43.7% 37.5% 46.0% 40.8% 40.8% 40.8%	No No Yes Yes No No Yes Yes Yes Yes Yes Yes Yes Yes	I ND ND S D NT ND ND ND ND ND ND ND ND ND ND ND ND ND
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1077/ PTX06-1085 PTX06-1087 PTX06-1087 PTX07-1P03 PTX07-1P03 PTX07-1Q01 PTX07-1Q03 PTX07-1Q03 PTX08-1001	Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т	4 12 10 12 9 14 16 4 8 4 7 4 9 5 5 7 7	1 4 0 0 1 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.74 1.46 0.00 0.00 0.48 0.66 0.67 0.00 0.23	1 32 0 0 -13 -38 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5% 45.2% 37.5% 43.7% 37.5% 46.0% 40.8% 40.8% 40.8% 43.7% 88.1%	No No Yes Yes No No Yes Yes Yes Yes Yes Yes Yes No	I ND ND S D ND ND ND ND ND ND ND ND ND ND ND ND N
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1036 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1077/ PTX06-1085 PTX06-1087 PTX06-1087 PTX07-1P03 PTX07-1P03 PTX07-1P01 PTX07-1Q01 PTX07-1Q03 PTX08-1001 PTX08-1003	Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т	4 12 10 12 9 14 16 4 8 4 7 4 9 5 5 7 7 7 7	1 4 0 0 1 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.74 1.46 0.00 0.00 0.48 0.66 0.67 0.00	1 32 0 0 -13 -38 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5% 45.2% 37.5% 43.7% 37.5% 46.0% 40.8% 40.8% 40.8% 40.8% 43.7% 88.1% 99.5%	No No Yes Yes No No Yes Yes Yes Yes Yes Yes Yes No No	I ND ND S D ND ND ND ND ND ND ND ND ND ND ND ND N
PTX06-1008 PTX06-1012 PTX06-1035 PTX06-1035 PTX06-1049 PTX06-1052 PTX06-1053 PTX06-1077/ PTX06-1085 PTX06-1087 PTX07-1003 PTX07-1P00 PTX07-1P01 PTX07-1Q01 PTX07-1Q03 PTX08-1001 PTX08-1003 PTX08-1005	Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т	4 12 10 12 9 14 16 4 8 4 7 4 9 5 5 7 7 7 5	1 4 0 0 1 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.74 1.46 0.00 0.00 0.48 0.66 0.67 0.00	1 32 0 0 -13 -38 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50.0% 98.4% 46.4% 47.3% 46.0% 74.1% 95.2% 89.6% 37.5% 45.2% 37.5% 43.7% 37.5% 46.0% 40.8% 40.9.5% 99.5% 99.2%	No No Yes Yes No No Yes Yes Yes Yes Yes Yes Yes No No	I ND ND S D ND ND ND ND ND ND ND ND ND ND ND ND N

Project: Pantex SW

User Name: MV

Location: Southwest Area

State: Texas

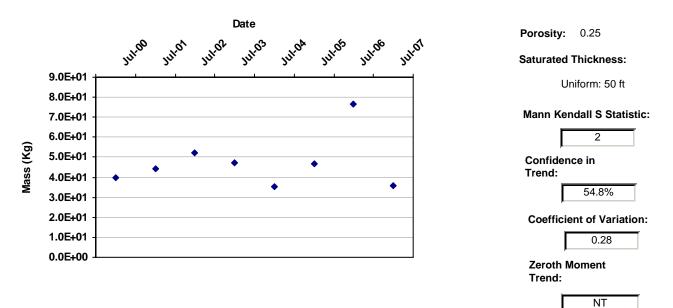
Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
PERCHLORATE								
PTX08-1009	S	7	0	0.00	0	43.7%	Yes	ND
PTX10-1008	Т	6	0	0.00	0	42.3%	Yes	ND
PTX10-1013	S	7	2	0.80	5	71.9%	No	NT
TRICHLOROETHYLEN	E (TCE)							
1114-MW4	S	6	6	0.50	9	93.2%	No	PI
PTX06-1006	т	3	1	0.00	0	0.0%	No	N/A
PTX06-1007	S	6	5	0.26	-8	89.8%	No	S
PTX06-1008	Т	5	5	0.64	-2	59.2%	No	S
PTX06-1012	т	12	4	0.79	22	92.4%	No	PI
PTX06-1035	т	10	0	0.00	0	46.4%	Yes	ND
PTX06-1036	Т	13	0	0.00	0	47.6%	Yes	ND
PTX06-1049	Т	11	1	0.53	8	70.3%	No	NT
PTX06-1052	S	15	7	0.52	-46	98.8%	No	D
PTX06-1053	Т	17	0	0.00	0	48.4%	Yes	ND
PTX06-1077A	Т	6	5	0.59	7	86.4%	No	NT
PTX06-1085	Т	4	0	0.00	0	37.5%	Yes	ND
PTX06-1086	Т	8	0	0.00	0	45.2%	Yes	ND
PTX06-1087	Т	4	0	0.00	0	37.5%	Yes	ND
PTX07-1P02	Т	7	0	0.00	0	43.7%	Yes	ND
PTX07-1P03	т	4	0	0.00	0	37.5%	Yes	ND
PTX07-1P06	S	10	0	0.00	0	46.4%	Yes	ND
PTX07-1Q01	Т	5	0	0.00	0	40.8%	Yes	ND
PTX07-1Q02	Т	5	0	0.00	0	40.8%	Yes	ND
PTX07-1Q03	Т	7	0	0.00	0	43.7%	Yes	ND
PTX08-1001	Т	7	0	0.00	0	43.7%	Yes	ND
PTX08-1003	т	6	0	0.00	0	42.3%	Yes	ND
PTX08-1005	S	6	6	0.62	7	86.4%	No	NT
PTX08-1006	S	8	8	0.41	-4	64.0%	No	S
PTX08-1007	т	4	4	0.13	-2	62.5%	No	S
PTX08-1008	S	11	3	0.17	5	61.9%	No	NT
PTX08-1009	S	8	6	0.52	1	50.0%	No	NT
PTX10-1008	т	6	0	0.00	0	42.3%	Yes	ND
PTX10-1013	S	7	7	0.67	7	80.9%	No	NT

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events); Source/Tail (S/T)

The Number of Samples and Number of Detects shown above are post-consolidation values.

MAROS Zeroth Moment Analysis

Project: Pantex SW


Location: Southwest Area

User Name: MV

State: Texas

COC: TRICHLOROETHYLENE (TCE)

Change in Dissolved Mass Over Time

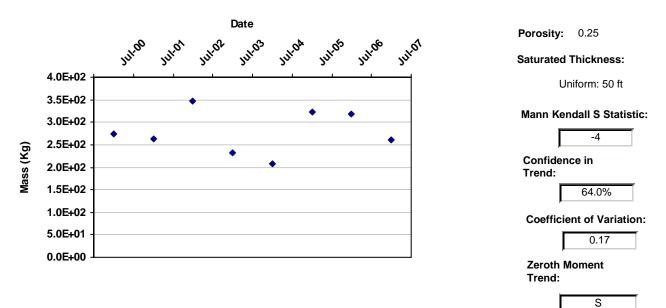
Data Table:

Bata rabior		Estimated	
Effective Date	Constituent	Mass (Kg)	Number of Wells
7/1/2000	TRICHLOROETHYLENE (TCE)	4.0E+01	13
7/1/2001	TRICHLOROETHYLENE (TCE)	4.4E+01	24
7/1/2002	TRICHLOROETHYLENE (TCE)	5.2E+01	26
7/1/2003	TRICHLOROETHYLENE (TCE)	4.7E+01	29
7/1/2004	TRICHLOROETHYLENE (TCE)	3.6E+01	21
7/1/2005	TRICHLOROETHYLENE (TCE)	4.7E+01	22
7/1/2006	TRICHLOROETHYLENE (TCE)	7.7E+01	22
7/1/2007	TRICHLOROETHYLENE (TCE)	3.6E+01	14

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); ND = Non-detect. Moments are not calculated for sample events with less than 6 wells.

MAROS Zeroth Moment Analysis

Project: Pantex SW


Location: Southwest Area

User Name: MV

State: Texas

COC: PERCHLORATE

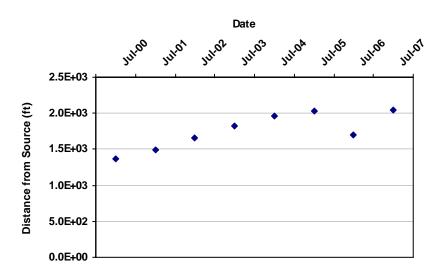
Change in Dissolved Mass Over Time

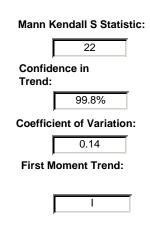
Data Table:

		Estimated	
Effective Date	Constituent	Mass (Kg)	Number of Wells
7/1/2000	PERCHLORATE	2.7E+02	13
7/1/2001	PERCHLORATE	2.6E+02	24
7/1/2002	PERCHLORATE	3.5E+02	26
7/1/2003	PERCHLORATE	2.3E+02	28
7/1/2004	PERCHLORATE	2.1E+02	21
7/1/2005	PERCHLORATE	3.2E+02	20
7/1/2006	PERCHLORATE	3.2E+02	20
7/1/2007	PERCHLORATE	2.6E+02	14

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) - Due to insufficient Data (< 4 sampling events); ND = Non-detect. Moments are not calculated for sample events with less than 6 wells.

Project: Pantex SW


Location: Southwest Area


User Name: MV

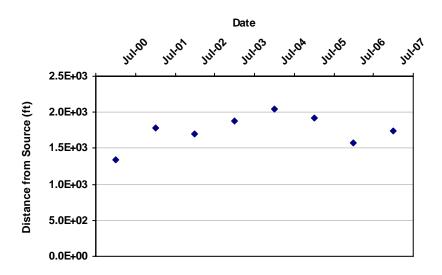
State: Texas

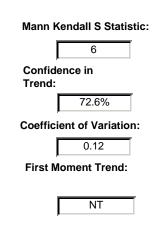
COC: TRICHLOROETHYLENE (TCE)

Distance from Source to Center of Mass

Data Table:

Effective Date	Constituent	Xc (ft)	Yc (ft)	Distance from Source (ft)	Number of Wells
7/1/2000	TRICHLOROETHYLENE (TCE)	636,899	3,758,041	1,373	13
7/1/2001	TRICHLOROETHYLENE (TCE)	635,809	3,758,125	1,486	24
7/1/2002	TRICHLOROETHYLENE (TCE)	636,115	3,758,390	1,653	26
7/1/2003	TRICHLOROETHYLENE (TCE)	635,217	3,758,149	1,823	29
7/1/2004	TRICHLOROETHYLENE (TCE)	636,064	3,758,701	1,968	21
7/1/2005	TRICHLOROETHYLENE (TCE)	636,179	3,758,781	2,031	22
7/1/2006	TRICHLOROETHYLENE (TCE)	635,987	3,758,410	1,700	22
7/1/2007	TRICHLOROETHYLENE (TCE)	635,672	3,758,672	2,044	14


Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) -Due to insufficient Data (< 4 sampling events). Moments are not calculated for sample events with less than 6 wells.


Project: Pantex SW

Location: Southwest Area

COC: PERCHLORATE

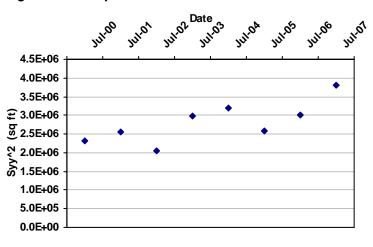
Distance from Source to Center of Mass

User Name: MV State: Texas

Data Table:

Effective Date	Constituent	Xc (ft)	Yc (ft)	Distance from Source (ft)	Number of Wells
7/1/2000	PERCHLORATE	636,108	3,758,072	1,342	13
7/1/2001	PERCHLORATE	635,515	3,758,300	1,775	24
7/1/2002	PERCHLORATE	635,862	3,758,369	1,695	26
7/1/2003	PERCHLORATE	635,733	3,758,525	1,885	28
7/1/2004	PERCHLORATE	635,763	3,758,705	2,045	21
7/1/2005	PERCHLORATE	635,970	3,758,630	1,917	20
7/1/2006	PERCHLORATE	635,873	3,758,252	1,580	20
7/1/2007	PERCHLORATE	636,279	3,758,496	1,738	14

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A) -Due to insufficient Data (< 4 sampling events). Moments are not calculated for sample events with less than 6 wells.


MAROS Second Moment Analysis

Project: Pantex SW

Location: Southwest Area

COC: PERCHLORATE

Change in Plume Spread Over Time

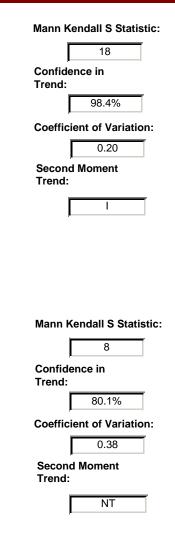
JuliO2 Date

Julios

Julion

JU1-00

Jul-05


JU1-06

JULOI

JU1-04

User Name: MV

State: Texas

Data Table:

4.0E+06

3.5E+06

3.0E+06

2.5E+06

2.0E+06

1.5E+06

1.0E+06

5.0E+05

0.0E+00

٠

Sxx^2 (sq ft)

Effective Date	Constituent	Sigma XX (sq ft)	Sigma YY (sq ft)	Number of Wells	
7/1/2000	PERCHLORATE	674,631	2,319,199	13	
7/1/2001	PERCHLORATE	2,492,690	2,548,386	24	
7/1/2002	PERCHLORATE	2,018,251	2,041,502	26	
7/1/2003	PERCHLORATE	3,808,129	2,974,789	28	
7/1/2004	PERCHLORATE	3,435,859	3,198,986	21	
7/1/2005	PERCHLORATE	2,604,765	2,578,513	20	
7/1/2006	PERCHLORATE	2,328,383	2,996,988	20	
7/1/2007	PERCHLORATE	2,903,960	3,820,155	14	

GROUNDWATER MONITORING NETWORK OPTIMIZATION Pantex Plant

APPENDIX B:

Carson County, Texas

North Sector MAROS Reports

MAROS Mann-Kendall Statistics Summary

Project: Pantex North

Location: North/Playa 1

User Name: MV State: Texas

Time Period: 1/15/2000 to 4/15/2007 Consolidation Period: No Time Consolidation Consolidation Type: Geometric Mean Duplicate Consolidation: Average ND Values: Specified Detection Limit

J Flag Values : Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
2,6-DINITROTOLUENE								
PTX01-1001	Т	25	0	0.00	0	49.1%	Yes	ND
PTX01-1002	т	25	0	0.00	0	49.1%	Yes	ND
PTX01-1008	Т	13	0	0.00	0	47.6%	Yes	ND
PTX04-1001	Т	5	0	0.00	0	40.8%	Yes	ND
PTX04-1002	т	12	1	1.02	9	70.4%	No	NT
PTX06-1013	Т	10	2	0.77	7	70.0%	No	NT
PTX06-1023	Т	12	1	0.01	-5	60.6%	No	S
PTX06-1048A	Т	15	0	0.00	0	48.0%	Yes	ND
PTX06-1049	Т	11	0	0.00	0	46.9%	Yes	ND
PTX06-1050	S	10	0	0.00	5	63.6%	Yes	ND
PTX06-1069	Т	11	0	0.00	0	46.9%	Yes	ND
PTX06-1071	Т	8	0	0.00	0	45.2%	Yes	ND
PTX06-1080	Т	12	0	0.00	0	47.3%	Yes	ND
PTX06-1081	Т	12	1	0.63	9	70.4%	No	NT
PTX06-1114	т	2	0	0.00	0	0.0%	Yes	ND
PTX07-1001	S	6	0	0.00	0	42.3%	Yes	ND
PTX07-1002	т	3	0	0.00	0	0.0%	Yes	ND
PTX07-1003	т	7	0	0.00	0	43.7%	Yes	ND
PTX07-1006	т	10	2	0.40	7	70.0%	No	NT
PTX07-1P02	т	6	0	0.00	0	42.3%	Yes	ND
PTX07-1P03	т	4	0	0.00	0	37.5%	Yes	ND
PTX07-1P06	S	10	1	0.40	9	75.8%	No	NT
PTX07-1R03	т	8	0	0.00	0	45.2%	Yes	ND
PTX08-1001	т	6	0	0.00	0	42.3%	Yes	ND
PTX08-1002	S	7	0	0.00	0	43.7%	Yes	ND
PTX08-1010	т	14	0	0.00	0	47.8%	Yes	ND
PTX-BEG3	т	13	0	0.00	0	47.6%	Yes	ND
4-AMINO-2,6-DINITRO	FOLUENE							
PTX01-1001	т	23	2	0.23	21	69.9%	No	NT
PTX01-1002	т	25	0	0.00	0	49.1%	Yes	ND
PTX01-1008	т	13	0	0.00	0	47.6%	Yes	ND
PTX04-1001	т	6	0	0.00	0	42.3%	Yes	ND
PTX04-1002	т	12	0	0.00	0	47.3%	Yes	ND
PTX06-1013	т	10	1	0.02	1	50.0%	No	NT
PTX06-1023	т	12	0	0.00	0	47.3%	Yes	ND
PTX06-1048A		15	5	0.25	0	48.0%	No	S
PTX06-1049	т	11	0	0.00	0	46.9%	Yes	ND

Project: Pantex North

User Name: MV

Location: North/Playa 1

State:	Texas
--------	-------

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
-AMINO-2,6-DINITROT	DLUENE							
PTX06-1050	S	10	8	0.68	14	87.3%	No	NT
PTX06-1069	т	11	0	0.00	0	46.9%	Yes	ND
PTX06-1071	т	8	0	0.00	0	45.2%	Yes	ND
PTX06-1080	т	12	0	0.00	0	47.3%	Yes	ND
PTX06-1081	т	12	0	0.00	0	47.3%	Yes	ND
PTX06-1114	т	2	2	0.00	0	0.0%	No	N/A
PTX07-1001	S	6	5	0.55	1	50.0%	No	NT
PTX07-1002	т	3	0	0.00	0	0.0%	Yes	ND
PTX07-1003	т	7	3	0.31	1	50.0%	No	NT
PTX07-1006	т	10	0	0.00	0	46.4%	Yes	ND
PTX07-1P02	Т	6	0	0.00	0	42.3%	Yes	ND
PTX07-1P03	Т	4	0	0.00	0	37.5%	Yes	ND
PTX07-1P06	S	10	0	0.00	0	46.4%	Yes	ND
PTX07-1R03	T	8	0	0.00	0	45.2%	Yes	ND
PTX08-1001	Ť	7	1	2.03	-6	76.4%	No	NT
PTX08-1001	S	7	4	1.53	4	66.7%	No	NT
PTX08-1002 PTX08-1010	T	14	4	0.00	4	47.8%	Yes	ND
PTX-BEG3	T	14	11	0.44	25	92.7%	No	PI
IEXAHYDRO-1,3,5-TRI			11	0.44	25	92.1 /0	NO	FI
PTX01-1001	т	25	0	0.00	0	49.1%	Yes	ND
PTX01-1002	Ť	25	0	0.00	0	49.1%	Yes	ND
PTX01-1002	Ť	13	0	0.00	0	47.6%	Yes	ND
PTX04-1001	Ť	6	0	0.00	0	42.3%	Yes	ND
PTX04-1001 PTX04-1002	T	12	7	0.58	-2	42.3 <i>%</i> 52.7%	No	S
PTX04-1002 PTX06-1013	T	12	, 10	0.19	-2 19	94.6%	No	PI
PTX06-1013 PTX06-1023	т	10	10	0.19	-10	94.0% 72.7%	No	S
	т		0		-10		Yes	
PTX06-1048A		15		0.00		48.0%		ND
PTX06-1049	Т	11	0	0.00	0	46.9%	Yes	ND
PTX06-1050	S T	10	10	0.38	29	99.5%	No	I
PTX06-1069	T 	11	1	0.14	-4	59.0%	No	S
PTX06-1071	T	8	0	0.00	0	45.2%	Yes	ND
PTX06-1080	Т	12	0	0.00	0	47.3%	Yes	ND
PTX06-1081	T	12	0	0.00	0	47.3%	Yes	ND
PTX06-1114	Т	2	1	0.00	0	0.0%	No	N/A
PTX07-1O01	S	6	6	0.24	1	50.0%	No	NT
PTX07-1002	Т	3	3	0.00	0	0.0%	No	N/A
PTX07-1O03	Т	7	7	0.13	-9	88.1%	No	S
PTX07-1006	Т	10	2	1.04	9	75.8%	No	NT
PTX07-1P02	Т	6	5	0.79	-13	99.2%	No	D
PTX07-1P03	Т	4	4	0.20	-6	95.8%	No	D
PTX07-1P06	S	10	10	0.84	-33	99.9%	No	D
PTX07-1R03	т	8	1	0.17	1	50.0%	No	NT
PTX08-1001	Т	7	3	0.99	1	50.0%	No	NT
PTX08-1002	S	7	7	0.70	-11	93.2%	No	PD
PTX08-1010	Т	14	2	0.50	-3	54.3%	No	S
PTX-BEG3	т	13	0	0.00	0	47.6%	Yes	ND
PERCHLORATE								
	т	24	16		16	64.4%	No	NT

Project: Pantex North

User Name: MV

Location: North/Playa 1

State: Texas

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentratio Trend
ERCHLORATE								
PTX01-1002	т	24	2	0.40	-25	72.2%	No	S
PTX01-1008	т	13	0	0.00	0	47.6%	Yes	ND
PTX04-1001	т	6	0	0.00	0	42.3%	Yes	ND
PTX04-1002	т	16	0	0.00	0	48.2%	Yes	ND
PTX06-1013	Т	9	0	0.00	0	46.0%	Yes	ND
PTX06-1023	Т	11	0	0.00	0	46.9%	Yes	ND
PTX06-1048A	T	13	1	0.54	-12	74.5%	No	S
PTX06-1049	Т	9	0	0.00	0	46.0%	Yes	ND
PTX06-1050	S	7	0	0.00	0	43.7%	Yes	ND
PTX06-1069	Т	, 11	0	0.00	0	46.9%	Yes	ND
PTX06-1009	Т	8	0	0.00	0	45.2%	Yes	ND
PTX06-1080	т	8 12	0	0.00	0	47.3%	Yes	ND
PTX06-1081	Т	12	0	0.00	0	47.3%	Yes	ND
PTX06-1114	Т	2	0	0.00	0	0.0%	Yes	ND
PTX07-1001	S	6	0	0.00	0	42.3%	Yes	ND
PTX07-1002	Т	4	0	0.00	0	37.5%	Yes	ND
PTX07-1O03	Т	7	0	0.00	0	43.7%	Yes	ND
PTX07-1O06	Т	9	0	0.00	0	46.0%	Yes	ND
PTX07-1P02	Т	7	0	0.00	0	43.7%	Yes	ND
PTX07-1P03	Т	4	0	0.00	0	37.5%	Yes	ND
PTX07-1P06	S	9	0	0.00	0	46.0%	Yes	ND
PTX07-1R03	Т	8	0	0.00	0	45.2%	Yes	ND
PTX08-1001	Т	7	7	0.23	9	88.1%	No	NT
PTX08-1002	S	10	0	0.00	0	46.4%	Yes	ND
PTX08-1010	Т	14	0	0.00	0	47.8%	Yes	ND
PTX-BEG3	Т	12	0	0.00	0	47.3%	Yes	ND
RICHLOROETHYLENE	E (TCE)							
PTX01-1001	т	25	15	1.10	65	93.2%	No	PI
PTX01-1002	Т	25	0	0.00	0	49.1%	Yes	ND
PTX01-1002	T	14	7	1.46	-43	99.0%	No	D
PTX04-1001	T	7	7	0.26	-2	55.7%	No	S
PTX04-1002	T	, 14	13	0.38	-67	100.0%	No	D
PTX06-1013	Т	10	0	0.00	0	46.4%	Yes	ND
PTX06-1013	т	10	0	0.00	0	40.4 %	Yes	ND
PTX06-1023 PTX06-1048A	Т	12	14	0.00	-55	47.3% 99.7%	No	D
PTX06-1048A PTX06-1049	Т	15	14	0.43		99.7% 70.3%	No	NT
					8			
PTX06-1050	S T	10	0	0.00	0	46.4%	Yes	ND
PTX06-1069	Т	12	0	0.00	0	47.3%	Yes	ND
PTX06-1071	T	8	0	0.00	0	45.2%	Yes	ND
PTX06-1080	T	12	0	0.00	0	47.3%	Yes	ND
PTX06-1081	Т	12	10	0.17	21	91.3%	No	PI
PTX06-1114	Т	2	0	0.00	0	0.0%	Yes	ND
PTX07-1O01	S	5	1	0.10	-4	75.8%	No	S
PTX07-1O02	Т	4	4	0.11	6	95.8%	No	I
PTX07-1O03	Т	7	0	0.00	0	43.7%	Yes	ND
PTX07-1O06	Т	9	5	0.28	4	61.9%	No	NT
PTX07-1P02	Т	7	0	0.00	0	43.7%	Yes	ND
PTX07-1P03	т	4	0	0.00	0	37.5%	Yes	ND
PTX07-1P06	S	10	0	0.00	0	46.4%	Yes	ND

MAROS Version 2,.2 2006, AFCEE

Project: Pantex North

User Name: MV

Location: North/Playa 1

State: Texas

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann-Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
TRICHLOROETHYLENE	(TCE)							
PTX07-1R03	Т	8	0	0.00	0	45.2%	Yes	ND
PTX08-1001	т	7	0	0.00	0	43.7%	Yes	ND
PTX08-1002	S	6	0	0.00	0	42.3%	Yes	ND
PTX08-1010	т	14	2	0.15	23	88.3%	No	NT
PTX-BEG3	т	13	0	0.00	0	47.6%	Yes	ND

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events); Source/Tail (S/T)

The Number of Samples and Number of Detects shown above are post-consolidation values.

U.S. Department of Energy/ National Nuclear Security Administration

P

Optimization of Monitoring Well Placement For Potential RDX Breakthrough Detection in the Ogallala Aquifer

Prepared for: Environmental Projects and Operations Division B&W Pantex P.O. Box 30020 Amarillo, Texas

Prepared by: Science Applications International Corporation

April 2008

A N T E X P L A N T

Optimization of Monitoring Well Placement for Breakthrough Detection in the Ogallala Aquifer

Environmental Projects and Operations Division B&W Pantex P.O. Box 30020 Amarillo, TX 79120

Prepared By:

Science Applications International Corporation 8866 Commons Blvd., Suite 201 Twinsburg, OH 44087

April 2008

TABLE OF CONTENTS

LIST OF FIGURES	ii
LIST OF TABLES	ii
ACRONYMS AND ABBREVIATIONS	iii
EXECUTIVE SUMMARY	iv

1.0	INTRO	DUCTI	ON	1			
	1.1	Backgr	ound	1			
	1.2	Objecti	ve and Task Definition	1			
	1.3		ent Outline				
2.0	METH	ODOLC)GY	3			
	2.1	Approa	۱ch	3			
	2.2	Optimi	zation	3			
	2.3	Plumel	Finder	3			
	2.4	Modeli	ng	5			
	2.5		Code and Graphical User Interface				
3.0	ANAL		ND RESULTS				
	3.1	Model	Development	8			
		3.1.1	Hydrogeology	8			
		3.1.2	Water Quality				
		3.1.3	Previous Models				
		3.1.4	PlumeFinder / Princeton Transport Code (PTC) Model				
		3.1.5	Additional Considerations				
	3.2	Plumel	Finder Analysis and Results				
		3.2.1	Baseline Uncertainty (No Monitoring Wells)				
		3.2.2	Uncertainty in Current Monitoring Well Network				
		3.2.3	Uncertainty with Proposed New Monitoring Wells				
		3.2.4	Summary of PlumeFinder Results				
4.0	SUMM						
	4.1		s of Well Placement Optimization				
	4.2						
5.0	REFE	RENCES	1)	35			

LIST OF FIGURES

Figure 2-1 Modflow-Surfact, PTC/PlumeFinder Model Domains	6
Figure 3-1 Ogallala Aquifer Water Table, December 2007	9
Figure 3-2 Bureau of Economic Geology Finding of Lognormal Distribution for Hydraulic Conduct	ivity
in the Ogallala Aquifer (after Dutton et al, 2000)	10
Figure 3-3 Modeled RDX Concentrations in the Perched Groundwater and Ogallala Aquifer	13
Figure 3-4 Model Domains and Steady-State Plume	16
Figure 3-5 Capture Zone and Transport Sensitivity Results	17
Figure 3-6 Potentiometric Surfaces Defined in PTC Model and Modflow-Surfact Model	19
Figure 3-7 Contaminant Source and 50 year Deterministic Transport Plume in PTC Model	20
Figure 3-8. PlumeFinder Computational Mesh in PTC Model	21
Figure 3-9. PlumeFinder Rendering of Baseline Uncertainty	25
Figure 3-10. PlumeFinder Rendering of Uncertainty with Existing Pantex Monitoring Wells	26
Figure 3-11. PlumeFinder Rendering of Uncertainty with First New Well Installed	28
Figure 3-12. PlumeFinder Rendering of Uncertainty with Second and Third New Wells Installed	29
Figure 4-1. Proposed New Well Locations based on PlumeFinder Results	34

LIST OF TABLES

Table 4-1. PlumeFinder RDX Results Summary	. 3	52
--	-----	----

ACRONYMNS AND ABBREVIATIONS

2-D	two-dimensional
3-D	three-dimensional
ArgusONE	Argus Open Numerical Environments
bgs	below ground surface
B&W Pantex	Babcock & Wilcox Technical Services Pantex, LLC
CMS/FS	Corrective Measures Study/Feasibility Study
DOE	Department of Energy
FGZ	fine-grained zone
ft/d	feet per day
ft/ft	feet horizontally/feet vertically
GAM	Groundwater Availability Model
GSLIB	Geostatistical Software Library
GUI	graphical user interface
meters	meter
ppb	parts per billion
ppm	parts per million
PTC	Princeton Transport Code
TTU	Texas Tech University
TWDB	Texas Water Development Board

EXECUTIVE SUMMARY

The Babcock and Wilcox Technical Services Pantex, LLC (B&W Pantex) Environmental Projects and Operations Division is assessing the need for additional monitoring wells to be installed at several locations around the Pantex Plant for early detection of potential groundwater impacts to the Ogallala Aquifer. This effort focuses on the area east of the Plant, where modeling predicted contaminants might migrate beneath the perched groundwater from discharges south of the Plant (BWXT Pantex/SAIC, 2007). The objective of this effort is to identify best locations for up to three new Ogallala Aquifer monitoring wells, using the PlumeFinder technology, and incorporating the results of previous modeling. Due to its widespread occurrence in perched groundwater and relatively high mobility, RDX (a high explosive) was modeled to determine the best locations for the wells. Although source strength and location are not directly measured, insight can be gleaned from the corrective measures study / feasibility study (CMS/FS) (BWXT Pantex/SAIC, 2007) modeling efforts.

The Ogallala Aquifer beneath the impacted perched groundwater is not accessible for investigation, because of the concern that drilling through the perched groundwater may create pathways allowing the spread of contamination. As a result, irreducible uncertainty stemming from a lack of field data is present in the area of interest. The uncertainty specifically pertains to the hydraulic conductivity, potentiometric surface, and the elevation of the redbeds marking the base of the aquifer.

Modeling is combined with optimal estimation techniques to address this uncertainty. Specifically, geostatistical representations of the Ogallala Aquifer hydraulic conductivity fields are coupled with flow and transport simulations to determine the areas of greatest uncertainty in potential RDX plume location. This approach, known as the "PlumeFinder," is technology which integrates groundwater flow and transport simulation, geostatistical simulation, Monte Carlo simulation, and Kalman filter analysis to optimize monitoring well locations. In the analysis presented here, plume location (plume fringe) is defined as the 1 ppb isopleth contour for RDX and investigated over a 50-year simulation period. The areas of greatest uncertainty in the 1 ppb isopleth location then become candidates for new well locations, which in turn reduce the uncertainty in plume delineation by the maximum amount possible. To locate the leading edge of the RDX plume, both the retardation of RDX and potential biodegradation were ignored. This results in a conservative estimate (shortest travel time) to the fringe of the eastern perched groundwater while identifying the best location for early detection monitoring well placement. The actual travel time for RDX to migrate within the Ogallala Aquifer, if it occurs, is expected to be longer than simulated in this analysis.

The following procedure is used to implement the PlumeFinder technology:

- Gather available information on the groundwater flow and transport properties of the aquifer.
- Gather available information on the current chemistry of the aquifer.
- Use a preliminary groundwater flow and transport model to characterize the movement of groundwater and dissolved contaminants in the aquifer.
- Apply the PlumeFinder technology to baseline the maximum measure of uncertainty from a suspected source area based on the knowledge of the groundwater flow and contaminant transport properties.
- Apply the PlumeFinder technology to assess the maximum measure of uncertainty from a suspected source area based on the knowledge of the groundwater flow and contaminant transport

properties and the existing monitoring well network. This step quantifies the value of the existing monitoring well network as compared to no monitoring wells.

- Use the PlumeFinder technology to generate the next best monitoring well location to gather subsurface information given what is currently known. Constrain the possible locations of future monitoring wells to locations outside the area of impacted perched groundwater.
- Assess the value in the proposed monitoring well with respect to the reduction in the uncertainty in the extent of contamination.
- Update the PlumeFinder observation database with the expected concentration at the new monitoring well location, and repeat the analysis (for up to three wells in the current analysis) to select the next best location for plume fringe location.

The PlumeFinder technology currently requires Princeton Transport Code (PTC) to be used as the numerical code for the flow and transport model. Consequently, to conduct this analysis, a twodimensional (2-D) model of the Ogallala Aquifer was developed using PTC. This PTC Ogallala Aquifer model was developed by integrating historical information, previous modeling efforts, geostatistical codes, and current field data. Previous models developed for this area include the Pantex BIOF&T3D model and the Pantex Ogallala Aquifer model, both documented in BWXT/SAIC 2007. The latter was a local refinement of the Northern Ogallala Groundwater Availability Model (GAM) (Dutton, Reedy, and Mace, 2001; Dutton 2004). The domain of interest for the PTC model was selected to be an area of approximately 9 square miles (12,000 feet by 24,000 feet) including the southeastern portion of Pantex Plant and areas south and east.

Only sporadic, non-trending, and very low-level (parts per billion [ppb]) detections of RDX have been observed in Ogallala Aquifer monitoring wells. However, RDX detections in the parts per million (ppm) range are routinely observed in perched groundwater above the Ogallala Aquifer. Groundwater simulations show RDX may impact the Ogallala Aquifer in the future (BWXT/SAIC 2007), and the proposed monitoring wells are in response to this potential issue.

Delineation of potential future plumes can be improved by adding three new monitoring wells at locations determined using the PlumeFinder technology in combination with previous modeling results. Installation of new wells, in concert with the existing Ogallala Aquifer monitoring wells, increases the certainty of early plume detection. A new well located using PlumeFinder reduces the maximum measure of uncertainty of plume delineation beyond the fringe of the perched aquifer by 72 %. Two additional wells beyond the eastern extent of perched groundwater provide early detection of potential contamination originating along the fringe of perched groundwater. Since the majority of the projected plume is beneath the perched aquifer, most of the uncertainty in its extent resides there. If the total uncertainty reduction is computed (within and beyond the perched groundwater extent) then the reduction in uncertainty achieved with the addition of a new well located by PlumeFinder is only 16%. This demonstrates the contribution of irreducible uncertainty which results from employing safe investigative practices by imposing the constraint that no wells be drilled through the perched groundwater to investigate a hypothetical plume.

The following specific recommendations are provided upon installation of the additional monitoring wells:

- Assess the groundwater flow field by collecting a complete set of potentiometric surface data to reduce uncertainty in current groundwater flow directions.
- Update the conceptual site model as appropriate (e.g. base of Ogallala Aquifer, lithology, and hydraulic properties).

- Collect analytical data, test for the occurrence of RDX in the Ogallala Aquifer, and assess trends or patterns; compare this with existing information on the sporadic detection of RDX in the Ogallala Aquifer.
- Collect monitored natural attenuation parameters to assess natural degradation rates for RDX with time.
- Compare to previous water table maps, chemical information and expected degradation rates from the CMS/FS. If information is similar (i.e. quasi-stable) then continue long-term monitoring; if not then update the preliminary groundwater model and revise PlumeFinder results to ensure well locations remain adequate for early RDX detection.

1.0 INTRODUCTION

1.1 BACKGROUND

In 2002, Pantex Plant initiated a comprehensive site investigation and groundwater modeling program to evaluate the extent and potential movement of groundwater and contaminants beneath the Plant. RDX, a high explosive, is one of the most ubiquitous contaminants detected in soils and perched groundwater beneath Pantex Plant. The perched groundwater occurs above the fine-grained zone (FGZ), a series of fining-upward sequences capped by clay layers several feet thick. Near the southern and eastern extent of perched groundwater, site investigation data noted a decrease in clay content and higher permeability of the upper surface of the FGZ. Consistent with the field observations, modeling results showed the potential for low-level RDX impacts to the Ogallala Aquifer in these areas. Due to the concern of spreading RDX contamination by drilling through contaminated perched groundwater and into the Ogallala Aquifer, numerical models were developed to estimate the rate and direction of potential RDX migration.

The detection monitoring capabilities of the existing Ogallala Aquifer monitoring well network can be improved by the installation of additional wells in appropriate locations. To determine the best locations to enhance the detection monitoring network, Pantex Plant requires a tool that links a groundwater flow and transport model and geostatistical techniques to optimize placement of new wells south and east of the Plant. As part of this task, SAIC developed a model to encompass the southeastern and eastern portions of the site and offsite areas, and incorporated an optimization tool to determine the best monitoring well placement.

1.2 OBJECTIVE AND TASK DEFINITION

The objective of this effort is to identify best locations for up to three new Ogallala Aquifer monitoring wells using the PlumeFinder technology and incorporating predictions from previous modeling efforts such as the Baseline Human Health Risk Assessment (BWXT Pantex/SAIC, 2006) and CMS/FS (BWXT Pantex/SAIC, 2007). Two potential source areas, one to the south of Pantex Plant and another distributed along the eastern extent of perched groundwater saturation, are evaluated because they are the most likely areas for contaminant breakthrough from the overlying and impacted perched groundwater. These areas were selected based upon site investigation data and prior modeling. The potential source to the south represents the most likely area of breakthrough based upon the current understanding of site conditions and the modeling predictions presented in the CMS/FS. The potential source along the eastern extent of perched groundwater represents the next most likely area of contaminant breakthrough, again, based upon the current understanding of site conditions. Based upon site investigation data, the confining unit underlying perched groundwater is more transmissive along the fringe of perched groundwater than within its interior. So the fringe of perched groundwater is considered a likely area for contamination to migrate to the Ogallala Aquifer. In addition, a constraint is imposed in this analysis that proposed wells not be drilled through perched groundwater.

The best locations are determined by completing a combination of a PlumeFinder assessment of RDX migration from the potential areas of impact to the Ogallala Aquifer and evaluations of well location using results from the CMS/FS modeling.

The outcomes of this task include determining the effectiveness of the current Ogallala Aquifer monitoring well network in the southeastern and eastern Plant areas and recommending placement of three additional monitoring wells. To accomplish these objectives, existing information and modeling results are reviewed to assess where RDX may potentially be migrating to the Ogallala Aquifer. The information required to predict a plume includes:

- Groundwater flow directions and rates, measured and simulated
- Source strength and timing, simulated
- Regulatory / risk-based criteria for plume detection
- Reactions (such as biological) that act to reduce the plume size, measured and simulated

The source locations under consideration are estimated to be in the locations where the FGZ becomes more permeable and groundwater transitions from predominantly horizontal to vertical flow. In this region, vertical flow occurs from the perched groundwater through the FGZ to the underlying unsaturated Ogallala Formation and Ogallala Aquifer. Although source strength and location are not well-defined via direct measurement, knowledge exists from previous site investigations and modeling efforts. The hydrogeologic conditions in the Ogallala Aquifer are also uncertain, specifically the hydraulic conductivity beneath the perched groundwater and the pumping rates from nearby irrigation wells. To address the uncertainty, geostatistical representations of the aquifer hydraulic conductivity are coupled with flow and transport simulations, and the simulation results are used to assess the areas of greatest uncertainty in potential RDX plume fringe location. These areas then became candidates for new well locations that reduce the uncertainty of the groundwater plume fringe location by the maximum amount possible.

1.3 DOCUMENT OUTLINE

Section 1 provides an introduction to the effort and work to be accomplished. Section 2 provides an overview of the methodology and modeling approach employed, including a summary of concepts and tools used in this analysis. Section 3 provides detailed information about the model developed and results of the simulations and associated optimization. Section 4 presents the report summary and conclusions. Finally, Section 5 provides a list of references used in this study.

2.0 METHODOLOGY

2.1 APPROACH

The overall approach to determine the best locations for new wells to enhance the detection monitoring network includes:

- 1. Develop an understanding of flow and transport conditions in the Ogallala Aquifer beneath the perched groundwater from physical consistency with observed conditions elsewhere.
- 2. Use the Plume Finder Technology to optimize the early warning detection well network.

The first step was largely completed through recent work at Pantex Plant in support of other Environmental Restoration Program objectives. An extensive hydrogeologic investigation has been completed, and the data collected was used to develop a conceptual model for the site. The results of flow and transport models developed from this framework enhance the understanding of the hydrogeology and provide physically-based estimates of aquifer conditions and properties beneath the perched groundwater. The second step uses the best optimization tools currently available to directly incorporate the results of previous work into the design of the well network. These optimization tools are further described in this chapter.

2.2 OPTIMIZATION

Optimization tools are used to guide decisions that are defensible by integrating physics-based simulation models, models based on measured data and observations, and direct incorporation of uncertainty through geostatistics. Simulation models provide a mathematical statement of current and expected future conditions in the subsurface based on the physics of groundwater flow and contaminant transport, but these models are limited by the amount of data available to calibrate the models. By combining the physics and data models, optimization tools provide optimal estimates based on knowledge gained from both the physical simulator and the data. The information content from the different models and associated uncertainty with each is fused through the use of signal processing or formal optimization algorithms. For this project, the uncertainty in predicted plume fringe location is quantified, and the optimum monitoring well locations provide the maximum reduction in this uncertainty.

Optimization tools are extremely useful when limited data are available. For example, this occurs beneath the perched groundwater where investigations have been limited because of the potential for cross contamination to the Ogallala Aquifer as a result of drilling through the FGZ. In this case, optimization tools quantify the uncertainty of a monitoring well network and help determine if our understanding of the subsurface is supported by available data.

2.3 PLUMEFINDER

The PlumeFinder is an optimization tool that identifies the optimal locations (i.e., those locations that reduce the uncertainty in contaminant plume location the most) for new monitoring wells. PlumeFinder works by identifying (before sampling) the next sampling location in 2-D (two-dimensional) or 3-D (three-dimensional) space that, when sampled, minimizes the uncertainty of the plume boundary location after the sample has been taken. Sampling activity is prioritized because a new sampling location is proposed only if it provides the maximum amount of information when solving the plume location challenge. Output from the PlumeFinder evaluation consists of a rank-ordered list of sample locations for new monitoring wells that minimize the uncertainty in delineating the plume boundary. The PlumeFinder

optimization software is based on well-accepted mathematical and statistical concepts and was developed under the direction of Dr. George Pinder at the Research Center for Groundwater Remediation Design at the University of Vermont, USA (McGrath and Pinder, 1996). It has been extended by Larry Deschaine as part of his PhD work at the Chalmers University of Technology, Sweden.

The PlumeFinder works by modeling the information content provided by new sampling locations and quantifies the "maximum measure of uncertainty" in the plume boundary. The procedure is as follows:

- 1. Build a preliminary flow and transport model for the site. This initial model need not be perfect and does not need rigorous site knowledge to be effective.
- 2. Generate PlumeFinder statistics.
 - a. Geostatistics are used to generate 500 aquifer realizations from observed variations of hydraulic conductivity in the aquifer.
 - b. Each aquifer realization is simulated (for a period of 50 years in the current analysis) with the model to create a modeled plume in the aquifer.
 - c. Kalman filtering is used to combine the modeled plume realizations with observed data and estimate the uncertainty in plume delineation.
 - d. A rank-ordered list of monitoring well locations is created based on their maximum measures of uncertainty.
- 3. Collect data and add to observation database.
 - a. For existing monitoring wells, measured concentration and, if available, hydraulic conductivity, data are included. If measured concentrations are non-detect, a value of one-half the detection limit is assumed.
 - b. For future monitoring wells, concentration data is assumed using a value of one-half the plume fringe threshold.
- 4. Impose the additional constraints; in this case a constraint is imposed that the well not be placed within the extent of perched groundwater.
- 5. Quantify the confidence in the knowledge of the plume location from the existing Ogallala Aquifer monitoring wells and proposed new monitoring well.

For the transport modeling used in the PlumeFinder analysis presented here a unit source was used, the plume fringe was defined as 1/1000 of the unit source, and RDX concentrations at proposed new monitoring well locations were set at ½ of the plume fringe value (1 part per billion [ppb]). Modeling of the recommended alternative in the CMS/FS (BWXT Pantex/SAIC, 2007) indicated a maximum predicted RDX concentration of 4 ug/l in the Ogallala Aquifer. With the RDX contaminant plume fringe defined as the 0.774 ug/l isocontour, the maximum ratio of plume fringe concentration to potential source in the Ogallala Aquifer is approximately 1/5. No measurements of RDX in the Ogallala Aquifer have been made in the predicted area of breakthrough. Perched groundwater concentrations above this area are on the order of 1 to 4 parts per million (ppm). Therefore, a source to strength ratio of 1000:1 was applied and no retardation or biodecay was applied during the 50-year transport simulation. While conservative, this methodology identified the most likely area of plume migration and the uncertainty with this migration beyond the extent of perched groundwater. The region of uncertainty in a focused area beyond the perched groundwater became the location for the first monitoring well.

2.4 MODELING

Numerous challenges exist in developing a modeling approach for this problem. Historical data describing the timing and volume of wastewater releases to the ditches are limited, so the transport of compounds through the upper unsaturated zone to perched groundwater is not well understood. Limited direct observation data are available to determine the timing and mass flux of releases from perched groundwater to the Ogallala Aquifer, including specific flow and transport mechanisms and rates, hydraulic conductivity, and natural attenuation processes in the Ogallala Aquifer. In addition, current and historical withdrawals from the irrigation and water supply wells local to the site are not known with great certainty because the flows are not typically measured at the wellhead nor are detailed operational records kept. These uncertainties are well documented in the Pantex CMS/FS Modeling Report (BWXT/SAIC 2007). In spite of these uncertainties, a method for determining for the best locations for monitoring the potential breakthrough of RDX plumes is needed. The PlumeFinder optimization tool is helpful in developing superior investigation strategies for plume delineation when compared to standard Monte Carlo simulation techniques which merely provide upper and lower bounds on confidence. PlumeFinder uses Monte Carlo and Latin Hypercube techniques and assesses the noise in the concentration signal, compares it on a nodal and model-wide basis to the value of the concentrations samples, and uses Kalman filtering to fuse this information and arrive at the optimal estimate of the plume location.

To implement the PlumeFinder optimization tool, information was obtained and assessed from four primary sources:

- The Groundwater RCRA Facility Investigation Report (Stoller, 2004)
- Analytical data available for monitoring wells proximate to the area of interest (from the Pantex Integrated Environmental Database)
- The site-wide BIOF&T3D groundwater flow and contaminant transport model (BWXT/SAIC, 2007)
- The Pantex MODFLOW-SURFACT Ogallala Aquifer model (BWXT/SAIC 2007), which was a local refinement of the Northern Ogallala GAM (Dutton, Reedy, and Mace, 2001; Dutton 2004)

The following tools were used to facilitate this approach:

- Argus Open Numerical Environments (ArgusONE) Modeling Environment model independent graphical user interface
- Princeton Transport Code (PTC) finite element flow and transport code
- GSLIB Geostatistical Software Library
- PlumeFinder tool that integrates all of the above through optimization algorithms

The PlumeFinder technology currently requires the Princeton Transport Code (PTC) for numerical flow and transport because PlumeFinder includes links to PTC within the ArgusONE modeling environment. Therefore, a 2-D model of the Ogallala Aquifer was first developed using PTC. The PTC Ogallala Aquifer model was developed by integrating historical information, previous modeling efforts, geostatistical codes (GSLIB), and current field data. Previous models developed for this area include the Pantex CMS/FS BIOF&T3D model (BWXT/SAIC 2007) and the Pantex Ogallala Aquifer model (BWXT/SAIC 2007).

The domain of interest includes areas south and east of Pantex (along the fringe of perched groundwater saturation) where (1) investigation data indicate the FGZ becomes more permeable, and therefore introduce likely points of breakthrough to the underlying Ogallala Aquifer and (2) previous modeling results predicted low level impacts to the Ogallala Aquifer.

A transport simulation time of 50 years was selected for the evaluation to support development of the early detection monitoring network.

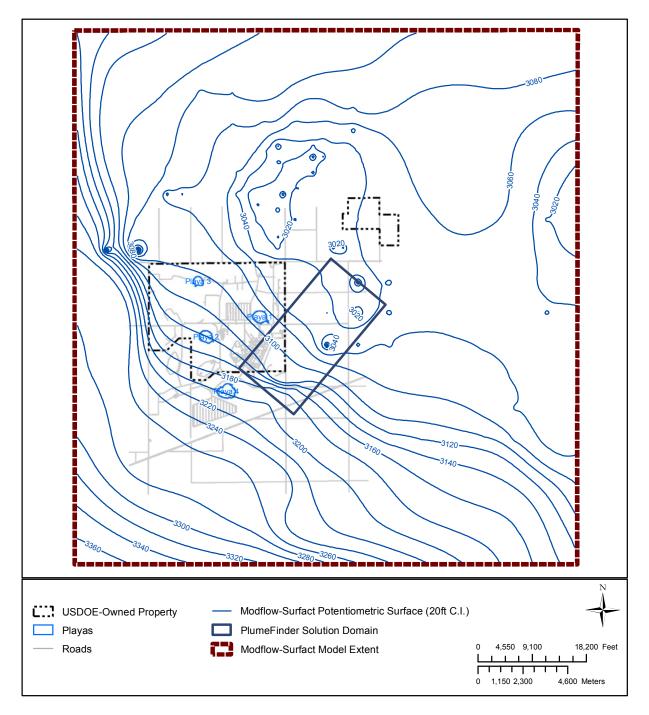


Figure 2-1. MODFLOW-SURFACT and PTC/PlumeFinder Model Domains

PlumeFinder differs from standard groundwater flow and transport modeling because in addition to flow and transport, the "information content" is modeled and the worth of new monitoring well data is computed (McGrath & Pinder, 1996). This contrasts the typical approach which simply computes the expected residual mass of RDX. The following example illustrates the PlumeFinder concept.

Given all the unknowns in the above problem statement, if one were to give this problem to 500 different analysts, one could reasonably expect 500 different answers if conventional modeling techniques were used. Each analyst would be free to choose their own interpretation of required information such as historical pumping rates and locations, hydraulic conductivity, and transport process and attenuation parameters. There would be a finite probability that any of the 500 analysts could be correct, but there would be no way to tell which analyst provided the best results using conventional modeling techniques. This is both disconcerting and untenable for decision makers.

Using the PlumeFinder technology, hundreds of different aquifers can be simulated – each with the same probability of being correct. The results from all these simulations are combined, and the areas that have the most uncertainty in the plume concentration are chosen as the best areas to investigate. This approach provides a scientifically-based decision that considers the unknowns.

2.5 MODEL CODE AND GRAPHICAL USER INTERFACE

The PlumeFinder technology includes links to the PTC (Pinder, George, F. 1997) numerical flow and transport code. PTC is a 3-D, finite element, saturated flow and single component transport model. PTC has been used for over 20 years, and has been used at major Superfund sites. The PTC model can be accessed through the ArgusONE graphical user interface (GUI) that allows for visualization of models through plug-in extensions. These tools are the interface for the PlumeFinder technology.

PTC is a very robust, accurate, and fast numerical flow and transport solver. This robustness and solution speed is critically important when conducting PlumeFinder integrated modeling and statistical investigations, because 1,500 separate aquifer realizations and subsequent flow and transport simulations are needed to solve the particular optimization challenge presented here. Future modeling needs are also considered satisfied by PTC and the ArgusONE GUI because the possibility of plume migration management exists.

The GSLIB (Deutsch and Journel, 1992) was selected for generating aquifer realizations based on observed variations in hydraulic conductivity data. GSLIB is the industry-standard for geostatistical analysis and the source code is publicly available.

3.0 ANALYSIS AND RESULTS

3.1 MODEL DEVELOPMENT

A summary of the hydrogeology and current studies of the Ogallala Aquifer are included in the sections below.

3.1.1 <u>Hydrogeology</u>

Pantex is situated on the High Plains of the Texas Panhandle. One of the major aquifer systems, the Ogallala Aquifer has more water being pumped from it than any other aquifer in Texas. The Ogallala Formation in which the Aquifer is seated consists of alluvial sands, silt, clay, gravel, and several caliche horizons. An unconfined aquifer in the sands and gravels of the lower Ogallala is the principal source of groundwater in the High Plains region, and is a primary source of potable water for Pantex and the City of Amarillo. In the vicinity of Pantex, this aquifer lies approximately 107 to 130 meters (350 to 425 feet) below ground surface (bgs). The base of the Ogallala is an irregular surface that represents the pre-Ogallala topography, which was influenced by the dissolution of underlying Permian salts and erosion. Consequently, the depth to the base of the Ogallala Formation varies across the Plant from approximately 122 meters (400 feet) below the southwest corner of the Plant to nearly 244m (800 feet) below the northeast corner of the facility. The thickness of the Ogallala Formation in the vicinity of Pantex ranges from approximately 99 to 220 meters (325 to 725 feet), increasing from southwest to northeast. Figure 3-1 shows the water table of the Ogallala Aquifer near Pantex as measured in December 2007.

Regionally, the Ogallala Aquifer water table slopes from northwest to southeast, generally following the regional topographic surface. In the vicinity of Pantex, however, the water table slopes from southwest to northeast, as shown in Figure 3-1, in response to extensive pumping from the City of Amarillo Carson County well field north of Pantex. Figure 3-1 also indicates an area of no saturation in the aquifer on the eastern side of the Texas Tech University (TTU) property. As water levels in the aquifer continue to decline, this area of no saturation will expand.

Groundwater in the Ogallala Aquifer is recharged from downward percolation of water, either from the surface of the High Plains or from the overlying perched groundwater zones. The distribution of recharge is poorly known, with estimates ranging from less than 0.01 inches per year to several feet per year. Higher recharge rates occur where the Ogallala Formation occurs at the surface and where surface water runoff is focused, such as beneath drainage ditches and playas. Lower rates occur for uplands (areas between the ditches and playas). A good summary of the recharge rates is presented in the Subsurface Modeling Report (BWXT/SAIC 2004 and 2007). For this effort, recharge rates were specified based on the MODFLOW-SURFACT model of the Ogallala Aquifer presented in the CMS/FS (BWXT/SAIC 2007).

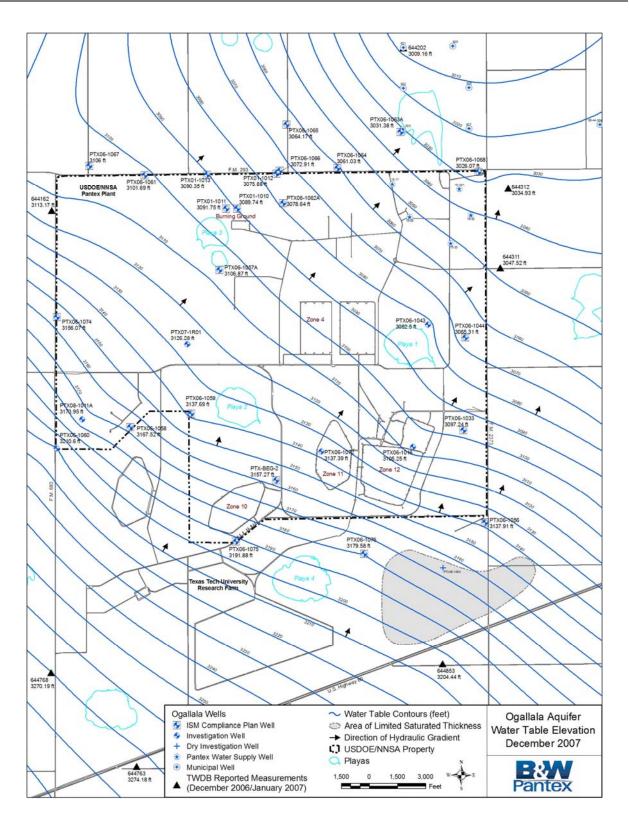


Figure 3-1. Ogallala Aquifer Water Table, December 2007

Few site-specific measurements of hydraulic conductivity have been completed in the Ogallala Aquifer at Pantex. As a result, information from regional studies has been used to supplement the site-specific hydraulic conductivity data. Of particular interest in the Bureau of Economic Geology study (Dutton, Reedy, and Mace, 2001) were the tests compiled from Mullican (1997) and from the groundwater database maintained by the Texas Water Development Board (TWDB). Mullican (1997) obtained information on 70 aquifer tests which included high-quality specific-capacity tests. Mullican (1997) were also able to cull data from an additional 1,271 specific-capacity tests in the TWDB groundwater database. To estimate transmissivity and hydraulic conductivity from specific capacity, they used an analytical technique developed by Theis (1963). Hydraulic conductivity was determined by dividing transmissivity by the saturated thickness exposed to the well bore.

Based on results from the data compilation and specific-capacity analysis, the hydraulic conductivity for the Ogallala Aquifer was found to be log-normally distributed (Figure 3-2) with a geometric mean of approximately 14.8 feet per day (ft/d) and a standard deviation that spans from 5 to 44 ft/d. The upper range of the standard deviation (i.e., 44 ft/d) is three times the geometric mean of approximately 14.8 ft/d, indicating variability in hydraulic conductivity. Because of this variability, uncertainty in hydraulic conductivity was evaluated using geostatistical methods to develop 500 equally plausible representations of the Ogallala Aquifer within the Ogallala Aquifer flow model.

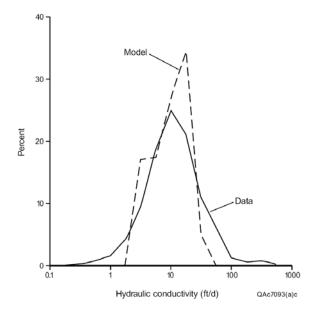


Figure 3-2. Bureau of Economic Geology Finding of Lognormal Distribution for Hydraulic Conductivity in the Ogallala Aquifer (after Dutton et al, 2000).

The greatest source of uncertainty in assessing transport is the uncertainty in hydraulic conductivity (Smith and Schwartz, 1981). To illustrate that hydraulic conductivity is the most sensitive parameter for determining plume location, the sensitivity of average groundwater velocity to gradient, porosity, and hydraulic conductivity is evaluated (within the range of values expected at the Plant). Considering Darcy's Law (v=ki/n; where v = velocity, k = hydraulic conductivity, i = hydraulic gradient, and n = porosity), sensitivity to changes in the gradient or porosity changes within the range of measured values at the Plant are relatively small compared to sensitivity to the anticipated range in hydraulic conductivity.

For example, the gradient ranges from 0.003 feet horizontally/feet vertically (ft/ft) beyond the northeast corner of the Plant to 0.012 ft/ft in the vicinity of Zone 12 in the 2007 water table shown in Figure 3-1. The porosity, n, has been measured in a number of samples collected at the Plant and ranges from approximately 29% to 42% based on samples collected from above the water table (SAIC, 2000). Specific yield values can be used to estimate porosity (although they typically underestimate porosity slightly). Specific yield values from 41 test holes scattered throughout the region averaged about 16% (SAIC, 2000). Porosity values published in the literature range from 25% to 35% for the sandy-gravelly sediments (Fetter, 1988) that comprise the Ogallala Aquifer.

Using a constant hydraulic conductivity of 5 ft/d for illustrative purposes, the increase in velocity for the gradient change is by a factor of 4.0 and the decrease in velocity for the porosity change is by a factor of .381. Velocities shown below are in ft/d:

Gradient Change (using the lower end of the porosity range)

v = 5(.003)/.16	v = 5(.0012)/.16
v = .094	v = .375

Porosity Change (using the mid-point of the gradient range)

v = 5(.0075)/.16	v = 5(.0075)/.42
v = .234	v = .089

The change in velocity from varying hydraulic conductivity by the upper and lower end of the standard deviation range, we see an increase in velocity by a factor of 8.8.

Hydraulic Conductivity Change (using the lower end of the porosity range and the mid-point of the gradient range)

v = 5(.0075)/.16	v = 44(.0075)/.16
v = .150	<i>v</i> = 1.320

This example illustrates that the greatest variation is from the hydraulic conductivity field and hence, why it is chosen as the parameter to capture using geostatistics in the PlumeFinder analysis. This example also corresponds with the results by Smith and Schwartz, (1981) that the greatest source of uncertainty is hydraulic conductivity. The remaining transport parameters are as follows:

- Retardation factor: none specified. Retardation refers to the relative velocity of the center of the transport plume to the advective groundwater flow. Neglecting retardation permits the advective portion of the simulated RDX plume to migrate with the same velocity as the groundwater.
- Dispersivity: Dx=50 ft, Dy=5 ft and Dz = 5 ft. Dispersivity refers to the process of the plume spreading in all directions from its centerline. The dispersivity parameters are taken directly from the model reported in the Corrective Measures Study/Feasibility Study (CMS/FS). Smaller values will produce a narrower, focused plume and larger values will produce wider, more disperse plumes with lower peaks values.
- Molecular diffusion: none specified. The process of molecular diffusion (Brownian motion) describes how a concentration of a chemical such as RDX would diffuse from areas of higher concentrations to areas of lower concentrations. This is a slow process, and the dispersion due to the movement outweighs this effect for the Ogallala Aquifer flow system. A non-zero value would results in a practically negligible addition to the dispersive plume front.

- Biological decay: none specified. The biological decay processes destroy contaminants such as RDX. Neglecting biodegradation allows the simulated RDX to migrate the furthest.
- Porosity: 0.25%. Porosity is the open area of the soils where the water flows. All other parameters being equal and given a fixed flux, higher values of porosity produce slower plume migration and lower values result in faster plume migrations.
- Source strength: constant unit source. In the southeastern portion of the Plant where RDX is projected to migrate from the perched groundwater to the Ogallala Aquifer at detectable concentrations based on CMS/FS modeling a continuous constant unit source is specified. Since the flux through the source area is realization-specific, each simulated aquifer will generate a unique source flux. A second hypothetical source along the eastern fringe of the perched extent is not directly simulated in the PlumeFinder analysis but is evaluated separately.
- Base hydraulic conductivity: specified from the CMS/FS MODFLOW-SURFACT Ogallala Aquifer model (BWXT/SAIC 2007b). This is the base conductivity field used for the geostatistical realizations. It is used directly only in the deterministic case, and varied geostatistically to generate 500 stochastic realizations of the Ogallala Aquifer. The base hydraulic conductivity is not used directly the PlumeFinder fringe calculations.

Finally, variograms from several studies (Clark, 1979; McCuen and Snyder, 1986) show that hydraulic conductivity in the Ogallala Aquifer is spatially correlated. Spatial correlation infers that points that are closer together are more similar to each other than points that are further apart. Fitting a spherical theoretical variogram (Dutton, Reedy, and Mace, 2001) to the experimental variogram resulted in a nugget of $0.12 [\log(ft/d)]^2$, a sill of $0.22 [\log(ft/d)]^2$, and a range of 140,000 feet. The range suggests that hydraulic conductivity is spatially correlated within 140,000 feet (26 miles) in the Ogallala Aquifer. The distance correlation is the range (length) beyond which a conductivity measurement no longer has value in predicting local conductivities.

3.1.2 Water Quality

Past operational and waste handling procedures have resulted in contamination of the perched groundwater beneath the Plant. Groundwater quality in the Ogallala Aquifer is characterized by groundwater samples collected from monitoring wells installed in the aquifer. Although non-trending sporadic detections of constituents occur in the Ogallala Aquifer at low, non-actionable concentrations below regulatory screening levels, no constituents of concern have been identified in the Ogallala Aquifer based on the current monitoring network.

Modeling conducted as part of the Baseline Human Health Risk Assessment and CMS/FS indicates the potential for contaminants in perched groundwater, particularly RDX, to impact the Ogallala Aquifer in the future (BWXT/SAIC 2006 and BWXT/SAIC 2007). Figure 3-3, taken from the Baseline Human Health Risk Assessment Report, shows modeled concentrations of RDX in the perched groundwater and Ogallala Aquifer after 20 years of transport in the absence of corrective actions. The figure on the left shows that the highest concentrations of RDX in perched groundwater occur south of Pantex Plant beneath TTU property with high concentrations of RDX also found along the eastern boundary of Pantex. The figure on the right shows modeled impacts to the Ogallala Aquifer occur near the southern extent of perched groundwater, beneath the area containing the highest RDX concentrations in perched groundwater. This area was identified as the source area for the PlumeFinder modeling.

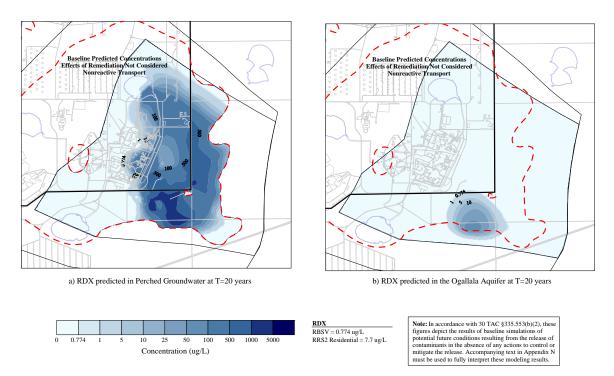


Figure 3-3. Modeled RDX Concentrations in the Perched Groundwater and Ogallala Aquifer

A second potential source area along the eastern extent of perched groundwater is also considered, although it is not directly included as a source in the PlumeFinder analysis. No impacts exceeding risk based levels to the Ogallala Aquifer were predicted in this area, but the area is considered a potential source because of the high RDX concentrations in perched groundwater coupled with a slightly more permeable FGZ along the fringe of perched groundwater.

RDX is projected to migrate from the perched groundwater to the Ogallala Aquifer. Before entering the Ogallala Aquifer, the RDX must vertically traverse the unsaturated zone between the FGZ and the Ogallala Aquifer water table. In the southeast area this distance is much less than along the eastern extent of saturation. The FGZ is also simulated as slightly less permeable along the eastern extent in the CMS/FS models compared to the southern fringe of perched groundwater. Increased travel time simulated through a thicker unsaturated zone and slightly lower FGZ permeability mitigates predicted impacts to the Ogallala Aquifer hence less impact to the Ogallala Aquifer is expected along the eastern fringe of perched groundwater. However, given the lack of direct data in the Ogallala Aquifer in this area it is prudent to locate monitoring wells capable of detecting RDX migration here.

3.1.3 <u>Previous Models</u>

Few regional aquifers have been as extensively studied as the Ogallala Aquifer. Models of groundwater flow have been important tools for managing the groundwater resource and evaluating future changes in water level and saturated thickness. At least 15 numerical groundwater flow models have been developed for different parts of the aquifer. Most recently, studies were completed by the Bureau of Economic Geology at the University of Texas on withdrawal projections in the Ogallala Aquifer in the Panhandle Water Planning Area (Dutton, Reedy, and Mace, 2001; Dutton 2004). The studies predicted that by 2050, major areas of the aquifer will have less than 50 feet of remaining saturated thickness and parts of the aquifer in various counties in the Panhandle Water Planning Area may be dry.

Two recent site-specific models have been developed which include the Ogallala Aquifer in the area-ofinterest for this study. The motivation for developing these models was to support decision-making that protects the Ogallala and Amarillo well field. Specifically, these are the Pantex CMS/FS BIOF&T3D model and the Pantex MODFLOW-SURFACT Ogallala Aquifer model (BWXT/SAIC 2007).

Ideally, the CMS/FS BIOF&T3D model (BWXT/SAIC 2007) would be integrated with PlumeFinder technology to optimize the proposed well locations. However, execution of one simulation with this model requires approximately 7 to 20 days using computers available in 2007. As part of this study, over 1,500 final simulations were completed during the PlumeFinder analysis. This includes computing flow and transport over a 50-year period, using different – though equally plausible – aquifer conductivity realizations. Years of computational time would be required using the fully 3-D, variable saturated, coupled transient flow and transport model with all the site complexity.

Use of the CMS/FS BIOF&T3D model in a PlumeFinder analysis presented a significant computational hurdle. Therefore, the MODFLOW-SURFACT Ogallala Aquifer model was used to set up a PTC flow and transport model, and then this PTC flow and transport model was applied to the PlumeFinder analysis.

3.1.4 PlumeFinder / Princeton Transport Code (PTC) Model

The first step in the PlumeFinder analysis was to develop the PTC Ogallala Aquifer groundwater flow and transport model from the MODFLOW-SURFACT Ogallala Aquifer model (BWXT/SAIC 2007). The MODFLOW-SURFACT model contains the most recent updates of aquifer properties (including bottom elevation of the Ogallala Aquifer, the hydraulic conductivity and water table information) in the area of interest local to the Plant. It acceptably simulates flow under both steady-state conditions (using reduced pumping rates as described in BWXT/SAIC 2007) and transient conditions. The steady state version was selected for conversion to PTC for computational efficiency. The CMS/FS modeling conducted with the BIOF&T3D model included comparisons of RDX transport results using a declining, transient water table and a steady-state water table for the Ogallala Aquifer. The simulations produced nearly identical results, so the use of the steady-state model is not expected to significantly affect the outcome of the PlumeFinder analysis.

The MODFLOW-SURFACT Ogallala Aquifer steady-state model was used as-is in developing the PTC Ogallala Aquifer model, with the two minor refinements to include a finer grid and modify of two wells. In the final steady-state Ogallala Aquifer model, each model grid cell was 844.8 feet (257.5 meters) wide in the east-west direction and 897.6 feet (273.6 meters) wide in the north-south direction. In the transient Ogallala Aquifer model that was used for predicting future flow conditions, a finer grid cell size was used: 211.2 feet (64.4 meters) in the east-west direction and 224.4 feet (68.4 meters) in the north-south direction. The latter grid resolution was needed to assist in subsequent contaminant transport calculations in PTC, so the withdrawal rates from the steady-state Ogallala Aquifer model were substituted into the finer transient Ogallala Aquifer model grid to obtain the steady-state head solution in the more finely discretized model. During this process, two wells were modified with respect to those included in the final steady-state model. First, one Pantex production was excluded; this well was active c.1994 (i.e., consistent with the time period represented by the steady-state model) but is not active today. Second, one irrigation well that was inadvertently omitted from the final steady-state model was added. This irrigation well lies north of the Amarillo well field, and has insignificant impact on this or previous analyses.

To focus the PlumeFinder calculations, simulations were conducted with the steady-state Ogallala Aquifer model to guide the selection of the PTC model extent. Two unit sources were included. One was an areal source placed in the potential areas of RDX breakthrough to the Ogallala Aquifer predicted by the BIOF&T3D model (BWXT/SAIC 2007) and another was a distributed line source along the eastern fringe of perched groundwater. Transport parameters for RDX were specified consistent with those used in the BIOF&T3D model, with the following notable exceptions:

- Biodegradation is assumed not to occur.
- Retardation is assumed not to occur.
- The source strength in the Ogallala Aquifer is assumed 1000 times greater than the plume fringe (1 ppb) for RDX.

The assumptions are more conservative (result in larger predicted plume extent) than those included (biodegradation & retardation) or simulated (peak concentrations of RDX in the Ogallala Aquifer) from the CMS. For instance, a biodecay rate of 25 years and a retardation factor of approximately 1.7 were assumed in the CMS. This conservatism ensures the PTC model extent is sufficiently large to encompass all realizations produced for the PlumeFinder evaluation. Transport was simulated until the plume produced by both simulated source areas reached steady-state. The source areas and the resulting steady-state plume are depicted in Figure 3-4.

Withdrawals from the Amarillo production wells (generally north and northeast of Pantex) and the local area irrigation wells create cones of depression in the Ogallala Aquifer water table (Figure 3-4) that provide an outer bound for contaminant migration. Consequently, the PTC model domain was specified to extend just beyond this depression, as shown in Figure 3-4. The PTC model domain is substantially smaller than the MODFLOW-SURFACT model domain. This smaller model domain permits the 500 PTC models (i.e. the individual realizations generated after geostatistically varying the hydraulic conductivity) to be executed in about 5 minutes, or less than 1 second per run. The PTC model and the PlumeFinder solution domain cover approximately 9 square miles (12,000 feet by 24,000 feet) including the southeastern portion of the Plant area and the likely points of breakthrough to the south and east.

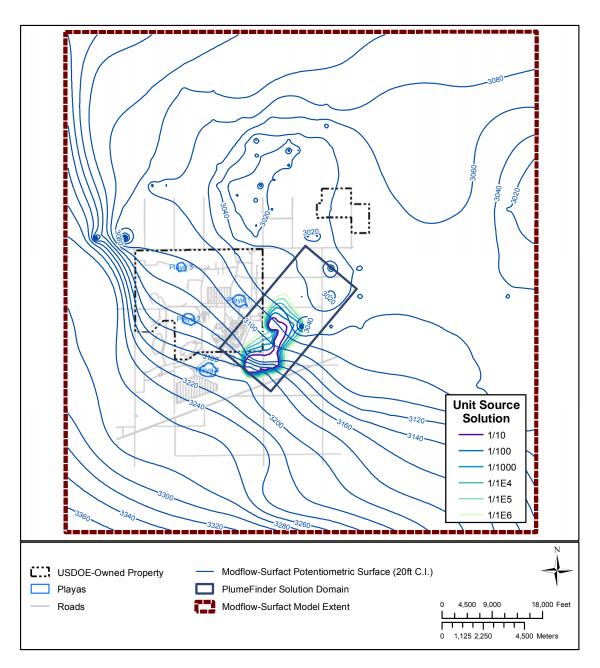


Figure 3-4. Model Domains and Steady-State Plume

Simulations were also conducted with the MODFLOW-SURFACT model to assess the sensitivity of contaminant transport to the pumping rate of irrigation wells immediately east of Pantex Plant, nearest the areas of potential breakthrough. Future pumping rates at the wells are unknown; therefore, the wells impart uncertainty on the transport directions in the area of interest. Transport and particle tracking were conducted to assess the sensitivity of results to the pumping rate of the well closest to the potential breakthrough areas. Three sensitivity simulations were conducted with pumping rate reductions of 50%, 75%, and 87.5% for this well. Predicted steady-state heads, steady-state transport results, and particle tracking results for the rate used in the steady-state model are presented in Figure 3-5a. Similar items are presented in Figure 3-5b for a 75% reduction in pumping rate for this well.

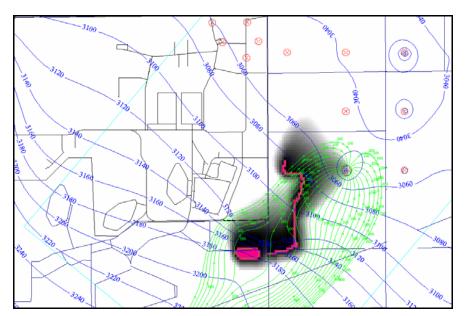


Figure 3-5a. Unchanged Flow Rate at Pumping Well

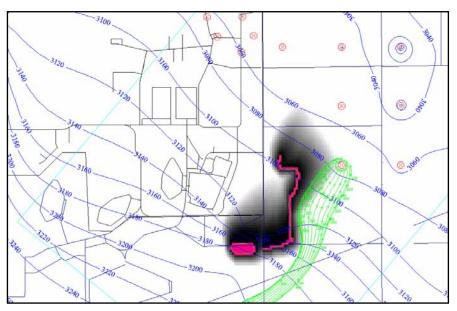


Figure 3-5b. Reduced Flow Rate at Pumping Well

Figure 3-5. Capture Zone and Transport Sensitivity Results

Comparing the two figures, a diminished capture zone for the well can be seen from the particle tracking comparison. However, impacts on the overall extent of the steady-state plume are not dramatic. Based on this comparison, the decision was made to represent all pumping wells with constant head boundary conditions in the PTC model rather than specify a constant flow rate in each. The constant head boundary condition allows the PTC model to calculate a variable flow rate at each well so that a constant water level is maintained in the cell. Note that much of the RDX release may be captured by a single pumping well. This is plausible but other alternatives cannot be discounted since there is a high degree of uncertainty due to the lack of direct field measurements in this area. Installation of the monitoring wells

proposed from this analysis would add direct field measurements for this region and reduce the uncertainty.

After establishing the PTC model domain, aquifer properties including hydraulic conductivity, recharge, aquifer top and bottom elevations, and porosity were transferred directly from the MODFLOW-SURFACT model to the PTC model via the ArgusONE numerical modeling GUI. South of the southeast edge of Pantex, a dry area in the Ogallala Aquifer has been observed at one monitoring well. The area is simulated in the MODFLOW-SURFACT model as a partially saturated area, using the value of recharge as the flow in the cell to avoid the dry cell condition. In some areas, the aquifer thickness was less than one foot. Initial testing of the PTC model revealed that realizations with some classes of hydraulic conductivity fields caused the PTC model to fail due to stability limitations in areas with minimal saturated thickness. In these problematic iterations the water table "fell" below the aquifer bottom, causing the hydraulic conductivity in the numerical matrix to go negative and the solver to crash. To prevent these model convergence issues, a confined aquifer configuration was used in the PTC model. and the simulated aquifer thickness was held constant at its initial conditions. This solved the thin aquifer condition and allowed the saturated flow model to be used without requiring a computationally intensive variably saturated flow model or removing the thinner portions of the model domain out of the model. (Removing areas with minimal aquifer thickness was not preferred because the potential RDX source is in these areas.)

The heads from the drawdown of the pumping wells in the steady-state MODFLOW-SURFACT model were transferred into the PTC model and specified as constant head boundary conditions, with specified head values based on the steady-state flow solution. The PTC model boundaries were specified using constant head boundary conditions, again with head values based on the steady-state flow solution. Steady-state flow was then simulated in the PTC model and compared to the MODFLOW-SURFACT model, as seen in Figure 3-6. The comparison shows only minor differences in simulated heads between the two models in the areas of the well fields and at the boundaries with somewhat greater differences underneath the southeastern breakthrough area. The differences can be attributed directly to the combination of both different grid sizes used to solve the model domain, specifically in the area of the wells, and the simplification to apply the approximation of a constant aquifer thickness. The results for the final set of 500 realizations (hydraulic conductivity, head, and concentration) are provided on the attached compact disc.

Figure 3-7 shows the source used in the PTC model and applied to the associated PlumeFinder modeling. This source is placed in the potential area of RDX breakthrough to the Ogallala Aquifer predicted by the BIOF&T3D model (BWXT/SAIC 2007). A unit source strength of 1 ppm was assumed, and the fate and transport solution was calculated with a duration of 50 years. The Plume fringe was defined as the 1 ppb isocontour, and thus the ratio of source concentration to fringe concentration was 1000:1. Neither biodegradation nor retardation was included as a transport process. As a result, the conservative assumptions increased the predicted RDX migration along the likely pathway of the plume and identified the area where RDX from the southern source (breakthrough area) would first migrate beyond the perched groundwater extent.

This PTC model mesh used in the PlumeFinder is shown in Figure 3-8. The dense node arrangement associated with the source ensures accuracy in this critically important region of the model domain and limits numerical dispersion of the transport solution.

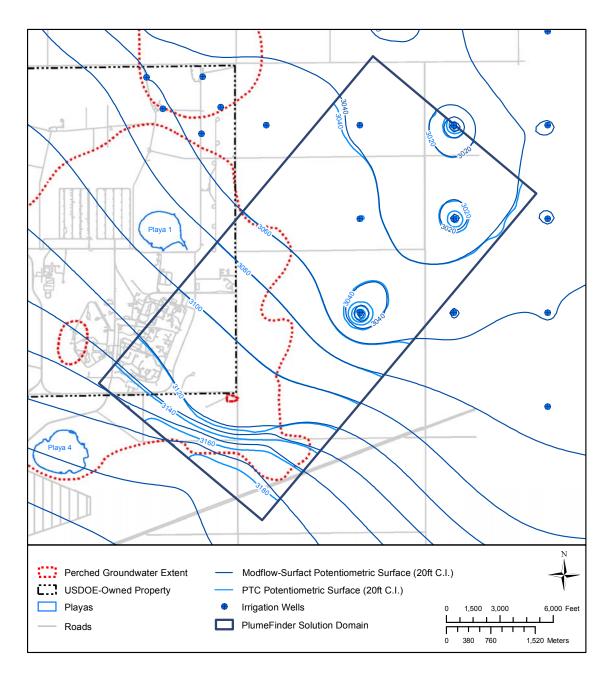


Figure 3-6. Potentiometric Surfaces Defined in PTC Model and Modflow-Surfact Model

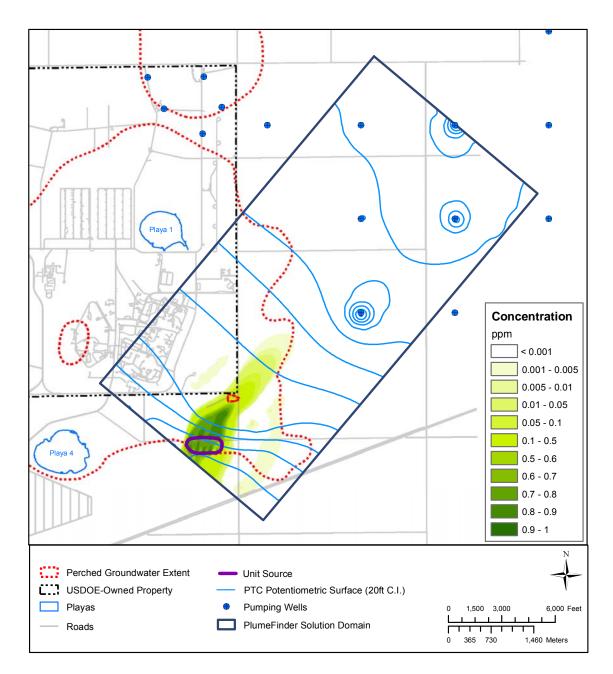


Figure 3-7. Contaminant Source and 50 year Deterministic Transport Plume in PTC Model

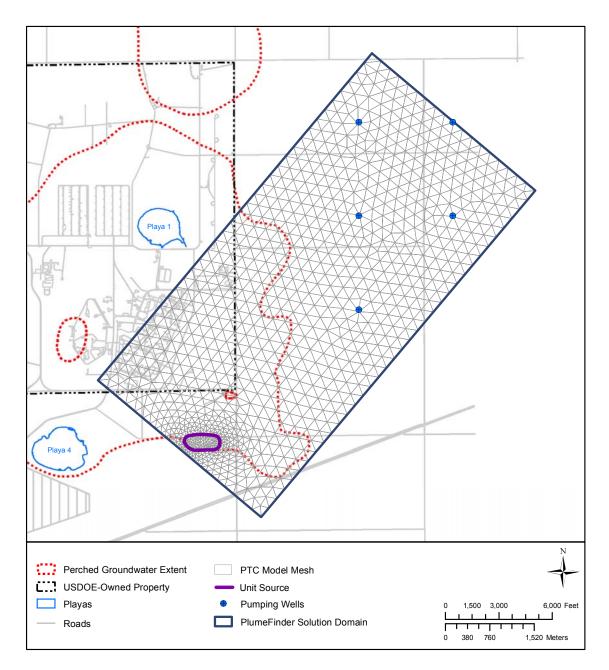


Figure 3-8. PlumeFinder Computational Mesh in PTC Model

3.1.5 Additional Considerations

<u>Hydraulic conductivity</u>: Hydraulic conductivity is assumed to be locally isotropic; that is, the same in the x and y directions within each element. However, because of uncertainty associated with the hydraulic conductivity and the limited amount of available test data, geostatistics were used to create 500 likely aquifers and the combined results analyzed to provide recommended locations for new monitoring wells. The variogram for the entire Ogallala Aquifer was used as discussed above. The extent the variogram may differ from local conditions is unknown. The variogram provides the best available information from which to base the hydraulic conductivity realizations.

<u>Groundwater flow direction</u>: With the exception of a few monitoring wells, the actual flow patterns beneath the perched groundwater are unknown from direct measurement. The inferred flow directions represent the best estimate from measurements recorded in the Ogallala Aquifer monitoring wells.

<u>Potential Source Locations to the Ogallala Aquifer:</u> The potential source of RDX to the Ogallala Aquifer is inferred. RDX has not been directly measured at any consistent value at any location in the Ogallala Aquifer. RDX is consistently detected in the perched groundwater at values in the mg/l range. The assumed sources used in the PlumeFinder analysis and accompanying qualitative assessment are the best estimates of where RDX could migrate into the Ogallala Aquifer, based upon both site investigation data and previous modeling results.

<u>Fifty-year monitoring design period:</u> Fifty years was chosen as a period from which to evaluate the plume fringe uncertainty. Uncertainty grows over time. Sporadic and unreplicated detections of RDX complicate the analysis, as it is uncertain whether or not a plume fringe exists in these monitoring locations. Only three Ogallala Aquifer monitoring wells within the PTC model extent still contain groundwater from which to make assessments.

<u>Irrigation wells (pumping wells)</u>: The stochastic analysis of the plume fringe location also addresses the uncertainty associated with the pumping rates of irrigation and water supply wells. Simulations conducted with the MODFLOW-SURFACT Ogallala Aquifer model indicate that flow in the Ogallala Aquifer (and therefore contaminant transport) directions are sensitive to the pumping rates of wells east of Pantex near the areas of potential breakthrough. Future pumping rates at the wells are unknown, and the wells are not under Pantex control. These wells therefore impart substantial uncertainty on the transport directions in the area of interest. Because well pumping rates are allowed to vary with the different aquifer realizations, this uncertainty is somewhat addressed in the PlumeFinder analysis.

One last consideration is that the analysis presented here does not incorporate degradation or biological decay of RDX in the transport calculations. Degradation rates, usually expressed in terms of a first-order kinetic reaction rate, for RDX are well documented in the literature but have not been measured in the Ogallala Aquifer. Because biological reactions are redox-zone specific, the biochemistry is important in assessing the transport of material in the subsurface and will therefore be important in early detection of a plume fringe. As described in the *CMS/FS Modeling Report* (BWXT/SAIC 2007), the degradation rate of RDX is an irreducible uncertainty that can only be addressed over time as information on the redox zones and degradation rates in the Ogallala Aquifer groundwater.

A principled groundwater flow and transport model helps overcome data limitations through accurate representation of the underlying physics. However, a deterministic solution may not capture the variety of possibilities that exist to effectively manage potential migration of RDX. The PlumeFinder technology incorporates the major elements of the uncertainty, and provides a mechanism to support management decisions following a systematic and proven approach. Below are the results of the analysis.

3.2 PLUMEFINDER ANALYSIS AND RESULTS

The objective of this analysis is to identify best locations for up to three new Ogallala Aquifer monitoring wells using the PlumeFinder technology and incorporating predictions from previous modeling efforts. PlumeFinder optimally locates wells to better delineate the boundary of a contaminant plume. As noted earlier, PlumeFinder integrates the PTC model, the model GUI (Argus ONE), and geostatistical software into a computer system for guiding the investigation of contaminated aquifers. As discussed in the previous section, PlumeFinder is based on the idea that the best means of delineating a contaminant plume boundary is to place wells in such a manner as to minimize the uncertainty of the boundary location.

The threshold level that defines the RDX plume boundary is 1/1000th of the assumed unit source strength of 1 mg/l. This assumed unit source and plume fringe threshold are conservative. The recommended alternative in the CMS/FS (BWXT Pantex/SAIC, 2007) indicated a maximum predicted RDX concentration of 4 ug/l in the Ogallala Aquifer and a plume fringe defined by the 0.774 ug/l isocontour. An approximately 1/5 ratio produces an area of plume fringe uncertainty much smaller than if a lesser ratio of 1:1000 is used. Despite conservative assumptions in the PlumeFinder analysis, the likelihood that RDX will migrate from the source area to a point beyond the extent of perched groundwater in the east is low in this 50-year design period.

The GSLIB code was used to geostatistically vary the hydraulic conductivity field and generate multiple realizations of the Ogallala Aquifer. The hydraulic conductivity variogram from the Northern Ogallala GAM (Dutton, et al., 2001) was used as input into the model. Because pumping wells are simulated as constant head boundaries, the flow into them varied depending on the geostatistical representation of the aquifer hydraulic conductivity. The analysis consisted of generating 500 aquifer realizations, executing flow and transport simulations for each, and repeating this for each PlumeFinder investigation scenario. Three scenarios were evaluated: no wells, the existing monitoring well network, and one optimally located monitoring well. This resulted in 500 separate flow and transport simulations for each scenario, totaling 1500 simulations. The mathematics underlying PlumeFinder, specifically the Kalman filtering aspect, are explained in Appendix A. The flow and transport mathematics are provided in the PTC textbook and manuals (Pinder, 1997 & 2002). The applied geostatistics are described in the Geostatistical Software Library and User's Guide (Deutsch and Journel, 1992).

3.2.1 <u>Baseline Uncertainty (No Monitoring Wells)</u>

As a first step, the PlumeFinder investigation was executed without monitoring well information to provide a baseline for evaluating the existing well network. The results of the base case can be seen in Figure 3-9. In this figure, darker colors depict greater uncertainty and lighter colors depict higher confidence. The best location to place a well is in the area of maximum uncertainty outside the perched groundwater extent. The value for uncertainty (shown in the legend of Figure 3-9) is a measure of the uncertainty in the value of the RDX concentration in the groundwater when compared to the plume fringe value. The volume underneath the measure of uncertainty value has been normalized to 100%.

- <u>Uncertainty beneath the Perched Groundwater</u> Most of the plume migration and uncertainty associated with fringe location occurs beneath the perched groundwater, an area for the most part precluded from investigation in the Ogallala Aquifer for reasons of cross-contamination concerns.
- <u>Uncertainty beyond the Extent of Perched Groundwater</u> Two areas of plume fringe uncertainty occur beyond the extent of perched groundwater saturation, one to the south of the Plant, and one to the east.

- In the area to the south observations show the Ogallala Aquifer to be dry in at least some locations. Investigations in this area are prudent, and B&W Pantex is already planning on further investigations to characterize the Ogallala in this area.
- The area to the east represents the most likely location where RDX could migrate from beneath the perched groundwater extent. The PlumeFinder technology is used to identify the best monitoring well location in this area to the east of perched groundwater saturation.

3.2.2 <u>Uncertainty in Current Monitoring Well Network</u>

Figure 3-10 shows the results when the information for the existing three Ogallala Aquifer wells (within the PTC model domain) is added. An assumed concentration of half the plume fringe value (1 ppb) was specified at the three existing well locations. By inspection, information is most lacking in the southeast near the extent of perching groundwater. This finding is consistent with the known uncertainties in the conceptual site model. This analysis shows that the current monitoring well network in the Ogallala Aquifer only reduced the uncertainty in the plume fringe location by 8%.

The reduction in uncertainty is low for several reasons. First and foremost, to avoid the potential for cross contamination, there are only a limited number of monitoring wells (three) installed downgradient of the source area. All are installed through localized areas within the current extent of the perched groundwater where the FGZ projected above the perched groundwater table. PTX06-1033 is outside the area impacted by the source assumed here and has no effect on reducing uncertainty. PTX06-1032 is in an area of low uncertainty with respect to plume delineation and accounts for a minor reduction in uncertainty. PTX06-1056 is directly downgradient of the source area and accounts for nearly all the reduction in uncertainty from the existing Ogallala Aquifer monitoring well network. PTX06-1054, south of the source area, contains insufficient water for sampling and was therefore not included in the PlumeFinder analysis. There are no existing monitoring wells east of the perched groundwater extent capable of characterizing the Ogallala Aquifer near a potential secondary source in that area.

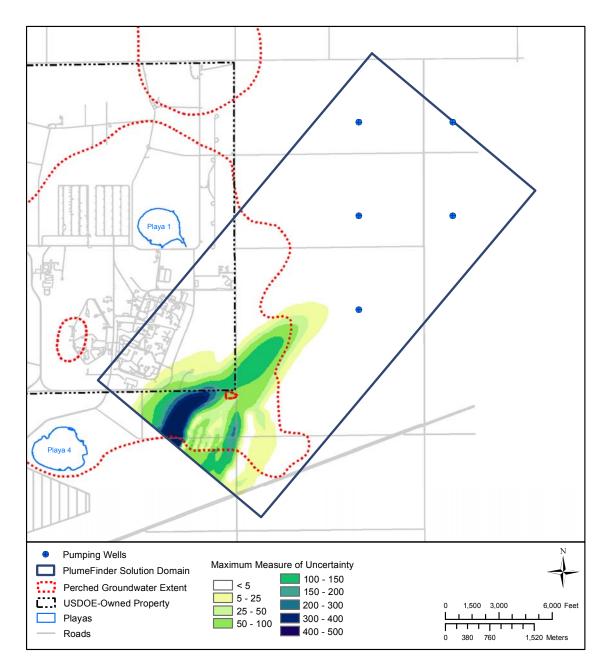


Figure 3-9. PlumeFinder Rendering of Baseline Uncertainty

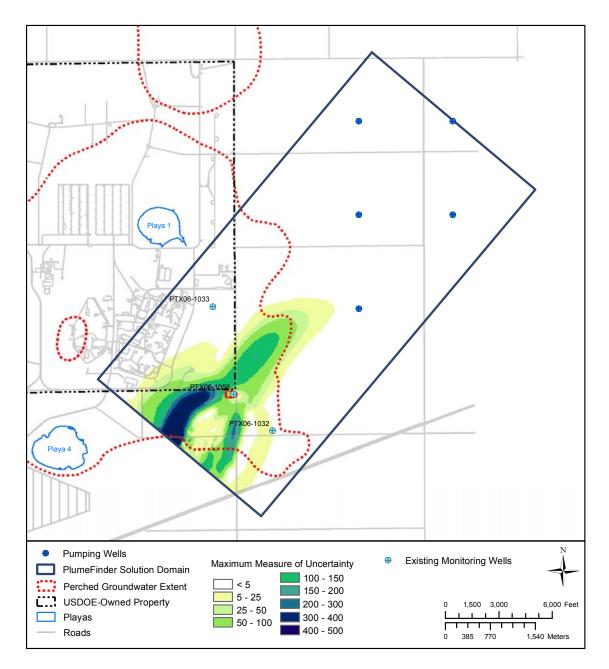


Figure 3-10. PlumeFinder Rendering of Uncertainty with Existing Pantex Monitoring Wells

3.2.3 <u>Uncertainty with Proposed New Monitoring Wells</u>

A proposed new well is added in the optimal location (i.e., at the location of the maximum value of uncertainty from Figure 3-10) that is to the east of the perched groundwater extent. This location can be seen in Figure 3-11. Assuming the new well detects the plume fringe, Figure 3-11 shows its projected effectiveness in decreasing the uncertainty in plume delineation if installed. This represents a 72% reduction in the volumetric uncertainty beyond the extent of perching from the current case (which assumed the Pantex monitoring well network). Overall, the total uncertainty reduction is 16% when considering the entire volume (below perched, south of Plant, and east of Plant).

The majority of the remaining uncertainty exists beneath perched groundwater and constitutes irreducible uncertainty due to the constraint that wells not be drilled through areas of perched groundwater containing RDX. As such, it is more desirable to place two additional wells slightly downgradient of the extent of perched groundwater rather than to drill through the perched groundwater to install monitoring wells. The locations of these well are shown on Figure 3-12. They are placed based on insight from the CMS/FS and associated BIOF&T3D modeling. They are not placed by the PlumeFinder analysis. The purpose of these two wells is early warning detection of RDX from the eastern portion of the perched groundwater, as opposed to farther field plume detection from the potential RDX source area beneath perched groundwater. They are located as preliminary investigation wells to gather subsurface information in these areas. PF-2 is where the extent of perched groundwater extends the least when compared to the surrounding area to assess the potential for downward migration (see Figure 3-3a), and PF-3 is at the point where there is a decreasing area of RDX in the perched groundwater (also Figure 3-3a). These placements are motivated by an understanding of the physics of the 3-D flow and transport system. They are not positioned simply by placing them between potential receptors, for example. Installation of these wells will provide key observation data to better understand the flow and transport properties in this area and to assist in making informed decisions regarding potential RDX migration.

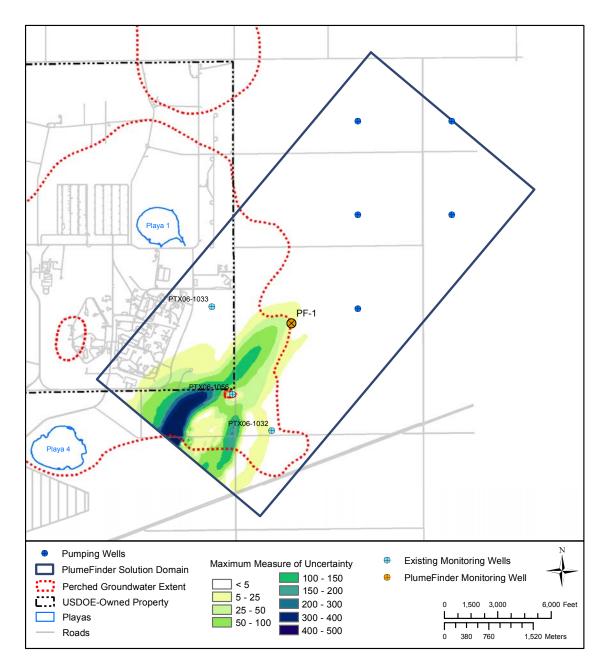


Figure 3-11. PlumeFinder Rendering of Uncertainty with First New Well Installed

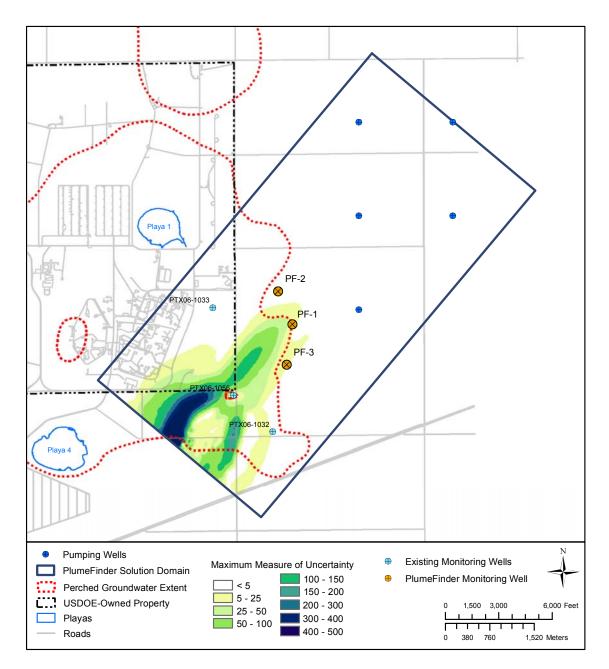


Figure 3-12. PlumeFinder Rendering of Uncertainty with Second and Third New Wells Installed

3.2.4 <u>Summary of PlumeFinder Results</u>

The first monitoring well, PF-1, details the effect of uncertainty from a potential RDX source area in the southeastern portion of the Plant derived from contamination in the overlying perched groundwater. Proposed wells PF-2 and PF-3 additionally help to provide early warning detection at the fringe of perched groundwater, and are based on professional judgment since the reduction in uncertainty computed from the PlumeFinder analysis indicated minimal value beyond the one monitoring well for reducing uncertainty from the potential source in the southeast. These three locations are based on the optimization performed with PlumeFinder combined with understanding the 3-D flow and transport physics to provide early warning detection for RDX derived from vertical flow near the extent of perched groundwater. Important points to consider are:

- 1) The fluxes from the perched groundwater vary with location and over time as the perched groundwater slowly drains into the Ogallala Aquifer.
- 2) Remediation is underway which is designed to minimize the risk that RDX enters the Ogallala Aquifer.
- 3) Placement of groundwater monitoring wells directly adjacent to the perceived extent of perched groundwater might cause a failure to identify RDX migrating to the Ogallala Aquifer due to the lack of direct observations in this area.
- 4) Placement of monitoring wells too far from the perched groundwater extent reduces their usefulness as an early warning system.
- 5) Currently, there are no Ogallala Aquifer monitoring wells east of the perched groundwater extent (second source); and therefore, there is no way to determine if the Ogallala Aquifer has been impacted in this area. Modeling results from the risk assessment and CMS/FS indicate only very low (ppb range) potential impacts in this area.

Hence, the proposed monitoring well network provides a balance of these complexities and the one well (PF-1) is optimal for detecting plume fringes from a potential source in the southeast area within a 50-year time period. The other two wells, PF-2 and PF-3, are good locations to assess migration of RDX along the eastern fringe of perched groundwater. For the monitoring well network to be workable, the well screens must be long enough to account for the documented and projected decline in the Ogallala Aquifer water table.

Note that in this analysis precise knowledge of the flow and transport system is not necessary, but is very helpful in making good decisions about well placement. The PlumeFinder assesses the ability of a monitoring location to provide information valuable to determining where the plume fringe resides. The conclusions for the PlumeFinder analysis for RDX in the Ogallala Aquifer are as follows:

- The existing monitoring network was established by installing monitoring wells through the FGZ. Although this was done using safe installation criteria, the existing network has limited value for RDX detection beneath the perched groundwater. It demonstrates the amount of irreducible uncertainty to safely investigate beneath the perched groundwater.
- Better delineation of the plume fringe can be achieved by adding three new wells outside the eastern extent of perched groundwater. The wells, however, do little to reduce the uncertainty in RDX plume fringe delineation beneath the perched groundwater.

- A periodic review of the flow directions and a regular sampling regimen, including both target and monitored natural attenuation parameters, is warranted.
- This analysis can be updated pending installation of the three proposed wells, collection of water table data, hydraulic conductivity, and RDX concentrations, if warranted.

4.0 SUMMARY

4.1 RESULTS OF WELL PLACEMENT OPTIMIZATION

A significant benefit in understanding the potential plume migration, as well as plume fringe delineation, can be gained by this analysis. Adding three new monitoring wells provides for a solid increase in understanding the groundwater flow and transport in this eastern area – an area currently devoid of Ogallala Aquifer monitoring wells. It also shows the irreducible uncertainty in knowledge of plume migration beneath the perched groundwater when safe investigation practices limit the amount of available data. The locations for three new monitoring wells are shown in Figure 4-1. PF-1 has been established using the PlumeFinder technology while PF-2 and PF-3 are recommended based on previous modeling efforts and site investigation data. With the high cost of monitoring well installation and sampling in the Ogallala Aquifer, it is prudent to collect additional subsurface characterization data before more new wells are installed beyond the three recommended. Additional valuable information includes verifying the presence or absence of RDX in the aquifer, determining the flow direction variation with time, and determining natural attenuation parameters over time and distance. This data will reduce the uncertainty in the information used to locate additional wells, if needed. A summary of the volume under the measure of uncertainty for RDX is presented in Table 4-1. The corresponding percentage reduction in far field plume fringe uncertainty from the current conditions is shown in parenthesis.

The reduction in uncertainty shown in Table 4-1 indicates that the first proposed monitoring well network has been well designed and reduces the uncertainty in plume location beyond the extent of perched groundwater for RDX by 72%. This translates into a total reduction of uncertainty for the entire plume (to the south and beneath the perched groundwater) of only 16%. Increasing the uncertainty reduction more would require drilling through the perched aquifer, which is not recommended. Hence, this 16% improvement also represents the irreducible uncertainty in understanding the flow and transport system. The installation of the second and third wells is for early warning detection of RDX originating along the eastern fringe of perched groundwater.

- PF-1: This is a dual-purpose monitoring well. This location resolves the greatest portion of uncertainty from the southeastern perched groundwater area and provides early warning detection for RDX emanating from the eastern fringe.
- PF-2 and PF-3: These serve as early detection wells for RDX emanating from the eastern fringe, and are derived from the physics-based understanding of 3-D flow and transport and the conceptual site understanding.

PlumeFinder Simulation	Overall Measure of Uncertainty Residual (reduction)
Baseline (No Wells Installed)	100%
Current Conditions (Existing Well Network)	92% (8% reduction)
Add One New Well (improvement from current conditions)	84% (16% reduction)
Add One New Well (improvement from current conditions east of perched groundwater)	28% (72% reduction)

The results of this analysis are significant because they document the baseline condition, quantify the value of the existing well network, and provide insight for optimally refining the well monitoring

network. Adequate knowledge of the plume location is important to conducting good site investigations and making good plume management decisions. The PlumeFinder technology used in this study quantifies the plume fringe location even when data is limited and uncertain, so informed decisions can be made to ensure that long term monitoring or remediation activities are optimally located. The PlumeFinder technology applied here provides one new well location recommendation to produce the maximum reduction in plume uncertainty using proven mathematical and geostatistical principles. It also shows and quantifies the residual uncertainty beneath the perched groundwater. Above all, plume management needs to be done in a cost-effective manner with a focus on collecting information with demonstrated value to decision-makers. An improvement in the Ogallala Aquifer monitoring system can be made and the corresponding management risk associated with the decision to commit funds to implement additional wells for that purpose is clarified and quantified as a result of using the PlumeFinder technology.

4.2 **RECOMMENDATIONS**

The reduction in uncertainty from this analysis is relatively low when compared with other studies, and is driven by the inaccessibility of the areas of highest uncertainty beneath the perched groundwater. Therefore, the following recommendations supplement this analysis:

- A periodic evaluation of flow directions and regular sampling of chemical parameters, including both target and monitored natural attenuation parameters, is needed. The groundwater flow field should be assessed by careful examination of potentiometric data and water chemistry in this area.
- Following installation of the three new Ogallala Aquifer monitoring wells, data gleaned from the new wells should be compared with historical Ogallala Aquifer water table and chemical information, and an assessment of natural attenuation should be performed.
- The new field data should be compared with the current model assumptions, and any updates / refinements implemented, as merited.
- Future new well locations, if warranted, should be assessed using the PlumeFinder technology.

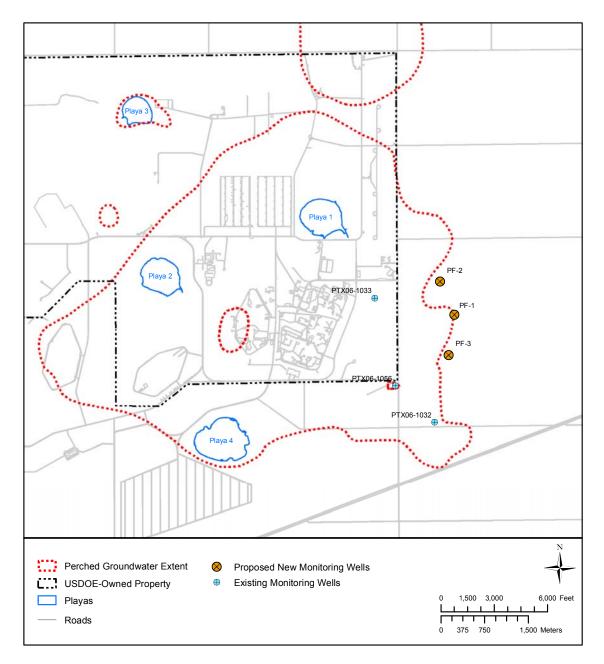


Figure 4-1. Proposed New Well Locations based on PlumeFinder Results

5.0 REFERENCES

- Battelle, 1997. Three-Dimensional (3-D) Site-Wide Groundwater Flow and Contaminant Transport Model for U.S. Department of Energy.
- BWXT Pantex/SAIC, 2004. Subsurface Modeling Report for USDOE/NNSA Pantex Plant.
- BWXT Pantex/SAIC, 2006. Baseline Human Health Risk Assessment Report for USDOE/NNSA Pantex Plant.
- BWXT Pantex/SAIC, 2007. Corrective Measures Study/Feasibility Study Modeling Report for USDOE/NNSA Pantex Plant.
- Clark, Isobel, 1979. Practical Geostatistics. London, Applied Science Publishers, Limited.
- Deschaine, L. M., 2004. "Mathematical Simulation and Optimization of Subsurface Environmental Contamination Events." PhD Dissertation, Chalmers University of Technology, Goteborg, Sweden (unpublished) pages 101 thru 110. Available upon request.

Deutsch and Journel, 1992. Geostatistical Software Library and User's Guide. Oxford University Press.

- Dutton, Reedy, and Mace, 2001. Saturated Thickness in the Ogallala Aquifer Panhandle Water Planning Area - Simulation of 2000 through 2050 Withdrawal Projections. Bureau of Economic Geology, University of Texas at Austin. December 2001.
- Dutton, 2004. Adjustments to Parameters to Improve the Calibration of the Og-n Model of the Ogallala Aquifer, Panhandle Water Planning Area. Bureau of Economic Geology, University of Texas at Austin. June 2004.
- Fetter, C. W., Applied Hydrogeology, Second Edition. Macmillan Publishing Company, New York, 592p.
- HydroGeoLogic, 1996. MODFLOW-SURFACT, Software (Version 2.2) Documentation, Hydrogeologic, Inc. Herndon, Virginia.
- Isaaks and Srivastava, 1989. Applied Geostatistics. Oxford University Press.
- McCuen, R.H., and Snyder, W.M., 1986. *Hydrologic Modeling: Statistical Methods and Applications*. Englewood Cliffs, New Jersey, Prentice Hall.
- McGrath, W. A., and Pinder, G. F., (1996) "Sampling Network Design for Delineating Groundwater Contaminant Plumes,". In *Proceedings: Computational Methods in Water Resources*, pp 185-192, Cancun, Mexico.
- Mullican, W.F., Johns, N.D., and Fryar, A.E., 1997. *Playas and Recharge of the Ogallala Aquifer on the Southern High Plains of Texas An Examination Using Numerical Techniques.* The University of Texas at Austin, Bureau of Economic Geology. Report of Investigations No 242.
- National Research Council, 2000. *Natural Attenuation for Groundwater Remediation*. National Research Council, National Academy Press, 2000 pages 156-163. ISBN 0-309-06932-7.

- Pinder, George, F. 1997. Princeton Transport Code: A three-dimensional finite Element Flop and Transport Simulator, RCGRD, University of Vermont, VT.
- Pinder, 2002 Groundwater Modeling Using Geographic Information Systems, John Wiley & Sons, 224 pages.
- Resources and Systems International, Inc., 2006. BIOF&T3D Technical Documentation and User Guide.
- SAIC, 2000. Update to Conceptual Model for Groundwater Flow at Pantex Plant, Letter Report, October 2000.
- Stoller, 2004. Pantex Plant Final RCRA Facility Investigation Report, Groundwater, USDOE Pantex Plant, S.M. Stoller Corporation, Colorado, March.
- Smith, L. and Schwartz, F.W., 1981. Mass Transport and Role of Hydraulic Conductivity Data in *Predictions*, Water Resources Research 17(5), 1463-1479.
- Suarez, M. P., and Rifai, H. S., "Biodegradation Rates for Fuel Hydrocarbons and Chlorinated Solvents in Groundwater," *Bioremediation Journal* 3(4):337-362, 1999.
- Theis, C.V., 1963. "Estimating the Transmissivity of a Water-Table Aquifer from the Specific Capacity of a Well." U.S. Geological Survey Water-Supply Paper.

Appendix A

Kalman Filtering used in the PlumeFinder Analysis

TABLE OF CONTENTS

1.0	OPTIMAL ESTIMATION VIA KALMAN FILTERING
2.0	EXTENDED KALMAN FILTERING
3.0	REFERENCES

LIST OF EQUATIONS

Equation 1.	Kalman Filter	2
	Augmented State Vector Update	
•	Conditional Covariance Update	
-1		

1.0 OPTIMAL ESTIMATION VIA KALMAN FILTERING

The goal of optimal estimation is to be able to develop an estimate of the subsurface conditions with respect to flow and transport. This estimate then becomes the state of the system for optimization and decision-making under uncertainty. As discussed in the report, the costs associated in collecting information content about the subsurface results in only sparse knowledge available for analysis. To estimate how the subsurface conditions may vary, geostatistics are used to generate representative realizations. These realizations are used as inputs to the computational fluid dynamic models. This results in a distribution of subsurface conditions, as opposed to a single valued estimate. We now have a quandary: we have predictions of the subsurface condition from models, and we also have data from field surveys. While the role of information theory in this problem is conceptually enlightening, the most important part of this problem is solving the input/output representation of a linear or non-linear system. This generates a probability distribution function for the unknown (e.g., concentration of contaminate in groundwater), and the associated entropy reveals a certain measure of the uncertainty of it. This type of problem falls into the general field of optimum filtering and the stochastic signal extraction from noisy data.

Common parameter estimation in the geo-sciences groundwater modeling community consist primarily of: Bayesian estimators, cokriging estimators, geostatistical inverse methods, Kalman filtering, least squares methods, maximum likelihood methods, and pilot point techniques. McLaughlin and Townley (1996) showed that all these methods are special cases of the Gaussian maximum a posteriori estimator. Additionally, it is shown that using equivalent assumptions, the Kalman filter is equivalent to the least squares estimate, maximum likelihood estimate and the maximum a posteriori estimate. See for example: *Applied Optimal Estimation* (Gelb 1974), *Optimal Estimation with an Introduction to Stochastic Control Theory* (Lewis 1986), *Optimal Control and Estimation* (Stengel 1994). A nice overview of the extended Kalman filter is found in *Stochastic Methods in Subsurface Contaminant Hydrology* (Govindaraju 2002).

The first references found using Kalman filtering in groundwater investigations appeared in 1990s. Techniques have been developed to integrate the information content from both the predictive models and the observed measurements. The technique used in this work was integrating the computational fluid dynamic model (PTC) with a Kalman filter, as it has been demonstrated to provide the best unbiased estimate of the subsurface conditions integrating the uncertainty in the simulator and field data.

2.0 EXTENDED KALMAN FILTERING

The extended Kalman filter is a method to combine the information from samples that are available at discreet time and space with the predictions of a subsurface simulator to provide the minimum error estimate of subsurface conditions.

For extended Kalman filtering to be effective, a stochastic representation of the aquifer is necessary. Stochastic aquifer realizations were conducted using the GSLIB geostatistical package. This approach used the GAMS variogram to generate 500 aquifer realizations; the set of these realizations is called the ensemble. The concept here being that the deterministic representation is difficult to be precisely accurate, so one is always dealing in stochastic nature and uncertainty when developing predictions of subsurface behavior, specifically of the Ogallala Aquifer beneath the Pantex Plant. The filter used in the analysis is comprised of essentially two parts:

- 1. The propagation component that specifies how the conditional moments (i.e., hydraulic head, contaminant distribution, flow velocity fields) evolve between times information is available (via sensor measurements). This component performs what a subsurface flow and transport simulator typically perform in conventional groundwater flow and transport projects.
- 2. The updating component incorporates the new information and specifies how the propagated moments are modified. This component performs the activity typical of a parameter estimation algorithm

The key benefit that the Kalman filter performed is the formal way to integrate the information from the physical PTC simulator and the monitoring well field data. But rather than do these separately, the Kalman filter updates both the mean and the covariance of the model state and associated parameters. Because the conditional statistics are used as the uncertainty measure— as opposed to the spatial variability—the assumption of ergodicity is not required. Ergodicity refers to a stationary random function and its ability to tend towards the stationary mean of its cdf. This concept is used widely in geostatistical analysis. This is an important point. At the scales that are of interest in most flow and transport studies, the conditional hydrobiogeochemical moments are most likely non-stationary and, hence, nonergodic. It should be noted that the updated estimates need not be mass conservative, but the best representation of the mass available given the uncertainty of the information available about the system and its performance.

The Kalman filter is a recursive algorithm. It is a convenient way to fuse the predictions between a subsurface simulator and field data. It estimates the state variables in a linear system by optimally combining the information content of the model and data, incorporating uncertainty. In linear systems, the Kalman filter estimate is the true conditional mean —the truly optimal (minimum variance) estimate. The Kalman filter must be extended to handle non-linear systems, such as most groundwater flow and transport challenges. Linearizing the state equation around the latest parameter estimates to approximate the conditional mean does this. Essentially, this formulation is like a series of linear batch filters. Practice has shown that even with this reduced dimensionality and linearization, the extended Kalman filter will provide an estimate that is close enough to the conditional mean and mode.

To explain this concept, the mathematical explanation that follows is essentially taken from *Stochastic Methods in Subsurface Contaminant Hydrology* (Govindaraju 2002), with insight added to help bring out the value of this approach. The state and parameter equations for a flow and transport simulator were presented above. Here, we focus on the equations of the Kalman filter and the state-parameter moment update equations:

Equation 1. Kalman Filter

$K(x,t) = P_{rr}(x,x',t)H^{T}(x',t)[H(x,t)P_{rr}(x,x',t)H^{T}(x',t) + R(x,x',t)]^{-1}$

K(x, t) is the Kalman gain matrix. This matrix provides the weighting between the expected values from the simulations and the measured values at the sensor locations.

 $P_{xx}(x, x', t)$ is a first order approximation of the conditional covariance between two variables and two locations, denoted as x and x' at time t. Conditioning makes the stochastic analyses more site specific for the Pantex Plant / Ogallala Aquifer flow and transport system. The variables are properties typically measured in the field such as hydraulic head, conductivity, chemical concentrations, and the like. The Pantex heads and concentrations were measured in the monitoring wells, and the conductivity information

from the local and GAMS modeling studies. The conditional mean of the variable's random field is the minimum variance unbiased estimate of the actual site-specific distribution. The conditional variance measures the uncertainty of this estimate. The conditional covariance relates to the behavior between different variables.

H (x', t) is an operator in space and time. It specifies the relationship between the augmented state vector and the measurements made in the field. The augmented state vector contains the stochastic simulator – the heads, velocities, concentrations, and the uncertain parameters such as conductivities, retardation, biochemical degradation, source strength. The assumptions of these are provided in the main body of the report.

R (x, x', t) is the measurement covariance matrix covariance between two variables and two locations, denoted as x and x' at time t.

The second key equation relates how the augmented state vector [X (x, t)], the vector that contains the stochastic simulator – the heads, velocities, concentrations, and the uncertain parameters (such as conductivities, retardation, biochemical degradation, source strength, etc.) is updated after a measurement is made. Since we are placing a hypothetical monitoring well, we have no direct measurement. We assume it will detect a value of half the plume fringe value, but that neither hydraulic conductivity nor heads are known. This minimizes the possibility biasing the results based on estimates from the regional Ogallala model. After actual monitoring well installation, the concentration, water levels and hydraulic conductivity should be measured.

Equation 2. Augmented State Vector Update

$$\hat{X}^{+}(x,t) = \hat{X}^{-}(x,t) + K(x,t)[Z(x,t) - H(x,t)\hat{X}^{-}(x,t)]$$

 $\hat{X}(x,t)$ is the first-order approximation of the conditional mean, given all measurements. The (-) sign indicates the estimate before the new measurement information is given, and the (+) indicates the estimate after the new information is analyzed.

Z(x, t) is the measurement vector. It is equal to H(x, t) X(x, t) + V(x, t). H and X are defined above, and V(x, t) is a measurement error vector, with zero mean, Gaussian white noise. It relates to the fact that when a measurement is made, the uncertainty about the value of the measurement at that point in time is reduced to zero plus the measurement error.

The third key equation relates how the first order approximation of the conditional covariance between two variables and two locations, denoted as x and x' at time t $[P_{xx}(x, x', t)]$ is updated after a measurement is made:

Equation 3. Conditional Covariance Update

$$P_{xx}^{+}(x, x', t) = P_{xx}^{-}(x, x', t) - K(x, t)H(x, t)P_{xx}^{-}(x, x', t)$$

The Kalman filter performs as follows:

- Equation 1 defines the Kalman filter.
- Equation 2 states that the best linear unbiased estimate (minimum variance) of the augmented state vector [$\hat{X}^+(x,t)$] is a linear combination of the model prediction [$\hat{X}^-(x,t)$] and the field measurement [Z (x, t)]. This is how the predictive model information and field measurements are used in concert to provide the best estimate of the subsurface conditions. In general, subsurface simulators are coded to conserve mass. By adding the information content of the field data, the mass conservation is not guaranteed. This is, however, the best estimate of the subsurface conditions when the information is imperfect. It has a correction for the field data reliability, for if the measurements are unreliable, the measurement covariance matrix [R (x, x', t)] will be large. Because this term appears as an inverse in the Kalman gain matrix, K (x, t) will be small. Because K (x, t) weighs the observations, the best estimate will be close to the model estimate. If the measurements are of high accuracy, then this equation ensures that the estimate is consistent with the observed field data. This functionality allows for optimization of allowable measurement error: do you collect a lot of data with low fidelity? A few highly accurate data points or some combination of both is an optimal investigation design question. For this investigation, only formal monitoring wells are considered.
- Equation 3 is the heart of the optimal sampling design approach. The first order approximation $[P_{xx} (x, x', t)]$ of the updated conditional covariance between two variables and two locations, denoted as x and x' at time t, does not depend on any new observations. Note that all the terms rely on knowledge we currently have denoted by (-), as opposed to (+). This equation is linearized around the most recently updated estimate of X (x, t), the augmented state vector which depends on measurements to date but not the future. This provides insight to how the Kalman filter will behave and its accuracy before any new samples are taken. Because this equation is the difference between two positive definite matrices, the difference most also be positive definite. This says that the value of adding information (taking samples) is quantifiable, and the updated covariance matrix will always be less than or equal to the forecast covariance matrix. Of course, if the measurement covariance matrix [R (x, x', t)] goes to infinity, the second term of this equation will go to zero. This means that the samples have no value, which is consistent with why the matrix goes to infinity (unreliable samples).

These important attributes of the Kalman filter provided great value in finding the best location for a monitoring well in the Ogallala Aquifer just slightly beyond the eastern extent of perched groundwater at Pantex Plant.

3.0 REFERENCES

- Gelb, A., 1974. *Applied Optimal Estimation*. Cambridge, Massachusetts, MIT Press., 16th printing, 374 pages.
- Govindaraju, R.S., 2002. Stochastic Methods in Subsurface Contaminant Hydrology. ASCE Press.
- Lewis, R., 1986; *Optimal Estimation with an Introduction to Stochastic Control Theory*, Wiley Inter-Science, 376 pages.
- McLaughlin, D.B. and Townley, L.R. 1996. A Reassessment of the Groundwater Inverse Problem, Water Resources Research 32 (5), pp. 1131–1161.

Stengel, R., 1994. Optimal Control and Estimation: New York, Dover Publications, 638 pages.

In cooperation with U.S. Department of Energy/National Nuclear Security Administration and Babcock & Wilcox Technical Services Pantex, LLC

Analysis of Vertical Flow during Ambient and Pumped Conditions in Four Monitoring Wells at the Pantex Plant, Carson County, Texas, July–September 2008

By Gregory P. Stanton, Jonathan V. Thomas, and Jeffery Stovall

Open-File Report 2009–1017

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

KEN SALAZAR, Secretary

U.S. Geological Survey

Suzette M. Kimball, Director

U.S. Geological Survey, Reston, Virginia: 2009

For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS

Suggested citation:

Stanton, G.P., Thomas, J.V., and Stovall, Jeffery, 2009, Analysis of vertical flow during ambient and pumped conditions in four monitoring wells at the Pantex Plant, Carson County, Texas, July–September 2008: U.S. Geological Survey Open-File Report 2009–1017, 44 p.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.

Contents

Abstract	1
Introduction	3
Purpose and Scope	4
Description of Study Site	5
Hydrogeology	5
Acknowledgments	8
Methods of Borehole Geophysical Data Collection	8
Electromagnetic Flowmeter	10
Fluid Resistivity/Temperature Logs	12
Natural Gamma Logs	12
Analysis of Vertical Flow	13
Monitoring Well PTX01-1012	14
Data Collected	14
Flow during Ambient and Pumped Conditions	14
Monitoring Well PTX06-1044	17
Data Collected	18
Flow during Ambient and Pumped Flow Conditions before Redevelopment	19
Flow during Ambient and Pumped Flow Conditions after Redevelopment	21
Monitoring Well PTX06-1056	23
Data Collected	23

Flow	during Ambient and Pumped Flow Conditions before Redevelopment	24
Flow	during Ambient and Pumped Flow Conditions after Redevelopment	27
Monitori	ng Well PTX06-1068	29
Data	Collected	29
Flow	during Ambient and Pumped Conditions	30
Summary		32
Reference	S	36
Appendix 7	1 – Flowmeter Analyses of Monitoring Wells with Flow–B Numerical Model Input and Results	37
1.1 Mon	itoring Well PTX01-1012	
1.2 Mon	itoring Well PTX06-1044 before Redevelopment	40
1.3 Mon	itoring Well PTX06-1044 after Redevelopment	41
1.4 Mon	itoring Well PTX06-1056 before Redevelopment	42
1.5 Mon	itoring Well PTX06-1056 after Redevelopment	43
1.6 Mon	itoring Well PTX06-1068	44
Figures		
Figure 1.	Location of the Pantex Plant, Carson County, Texas	6
Figure 2.	Ogallala aquifer monitoring wells logged with flowmeter at the Pantex Plant, Carson County,	
	Texas	7

Table

Conversion Factors and Datums

Multiply	Ву	To obtain
	Length	
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Area	
acre	4,047	square meter (m ²)
	Flow rate	
gallon per minute (gal/min)	0.06309	liter per second (L/s)
	Transmissivity*	
foot squared per day (ft^2/d)	0.09290	meter squared per day (m^2/d)

*Transmissivity: The standard unit for transmissivity is cubic foot per day per square foot times foot of aquifer thickness [(ft³/d)/ft²]ft. In this report, the mathematically reduced form, foot squared per day (ft²/d), is used for convenience.

Datums

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Altitude, as used in this report, refers to distance above the vertical datum.

Analysis of Vertical Flow during Ambient and Pumped Conditions in Four Monitoring Wells at the Pantex Plant, Carson County, Texas, July–September 2008

By Gregory P. Stanton, Jonathan V. Thomas, and Jeffery Stovall¹

Abstract

The Pantex Plant is a U.S. Department of Energy/National Nuclear Security Administration (USDOE/NNSA)-owned, contractor-operated facility managed by Babcock & Wilcox Technical Services Pantex, LLC (B&W Pantex) in Carson County, Texas, approximately 17 miles northeast of Amarillo. The U.S. Geological Survey, in cooperation with B&W Pantex through the USDOE/NNSA, made a series of flowmeter measurements and collected other borehole geophysical logs during July–September 2008 to analyze vertical flow in screened intervals of four selected monitoring wells (PTX01-1012, PTX06-1044, PTX06-1056, and PTX06-1068) at the Pantex Plant. Hydraulic properties (transmissivity values) of the section of High Plains (Ogallala) aquifer penetrated by the wells also were computed. Geophysical data were collected under ambient and pumped flow conditions in the four monitoring wells. Unusually large drawdowns occurred at two monitoring wells (PTX06-1044 and PTX06-1056)

¹ Babcock & Wilcox Technical Services Pantex, Amarillo, Texas

while the wells were pumped at relatively low rates. A decision was made to redevelop those wells, and logs were run again after redevelopment in the two monitoring wells.

Logs collected in monitoring well PTX01-1012 during ambient conditions indicate a dynamic environment that probably was affected by pumping of nearby irrigation or publicsupply wells. During pumping, downward vertical flow of 0.2 to 2.1 gallons per minute that occurred during ambient conditions was either reversed or reduced. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed. Estimated total transmissivity for four production zones identified from Flow–B numerical model results taken together was calculated to be about 3,100 feet squared per day.

Logs collected in monitoring well PTX06-1044 during ambient conditions before redevelopment indicate a static environment with no flow. During pumping there was upward vertical flow at rates ranging from 0.1 to about 1.5 gallons per minute. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed. Estimated total transmissivity before redevelopment for five production zones identified from Flow–B numerical model results, and transmissivity values for each zone, are considered to be in error because of the lack of communication between the well and the aquifer before redevelopment. After redevelopment, logs for well PTX06-1044 during ambient conditions indicate a near-static environment with minimal downward flow. During pumping there was upward vertical flow at rates ranging from 0.5 to about 4.8 gallons per minute. During pumping, a gradual trend of more positive flowmeter values with distance up the well was observed. Estimated total transmissivity after redevelopment for the same five identified production zones taken together was calculated to be about 520 feet squared per day.

Logs collected in monitoring well PTX06-1056 during ambient conditions before redevelopment indicate a static environment with no flow. During pumping there was upward vertical flow at rates ranging from 0.3 to about 1.5 gallons per minute. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed. Estimated total transmissivity before redevelopment for four production zones identified from Flow–B numerical model results taken together was calculated to be about 450 feet squared per day. After redevelopment, logs collected in monitoring well PTX06-1056 during ambient conditions indicate a near-static environment with no flow except for a very small amount of downward flow near the bottom of the well. During pumping there was upward vertical flow at rates ranging from 0.7 to about 2.9 gallons per minute. Estimated total transmissivity after redevelopment for five production zones identified from Flow–B numerical model results taken together was calculated to be about 330 feet squared per day.

Logs collected in monitoring well PTX06-1068 during ambient conditions indicate a static environment with no flow. During pumping there was upward vertical flow at rates ranging from 0.4 to 4.8 gallons per minute. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed. Estimated total transmissivity for four production zones identified from Flow–B numerical model results taken together was calculated to be about 200 feet squared per day.

Introduction

The Pantex Plant is a U.S. Department of Energy/National Nuclear Security Administration (USDOE/NNSA)-owned, contractor-operated facility managed by Babcock & Wilcox Technical Services Pantex, LLC (B&W Pantex) in Carson County, Tex., approximately 17 miles northeast of Amarillo. The Pantex Plant was originally constructed by the U.S. Department of Army for production of conventional ordnance during World War II. The Pantex Plant was deactivated after the war and the property reverted to the War Assets Administration. Texas Technological College (now Texas Tech University [TTU], Lubbock) purchased the installation in 1949. The Army Ordnance Corps reclaimed the site in 1951 for use by the Atomic Energy Commission as a nuclear weapons facility. Today (2009) the mission of the Pantex Plant is to assemble nuclear weapons for the Nation's stockpile; disassemble nuclear weapons being retired from the stockpile; evaluate, repair, and retrofit nuclear weapons in the stockpile; sanitize components from dismantled nuclear weapons; provide interim storage for plutonium pits from dismantled nuclear weapons; and develop, fabricate, and test chemical explosives and explosive components for nuclear weapons to support USDOE/NNSA initiatives (U.S. Department of Energy, 2009). The U.S. Geological Survey (USGS), in cooperation with B&W Pantex through the USDOE/NNSA, made a series of flowmeter measurements and collected other borehole geophysical logs during July–September 2008 to analyze vertical flow in screened intervals of four selected monitoring wells at the Pantex Plant. Hydraulic properties (transmissivity values) of the section of High Plains (Ogallala) aquifer penetrated by the wells also were computed.

Purpose and Scope

The purpose of this report is to analyze vertical flow during ambient and pumped conditions in four monitoring wells at the Pantex Plant in Carson County, Tex., and to document the methods of collection of electromagnetic (EM) flowmeter data and fluid-resistivity, temperature, and natural gamma logs at the Pantex Plant during July–September 2008. The USDOE/NNSA contractor, B&W Pantex, identified the four wells open to the Ogallala aquifer for the analysis. The wells are constructed of 4-inch-diameter stainless steel casing and range in total depth below land-surface datum (LSD) from 475 to 900 feet. Data were collected at various

depths below LSD to assess the distribution of flow in screened intervals and compute transmissivity values for the adjacent section of Ogallala aquifer. Transmissivity values were computed using a numerical flow model developed for analysis of flowmeter data.

Description of Study Site

The Pantex Plant main area of operations is bounded on the north by Farm to Market Road (FM) 293, on the east by FM 2373, and on the west by FM 683 (fig. 1). Recently, USDOE/NNSA purchased 1,526 acres of land east of FM 2373 to provide access for groundwater monitoring and positive control over future land and ground-water use (B&W Pantex, writtten commun., 2008). The Pantex Plant site now consists of a total of 17,559 acres, of which 5,856 acres constitutes a safety and security buffer owned by TTU. TTU leases the safety and security buffer property back to USDOE/NNSA; Texas Tech Research Farm manages the buffer zone as rangeland and farmland.

Hydrogeology

The primary subsurface geologic units at the Pantex Plant are the Triassic-age Dockum Group (sand to clay), the Tertiary-age Ogallala Formation (sand to silty sand), and the Quaternary-age Blackwater Draw Formation (clayey silts) (Holliday, 1989). The uppermost of two water-yielding units (aquifers) in the Ogallala Formation at the study site is perched at depths of approximately 200 to 300 feet below LSD. This unit is underlain by a zone of relatively low permeability, informally referred to as the fine-grained zone, which consists of silts and clays that retard the downward migration of perched water. The perched aquifer flows radially and away from beneath a playa lake designated Playa 1 (fig. 2) and ranges in thickness from less than 1 foot near its lateral extent to more than 50 feet near Playa 1.

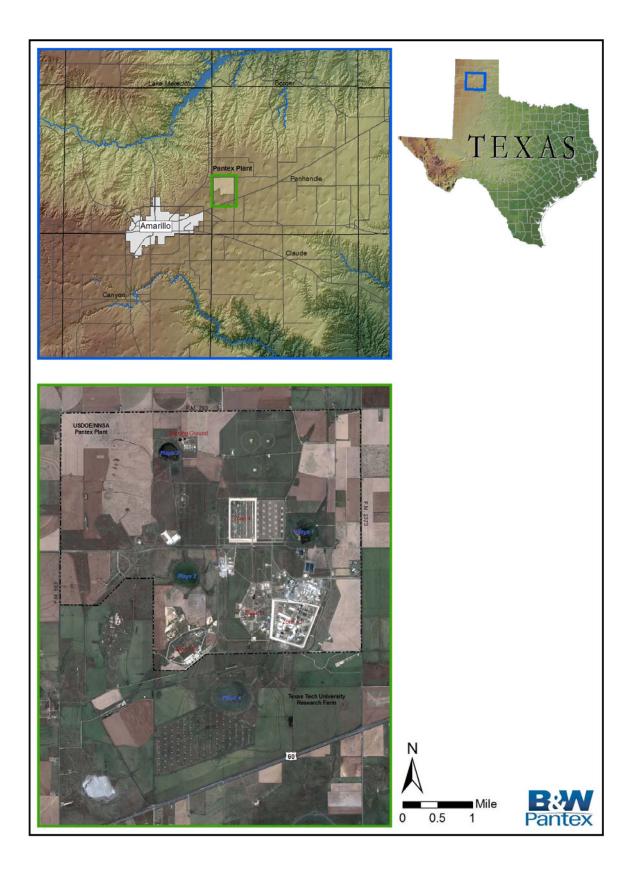


Figure 1. Location of the Pantex Plant, Carson County, Texas.

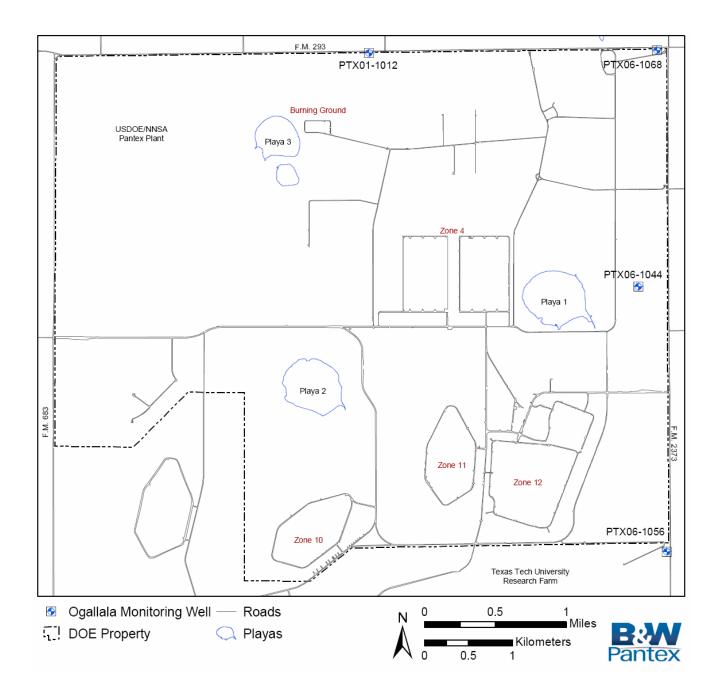


Figure 2. Ogallala aquifer monitoring wells logged with flowmeter at the Pantex Plant, Carson County, Texas.

The second water-yielding unit in the Ogallala Formation, below the fine-grained zone, is the Ogallala aquifer. The Ogallala aquifer is the primary source of drinking and irrigation water for most of the High Plains region in Texas. The Ogallala aquifer generally occurs at depths of approximately 350 to 900 feet below LSD at the study site. Because of regional water-level declines, the upper 150 feet of the aquifer is mostly unsaturated. The water level is about 500 feet below LSD and the saturated part of the aquifer is about 1 to 100 feet thick in the southern part of the Pantex Plant site and about 250 to 400 feet thick in the northern part. The primary flow direction in the Ogallala aquifer at the site is north to northeast.

Acknowledgments

The authors thank Tony Biggs, B&W Pantex, for providing technical information on the wells; and Scott McLaughlin and Ken Nicholson, B&W Pantex, for their many hours setting and operating the pump for the pumping flowmeter measurements.

Methods of Borehole Geophysical Data Collection

The USGS collected borehole geophysical data consisting of vertical flow rates, fluid resistivity/temperature, and natural gamma radiation in the four monitoring wells (PTX01-1012, PTX06-1044, PTX06-1056, and PTX06-1068) (fig. 2; table 1). These data were analyzed to determine the direction and magnitude of vertical flow in the screened intervals and distribution of transmissivity in the adjacent section of the aquifer.

Pertinent information for monitoring wells (well identifier, location, altitude of LSD, total depth, depth to water, total screen length, and number of screened intervals) (table 1) was provided by B&W Pantex. In addition to the logs collected for this study, the Pantex monitoring wells were logged by a contractor at the time of drilling (B&W Pantex, writtten commun., 2008). Among the logs collected at that time were 16- and 64- inch normal resistivity, single-point resistance, spontaneous potential, and natural gamma in wells PTX01-1012, PTX06-1056, and PTX06-1068 and natural gamma and neutron in well PTX06-1044. Selected previously collected

logs (normal resistivity and neutron) were digitized for use in this study because only

photocopies of the logs were available.

Table 1.Pertinent information for Ogallala aquifer monitoring wells logged at the Pantex Plant, CarsonCounty, Texas, July–September 2008.

USGS site identifier	Pantex well identifier	Location (latitude longitude)	Altitude of land- surface datum (feet above NAVD 88)	Total depth (feet below land- surface datum)	Static depth to water (feet below land- surface datum)	Total screen length (feet)	Number of screened intervals
352111101352301	PTX01-1012	N35 21 11.4 W101 35 22.6	3,572	900	500	380	3
351944101324201	PTX06-1044	N35 19 44 W101 32 42	3,555	613	475	180	2
351806101322901	PTX06-1056	N35 18 06 W101 32 29	3,489	475	393	120	1
352111101323401	PTX06-1068	N35 21 11 W101 32 34	3,519	804	508	325	2

All geophysical probes used in the data collection for this study interfaced to a Century System VI log-acquisition system in the USGS Texas Water Science Center logging unit by way of ¼-inch-diameter four-conductor wireline. The log-acquisition system was interfaced to a personal computer and data storage by way of an Ethernet connection.

Vertical flow rates were measured under ambient and pumped flow conditions in the four monitoring wells. Unusually large drawdowns occurred at two monitoring wells (PTX06-1044 and PTX06-1056) while the wells were pumped at relatively low rates (about 1.5 gallons per minute [gal/min]), which might adversely affect the accuracy of the calculated transmissivity values. Accordingly, a decision was made to redevelop those wells using common methods such as scrubbing the screened interval with tubing-conveyed brushes to loosen fine-grained material

in the filter pack and then surging the well to remove the loosened material. Logs were run again after redevelopment during ambient and pumped flow conditions in the two monitoring wells.

B&W Pantex furnished a 3-inch-diameter submersible pump capable of reaching the existing depths to water, which allowed for drawdown at a pumping rate of at least 5 gal/min. The submersible pump was deployed using a Smeal 5T pump hoist rig and 1.5-inch-diameter steel pipe. The pump and hoist rig was operated by B&W Pantex personnel.

Electromagnetic Flowmeter

The EM flowmeter measures the rate and direction of vertical flow in a borehole using the principle of Faraday's Law of Induction. The EM flowmeter probe consists of an electromagnet and two electrodes 180 degrees apart and 90 degrees to the magnetic field inside a hollow cylinder or tube. The voltage induced by a conductor moving at right angles through the magnetic field is directly proportional to the velocity of the conductor (water) through the field (Century Geophysical Corporation, 2006).

Generally, when using the tool to measure low-velocity vertical flow in small-diameter wellbores, rubber diverters are installed around the sensor to direct the water flow through the open tube in the sensor. The diameter of the tube and voltage response is calibrated, and the volume of flow is instantaneously recorded. The direction of vertical water flow is determined by the polarity of the response with upward flow being positive and downward flow being negative.

The flowmeter is placed in the wellbore with a rubber diverter installed to direct the flow through the sensor (fig. 3). Relatively high hydraulic head in a transmissive zone of the aquifer will push the flow from that high-head zone into the wellbore, through the tool in the direction of a transmissive zone of relatively low hydraulic head, to the low-head zone and out of the wellbore.

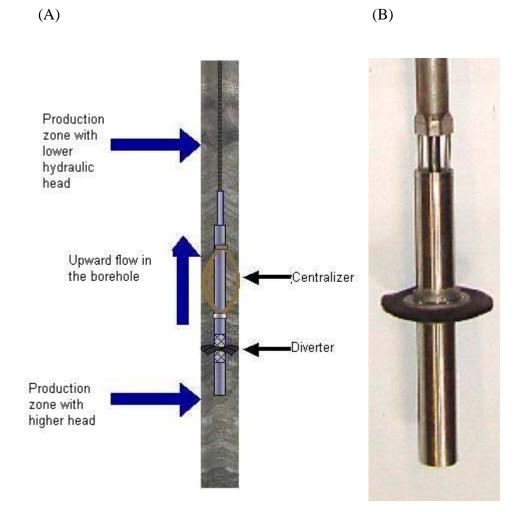


Figure 3. (A) Drawing of flowmeter in borehole showing zones of differing hydraulic head and direction of flow in the borehole, and (B) photograph of Century Model 9721 electromagnetic flowmeter with rubber diverter installed.

Downward flow was calibrated at a rate of 1 gal/min and upward flow was calibrated at a pumped rate in the well, which was between 1.5 and 5 gal/min depending on the well and development status. Flowmeter log data were collected in stationary and trolling conditions for both ambient and pumped conditions. When possible, flowmeter data were collected at the same depths during both ambient and pumped flow conditions.

Fluid Resistivity/Temperature Logs

Fluid resistivity logs provide a record of the capacity of the borehole fluid to conduct electrical current (Keys, 1997). Changes in fluid resistivity are measured by ring electrodes inside a housing that allows borehole fluid to flow through it. The best fluid resistivity logging results are achieved when logging downward into boreholes containing ambient fluid that has had sufficient time to stabilize. Ideally, fluid resistivity logs are the first logs run to record ambient conditions before other probes have passed through the borehole and vertically mixed the borehole fluid. Curve deflections on the fluid resistivity log can indicate horizontal or vertical flow, stratification of borehole fluid, or screen openings in cased wells. Fluid resistivity values also can be used in calculations with other logs.

The fluid resistivity logs collected in this study were converted to fluid conductivity for comparison to specific conductance values of ground water in the area. The fluid conductivity values contained in the logs for this study are the values recorded in the ambient borehole temperature and are not corrected to a standard temperature.

A Century model 8144c multiparameter probe was used to log fluid resistivity and temperature. Calibration of the fluid resistivity logging probes was done with solutions of known conductivity/resistivity in a two-point calibration.

Natural Gamma Logs

Natural gamma logs provide a record of gamma radiation detected at depth in a borehole. Natural gamma radiation can be useful in determining lithologies and contact depths of the strata penetrated by the borehole. Fine-grained sediments that contain abundant clay tend to be more radioactive than quartz-grain sandstones or carbonates (Keys, 1997). The natural gamma log was

run in conjunction with the fluid resistivity log and was recorded simultaneously in natural gamma counts per second.

A natural gamma sensor with a sodium iodide detector built into the Century 8144c multiparameter probe was used. The natural gamma probe is calibrated at the factory and does not require calibration in the field. Natural gamma count rates, which commonly will increase in the proximity of clay and shale, could be slightly increased adjacent to any bentonite seals in the wells.

Analysis of Vertical Flow

Flowmeter and fluid resistivity/temperature data were analyzed by (1) plotting the logs with existing pertinent information such as other geophysical logs and casing and wellconstruction records provided by B&W Pantex, (2) evaluating the flowmeter data to identify potential zones of fluid movement to or from the wellbore and the magnitude and direction of vertical flow, (3) evaluating the flowmeter data with the USGS Flow–B numerical model (Paillet, 2000) to compute total transmissivity and distribution of transmissivity and head (as depth to water) in the screened intervals, and (4) plotting the transmissivity and head values on the logs.

The Flow–B numerical model of Paillet (2000) is a computer program developed for analysis of flowmeter data. The model gives estimates of transmissivities and hydraulic heads of two or more water-producing (flow) zones intersecting a single interval of open borehole under typical field conditions. Zone transmissivity and hydraulic head are obtained by running the model in a series of iterations in which transmissivity and head values are adjusted by trial-anderror to develop a best-fit match between simulated and measured borehole flows. The output data from the numerical model are in appendix 1.

Monitoring Well PTX01-1012

Monitoring well PTX01-1012 was constructed by Stewart Brothers Drilling Company near the northern Pantex Plant property boundary (fig. 2) on April 28, 2000. The well was drilled 7.9 inches in diameter to a total depth of 903 feet below LSD and constructed of schedule 10, 4inch-diameter stainless steel casing and screened to 900 feet below LSD. The well has slotted screen openings of 0.010 inch in the following intervals: 460–640 feet, 660–720 feet, and 755– 895 feet below LSD. Well records indicate that 8-16 sieve-size silica sand filter pack material is in the annular space of the screened intervals, and bentonite seal is in the annular space above each screened interval. Static water level (depth to water) was about 500 feet below LSD on the day of logging.

Data Collected

The USGS collected EM flowmeter, fluid resistivity, temperature, and natural gamma measurements on August 13, 2008. Flowmeter measurements were collected in trolling and stationary modes during ambient and pumped conditions. Thirty-six stationary measurements were collected during ambient conditions, and 32 stationary measurements were collected during pumped conditions. The well was logged during pumped conditions on the same day the well was logged during ambient conditions. The pump was set at about 520 feet below LSD and discharged about 5.5 gal/min at the surface, which created a constant drawdown of about 2 feet.

Flow during Ambient and Pumped Conditions

Logs collected in monitoring well PTX01-1012 during ambient conditions (fig. 4) indicate a dynamic environment that probably was affected by pumping of nearby irrigation or public-supply wells. Downward flow ranging from 0.2 to 2.1 gal/min indicates a lower hydraulic

head in the interval below 750 feet below LSD. The highest rate of ambient flow was measured at the stations in the casing between screened intervals (725–750 and 645–655 feet below LSD) that contained a bentonite seal in the annular space. The screened intervals below 650 feet below LSD are losing flow from the wellbore to the aquifer. In contrast, the screened interval above 650 feet below LSD appears to be gaining downward flow from the aquifer into the wellbore. This lower hydraulic head observed below 650 below LSD during ambient conditions probably is caused by nearby pumping.

During pumping, downward vertical flow during ambient conditions was either reversed or reduced. At depths from 700 to 850 feet below LSD, vertical flow that was downward during ambient conditions was reduced, and at depths from 575 to 695 feet below LSD, downward ambient flow was reversed to upward as a result of the pumping.

Ambient and pumped flowmeter values were entered into the Flow–B numerical model, as well as other data such as static water level, drawdown, and well diameter. The flowmeter values were plotted in Flow–B (appendix 1.1) and visually evaluated for fluctuations in the data that might indicate individual flow (production) zones. In well PTX01-1012, the flow zones were defined as originating below the following depths below LSD: 600, 650, 750, and 810 feet. Measurements at depths 650 and 750 feet below LSD correspond to cased intervals (hereinafter referred to as blanks) between the sealed screened intervals and show greater differences between ambient and pumped flowmeter values. Greater differences between ambient and pumped flowmeter values in the blanks probably is a result of a better seal of the flow diverter on the flowmeter to the smooth surface of the casing in the blank section and the bentonite seal in the annular space more efficiently funneling flow through the flowmeter sensor. The static depth to water for each of the production zones was computed:

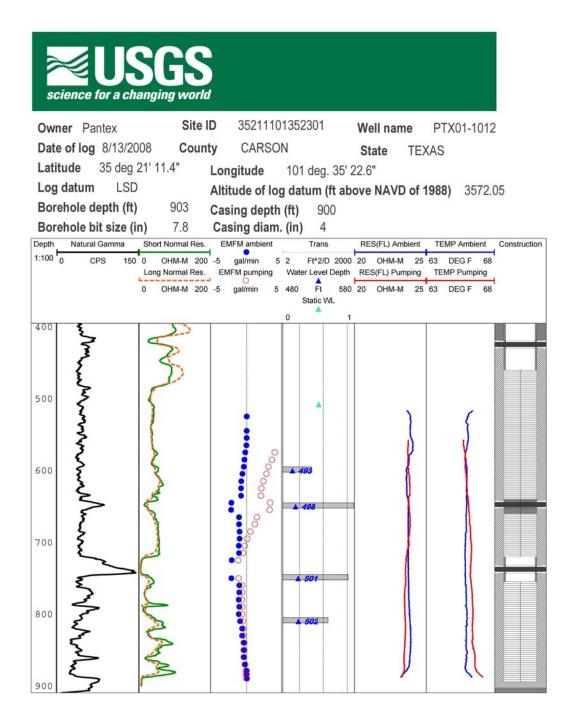


Figure 4. Borehole geophysical logs plotted with calculated transmissivity and well construction in screened intervals of monitoring well PTX01-1012 at the Pantex Plant, Carson County, Texas. [CPS, counts per second; OHM-M, ohm-meters; EMFM, electromagnetic flowmeter; gal/min, gallons per minute; Trans, transmissivity; Ft²/D, feet squared per day; Ft, foot or feet; RES(FL), fluid resistivity; TEMP, temperature; DEG F, degrees Fahrenheit; WL, depth to water from land-surface datum]

Zone 600–650 feet below LSD, 493 feet.

Zone 650–750 feet below LSD, 498 feet.

Zone 750–810 feet below LSD, 501 feet.

Zone 810–900 feet below LSD, 502 feet.

These calculated depths indicate hydraulic head was several feet lower in the lower three zones than the static head for the entire water column (500 feet below LSD), probably caused by nearby irrigation or public-supply well pumping at times during the flowmeter measurements.

During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed from about 715 to 575 feet below LSD, with fluctuations at the blanks between sealed screened intervals (fig. 4; appendix 1.1).

Estimated total transmissivity was calculated to be about 3,100 feet squared per day (ft^2/d) and is distributed among the production zones as indicated:

Zone 600–650 feet below LSD about 1 percent of the estimated transmissivity (31 ft²/d). Zone 650–750 feet below LSD about 60 percent of the estimated transmissivity (1,860 ft²/d). Zone 750–810 feet below LSD about 34 percent of the estimated transmissivity (1,054 ft²/d). Zone 810–900 feet below LSD about 5 percent of the estimated transmissivity (155 ft²/d). The zone of highest transmissivity (650–750 feet below LSD) corresponds with a sand unit at about 650–715 below LSD with reduced gamma counts per second and increased resistivity, which indicate decreased clay content and greater sand content.

Monitoring Well PTX06-1044

Monitoring well PTX06-1044 was constructed by the Water Development Corporation near the eastern Pantex Plant property boundary (fig. 2) during August 13–27, 1999. The well was drilled 7.9 inches in diameter to a total depth of 622 feet below LSD and constructed of schedule 10, 4-inch-diameter stainless steel casing and screened to 613 feet below LSD. The well has slotted screen openings of 0.020 inch in the following intervals: 393–493 and 533–613 feet below LSD. Well records indicate that 8-16 sieve-size silica sand filter pack material is in the annular space at 373–622 feet below LSD. Static water level was about 475 to 479 feet below LSD on the days of logging.

Data Collected

The USGS collected EM flowmeter, fluid resistivity, temperature, and natural gamma measurements on July 25, August 11, and September 24, 2008. Ambient logs were collected July 25, 2008, and pumping logs were collected August 11, 2008, because muddy conditions delayed access to the well. Ambient measurements were rechecked on August 11, 2008, to confirm ambient conditions had not changed. Flowmeter measurements were collected in trolling and stationary modes during ambient and pumped conditions. Fourteen stationary measurements were collected during ambient conditions on July 25, 2008, and 11 stationary measurements were collected while pumping 1.5 gal/min on August 11, 2008.

The pump was set at about 511 feet below LSD. The unusually low well yield of 1.5 gal/min resulted in 30 feet of drawdown. To improve well yield and reduce drawdown, the well screens were cleaned, and the well was redeveloped by B&W Pantex and subsequently logged again by the USGS with an EM flowmeter on September 24, 2008. After redevelopment, the pump was set at about 500 feet below LSD. Thirteen stationary measurements were collected during ambient conditions, and 11 stationary measurements were collected while pumping 5 gal/min. The drawdown observed while pumping 5 gal/min after redevelopment was about 17 feet, considerably less than the 30 feet of drawdown before redevelopment while pumping 1.5 gal/min.

Flow during Ambient and Pumped Flow Conditions before Redevelopment

Logs collected in monitoring well PTX06-1044 during ambient conditions before redevelopment July 25, 2008 (fig. 5), indicate a static environment with no flow. This lack of flow during ambient conditions indicates generally uniform hydraulic heads throughout the screened intervals; however in this case, results obtained after redevelopment indicate that screened intervals were not allowing adequate flow to enter the wellbore during ambient conditions before redevelopment.

During pumping there was upward vertical flow at rates ranging from 0.1 to about 1.5 gal/min. Upward vertical flow occurred at 590 to 542 below LSD, with most of the flow entering the well at depths below 570 feet below LSD.

Ambient and pumped flowmeter values were entered into the Flow–B numerical model, as well as other data such as static water level, drawdown, and well diameter. The flowmeter values were plotted in Flow–B (appendix 1.2) and visually evaluated for fluctuations in the data that might indicate individual flow zones. To discretize the numerical model with consistent flow zones, the flowmeter logs collected after redevelopment were ultimately used for the selection of flow zones, which facilitated a detailed analysis of the flow distribution. The flow zones were defined as originating below the following depths below LSD: 495, 530, 555, 570, and 590 feet. The depth to static water level for each zone was about 475 feet below LSD, about the same as depth to the static water level for the entire water column (475–479 feet below LSD).

During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed from about 590 to 542 feet below LSD (fig. 5; appendix 1.2).

Estimated total transmissivity before redevelopment was calculated to be about 95 ft^2/d and is distributed among the production zones as indicated:

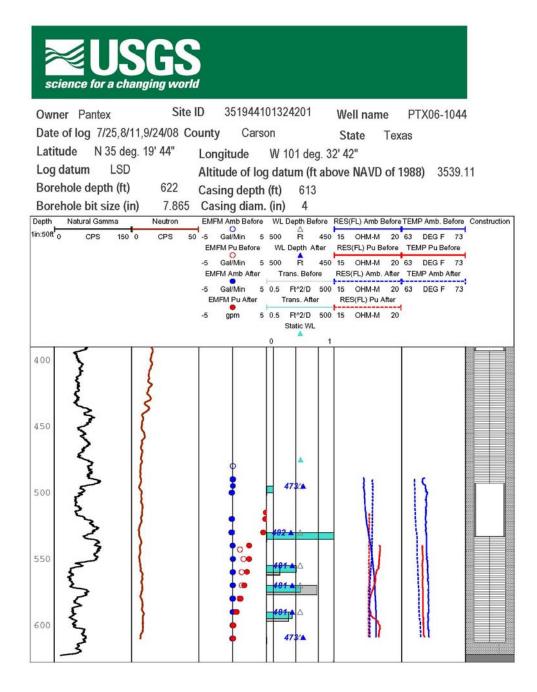


Figure 5. Borehole geophysical logs plotted with calculated transmissivity and well construction in screened intervals of monitoring well PTX06-1044 at the Pantex Plant, Carson County, Texas. [CPS, counts per second; OHM-M, ohm-meters; EMFM, electromagnetic flowmeter; Amb, ambient; Pu, pumping; Before, before redevelopment; After, after redevelopment; Gal/min, gallons per minute; Trans, transmissivity; Ft^2/D, feet squared per day; Ft, foot or feet; RES(FL), fluid resistivity; TEMP, temperature; DEG F, degrees Fahrenheit; WL, depth to water from land-surface datum]

Zone 495–530 feet below LSD none of the estimated transmissivity.

Zone 530–555 feet below LSD about 0.5 percent of the estimated transmissivity (less than 1 ft^2/d).

Zone 555–570 feet below LSD about 2 percent of the estimated transmissivity (2 ft^2/d).

Zone 570–590 feet below LSD about 92.5 percent of the estimated transmissivity (88 ft^2/d). Zone 590–609 feet below LSD about 5 percent of the estimated transmissivity (5 ft^2/d).

The zone of highest transmissivity (570–590 feet below LSD) corresponds with a sand unit 577– 603 feet below LSD. However, these transmissivity values are considered to be in error because of the lack of communication between the well and the aquifer before redevelopment. The hydraulic properties listed here are for documentation of results only.

Flow during Ambient and Pumped Flow Conditions after Redevelopment

Logs collected in monitoring well PTX06-1044 during ambient conditions after redevelopment September 24, 2008 (fig. 5; appendix 1.3), indicate a near-static environment with minimal downward flow (-0.17 gal/min) from about 495 to 530 feet below LSD. This very low downward flow during ambient conditions indicates lower hydraulic head (compared to static water level) at the bottom of the zone (530 feet below LSD). No flow is apparent elsewhere in the well, indicating essentially uniform hydraulic head throughout the screened intervals; however, the lower hydraulic head at 530 feet below LSD must be maintained to the bottommost zone of production to prevent upward flow from occurring.

During pumping there was upward vertical flow at rates ranging from 0.5 to about 4.8 gal/min. Upward vertical flow occurred at 590 to 514 feet below LSD, with most of the flow entering the well at depths between 529 and 539 feet below LSD.

Ambient and pumped flowmeter values were entered into the Flow–B numerical model (appendix 1.3), as well as other data such as static water level, drawdown, and well diameter, as before redevelopment. The flow zones defined were the same as those defined before redevelopment, originating below the following depths below LSD: 495, 530, 555, 570, and 590 feet. The static depth to water for each of the production zones was computed:

Zone 495–530 feet below LSD, 473 feet.

Zone 530–555 feet below LSD, 482 feet.

Zone 555–570 feet below LSD, 481 feet.

Zone 570–590 feet below LSD, 481 feet.

Zone 590–609 feet below LSD, 481 feet.

These calculated depths indicate hydraulic head was 8 to 9 feet lower in the zones of production from 530 to 609 feet below LSD than the hydraulic head for the entire water column, probably caused by nearby wells pumping at times during the flowmeter measurements.

During pumping, a gradual trend of more positive flowmeter values (upward flow of 0.5 to 2.4 gal/min) with distance up the well was observed from about 590 to 540 feet below LSD. A large increase in upward flow occurred between 540 and 530 feet below LSD indicating the most productive zone between those depths (fig. 5; appendix 1.3).

Estimated total transmissivity after redevelopment was calculated to be about 520 ft^2/d and is distributed among the production zones as indicated:

Zone 495–530 feet below LSD less than 1 percent of the estimated transmissivity (1 ft²/d). Zone 530–555 feet below LSD about 93.5 percent of the estimated transmissivity (486 ft²/d). Zone 555–570 feet below LSD about 2 percent of the estimated transmissivity (10 ft²/d). Zone 570–590 feet below LSD about 3 percent of the estimated transmissivity (16 ft²/d). Zone 590–609 feet below LSD about 1 percent of the estimated transmissivity (7 ft²/d). The zone of highest transmissivity (530–555 feet below LSD) corresponds with a thin sand unit with somewhat higher natural gamma counts, which indicates moderate clay content, less sand content, and likely lower permeability than other units. The noted increase in flow entering the well at depths between 529 and 539 feet below LSD (fig. 5) could be attributed to the blank section of casing improving the seal of the flowmeter diverter thus forcing more fluid to enter the sensor in that range. If this is the case, the large computed percentage of flow in the zone 530–555 feet below LSD likely is more indicative of the transmissivity of the entire lower screened section below 530 feet below LSD.

Monitoring Well PTX06-1056

Monitoring well PTX06-1056 was constructed by Stewart Brothers Drilling near the southeastern corner of the Pantex Plant property boundary (fig.2) on May 15, 2000. The well was drilled 7.9 inches in diameter to a total depth of 500 feet below LSD and constructed of schedule 10, 4-inch-diameter stainless steel casing and screened to 475 feet below LSD. The well has slotted screen openings of 0.020 inch in the interval 350–470 feet below LSD. Well records indicate that 8-16 sieve-size silica sand filter pack material is in the annular space at 328–622 feet below LSD. Static water level was about 392 to 393 feet below LSD on the days of logging.

Data Collected

The USGS collected EM flowmeter, fluid resistivity, temperature, and natural gamma measurements on July 23, August 14, and September 23–24, 2008. Ambient logs were collected July 23, 2008, and pumping logs were collected August 14, 2008, because muddy conditions delayed access to the well. Ambient measurements were rechecked on August 14, 2008, to confirm ambient conditions had not changed. Flowmeter measurements were collected in trolling

and stationary modes during ambient and pumped conditions. Sixteen stationary measurements were collected during ambient conditions on July 23, 2008, and 11 stationary measurements were collected while pumping 1.5 gal/min on August 14, 2008 (appendix 1.4; fig. 6).

The pump was set at about 403 feet below LSD. The unusually low well yield of 1.5 gal/min resulted in a constant drawdown of about 7.6 feet. To improve well yield and reduce drawdown, the well screen was cleaned, and the well was redeveloped by B&W Pantex and subsequently logged again by the USGS with an EM flowmeter on September 23, 2008. After redevelopment, the pump was set at about 412 feet below LSD. Sixteen stationary measurements were collected during ambient conditions, and 12 stationary measurements were collected while pumping 3 gal/min (appendix 1.5; fig. 6). The drawdown observed while pumping 3 gal/min after redevelopment was about 13.5 feet, substantially larger than the 7.6 feet of drawdown before redevelopment while pumping 1.5 gal/min.

Flow during Ambient and Pumped Flow Conditions before Redevelopment

Logs collected in monitoring well PTX06-1056 during ambient conditions before redevelopment July 23, 2008 (fig. 6), indicate a static environment with no flow. The lack of flow during ambient conditions generally indicates uniform hydraulic heads throughout the screened interval.

During pumping there was upward vertical flow at rates ranging from 0.3 to about 1.5 gal/min. Upward vertical flow occurred at 423 to 456 below LSD, with most of the flow entering the well at depths below 450 feet below LSD.

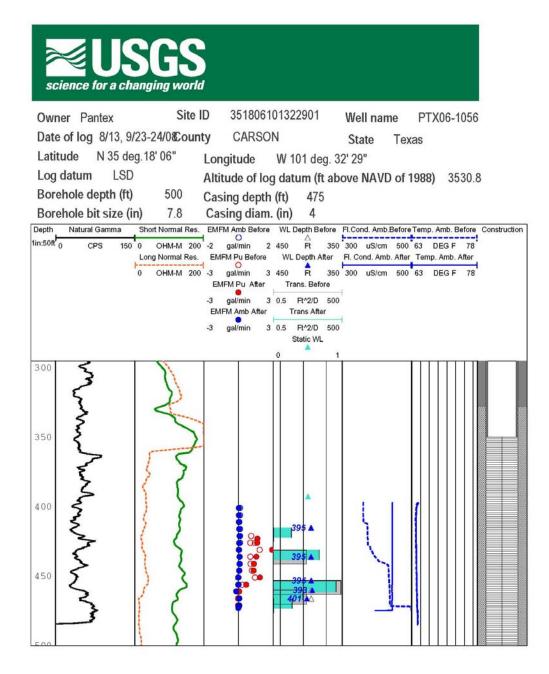


Figure 6. Borehole geophysical logs plotted with calculated transmissivity and well construction in screened interval of monitoring well PTX06-1056 at the Pantex Plant, Carson County, Texas. [CPS, counts per second; OHM-M, ohm-meters; EMFM, electromagnetic flowmeter; Amb, ambient; Pu, pumping; Before, before redevelopment; After, after redevelopment; Gal/min, gallons per minute; Trans, transmissivity; Ft^2/D, feet squared per day; Ft, foot or feet; Fl. Cond., Fluid Conductivity at well; uS/cm, microsiemens per centimeter; Temp, temperature; DEG F, degrees Fahrenheit; WL, depth to water from land-surface datum]

Ambient and pumped flowmeter values were entered into the Flow–B numerical model, as well as other data such as static water level, drawdown, and well diameter. The flowmeter values were plotted in Flow–B (appendix 1.4) and were visually evaluated for fluctuations that might indicate individual flow zones. To discretize the numerical model with consistent flow zones, the flowmeter logs collected after redevelopment were ultimately used for the selection of flow zones, which facilitated a detailed analysis of the flow distribution. The flow zones were defined as originating below the following depths below LSD: 415, 431, 453, and 460 feet. The static depths to water for the production zones were the same as the static depth to water for the entire water column (about 392 feet below LSD).

During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed from about 455 to 432 feet below LSD. The upward flow results from an apparent increase in flow below 450 feet below LSD and remains relatively constant through the uppermost measurement at 423 feet below LSD (fig. 6; appendix 1.4). Increased upward flows are observed at 431 and 451 feet below LSD, depths in the well that could correspond to decreased inside diameter at the threaded connections of screen sections, which likely improve the diverter seal on the flowmeter sensor to the casing.

Estimated total transmissivity before redevelopment was calculated to be about $450 \text{ ft}^2/\text{d}$ and is distributed among the production zones as indicated:

Zone 415–431 feet below LSD none of the estimated transmissivity.

Zone 431–453 feet below LSD about 2.5 percent of the estimated transmissivity (13 ft^2/d). Zone 453–460 feet below LSD about 95 percent of the estimated transmissivity (427 ft^2/d). Zone 460–466 feet below LSD about 2.5 percent of the estimated transmissivity (13 ft^2/d). The zone of highest transmissivity (453–460 feet below LSD) corresponds with a sand unit 443–460 feet below LSD with somewhat decreased natural gamma counts (fig. 6), which indicates less clay content and more sand content.

Flow during Ambient and Pumped Flow Conditions after Redevelopment

Logs collected in monitoring well PTX06-1056 during ambient conditions after redevelopment September 23, 2008 (fig. 6; appendix 1.5) indicate a near-static environment with no flow from about 401 to 456 feet below LSD. This lack of flow during ambient conditions indicates generally uniform hydraulic heads throughout the section of screened interval above 456 feet below LSD. A very small amount of downward flow occurred during ambient conditions at 461 feet below LSD, which indicates lower hydraulic head at the bottom of the zone (466 feet below LSD).

During pumping there was upward vertical flow at rates ranging from 0.7 to about 2.9 gal/min. Upward vertical flow occurred at 456 to 423 below LSD, with most of the flow entering the well at depths between 456 and 451 feet below LSD.

Ambient and pumped flowmeter values were entered into the Flow–B numerical model (appendix 1.5), as well as other data such as static water level, drawdown, and well diameter, as before redevelopment. The flow zones were defined as originating below the following depths below LSD: 415, 431, 453, 460, and 466 feet. The static depth to water for each of the production zones was computed:

Zone 415–431 feet below LSD, 395 feet. Zone 431–453 feet below LSD, 395 feet. Zone 453–460 feet below LSD, 395 feet. Zone 460–466 feet below LSD, 393 feet. Zone 466–475 feet below LSD, 401 feet.

These calculated depths indicate a 2- to 3-foot decrease in hydraulic head in the zones 415–460 feet below LSD and about an 8-foot decrease in hydraulic head in the zone 466–475 feet below LSD relative to the hydraulic head for the entire water column (392–393 feet below LSD). Similar to the other wells, the head decreases likely are caused by nearby irrigation or supply wells pumping during the flowmeter measurements.

During pumping, a sharp increase in positive flowmeter values (upward flow) ranging from 0.7 to 1.85 gal/min occurred from about 456 to 451 feet below LSD and indicates a zone of dominant inflow. This upward flow continues up the well, decreases in magnitude somewhat from 446 to 436 feet below LSD, then increases again between 436 and 431 feet below LSD indicating another productive zone between those depths (fig. 6; appendix 1.5).

Estimated total transmissivity after redevelopment was calculated to be about 330 ft^2/d —slightly lower than before redevelopment (450 ft^2/d)—and is distributed among the production zones as indicated:

Zone 415–431 feet below LSD about 1 percent of the estimated transmissivity (3 ft²/d). Zone 431–453 feet below LSD about 15 percent of the estimated transmissivity (50 ft²/d). Zone 453–460 feet below LSD about 80 percent of the estimated transmissivity (264 ft²/d). Zone 460–466 feet below LSD about 3 percent of the estimated transmissivity (10 ft²/d).

Zone 466–475 feet below LSD about 1 percent of the estimated transmissivity (3 ft²/d). The zone of highest transmissivity (453–460 feet below LSD) corresponds with a sand unit 443– 460 feet below LSD with somewhat decreased natural gamma counts (fig. 6), which indicates less clay content and more sand content. Redevelopment resulted in the percentage of total transmissivity accounted for by this zone to decrease from 95 to 85 percent. The percentage of transmissivity of the zone accounting for the second-highest percentage of transmissivity (431– 453 feet below LSD) increased from about 2.5 percent of the total transmissivity (about 13 ft²/d) before redevelopment to about 15 percent of the total transmissivity (about 50 ft²/d) after redevelopment. This redistribution of transmissivity is related not only to the redevelopment but also to the amount of stress on the well. Drawdown in this well increased from 7.6 feet while pumping at 1.5 gal/min before redevelopment to 13.5 feet while pumping at 3 gal/min. The larger pumping stress caused a redistribution of flow that resulted in more drawdown, which caused the model to calculate a lower total transmissivity.

Monitoring Well PTX06-1068

Monitoring well PTX06-1068 was constructed by Layne Christensen near the northeast corner of the Pantex property boundary (fig. 2) during May 1–5, 2001. The well was drilled 8 inches in diameter to a total depth of 805 feet below LSD and constructed of schedule 10, 4-inch diameter stainless steel casing and screened to 804 feet below LSD. The well has slotted screen openings of 0.010 inch in the following intervals: 454–754 and 774–799 feet below LSD. Well records indicate that 10-20 sieve-size silica sand filter pack material is in the annular space of the screened intervals, and bentonite seal is in the annular space above each screened interval. Static water level was about 508 feet below LSD on the days of logging.

Data Collected

The USGS collected EM flowmeter, fluid resistivity, temperature, and natural gamma measurements on July 23, 2008, and August 12, 2008. Flowmeter measurements were collected in trolling and stationary modes during ambient and pumped conditions. Thirty stationary measurements were collected during ambient conditions, and 27 stationary measurements were collected during pumped conditions. The well was logged during pumped conditions on August

29

12, 2008, because muddy conditions delayed access to the well. The pump was set at about 531 feet below LSD and discharged about 4.5 gal/min at the surface, which created a constant drawdown of about 10 feet.

Flow during Ambient and Pumped Conditions

Logs collected in monitoring well PTX06-1068 on July 23, 2008, during ambient conditions indicate a static environment with no flow (fig. 7; appendix 1.6). The lack of flow during ambient conditions indicates generally uniform hydraulic heads throughout the screened interval with no influence from nearby pumping wells.

During pumping there was upward vertical flow at rates ranging from 0.4 to 4.8 gal/min. Ambient and pumped flowmeter values were entered into the Flow–B numerical model, as well as other data such as static water level, drawdown, and well diameter. The flowmeter values were plotted in Flow–B (appendix 1.6) and were visually evaluated for fluctuations in the data that might indicate individual flow zones. In this well, the flow zones were defined as originating below the following depths below LSD: 565, 650, 775, and 789 feet. Measurements at depths of 775 and 789 feet below LSD correspond to measurements collected at blank intervals at the threaded parts of screened intervals and show the greatest relative difference between ambient and pumped flowmeter values. This is probably a result of a better seal of the flow diverter on the flowmeter to the smooth surface of the casing blank section and more efficient funneling of flow through the flowmeter sensor. The static depths to water for the production zones were the same as static depth to water for the entire water column (about 508 feet below LSD).

30

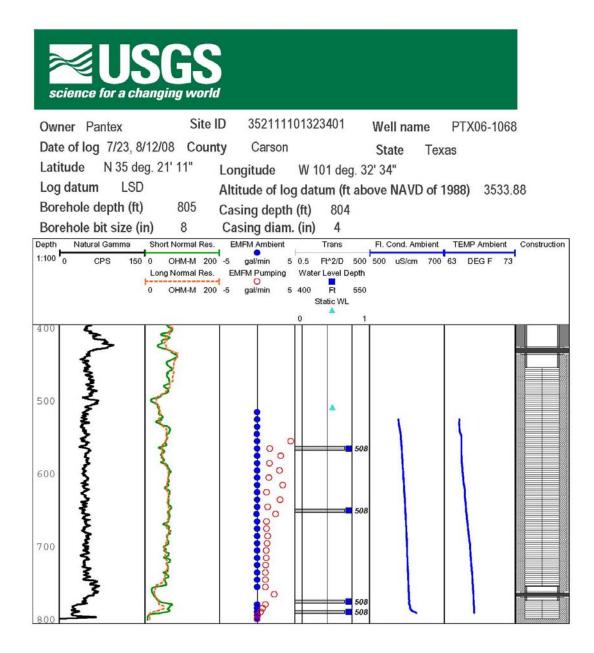


Figure 7. Borehole geophysical logs plotted with calculated transmissivity and well construction in screened interval of monitoring well PTX06-1068 at the Pantex Plant, Carson County, Texas. [CPS, counts per second; Res., resistivity; OHM-M, ohm-meters; EMFM, electromagnetic flowmeter; gal/min, gallons per minute; Trans, transmissivity; Ft^2/D, feet squared per day; Ft, foot or feet; Fl. Cond., fluid conductivity at well temperature; uS/cm, microsiemens per centimeter; Temp, temperature; DEG F, degrees Fahrenheit; WL, depth to water from land-surface datum]

During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed from about 789 to 765 feet below LSD, with the highest values at the blanks between sealed screened intervals (fig. 7; appendix 1.6). Flowmeter values between 555 and 655 feet below LSD appear to alternate between relatively high and low flow values with highest values every 20 feet. This likely is an artifact of well construction. The screen sections have a threaded connection every 20 feet, and there is a better seal with the diverter in the threaded (smaller diameter) part of the screen sections. The higher flowmeter values were used in the numerical model.

Estimated total transmissivity was calculated to be about 200 ft^2/d and is evenly distributed among the production zones as indicated:

Zone 565–650 feet below LSD about 25 percent of the estimated transmissivity (50 ft^2/d). Zone 650–775 feet below LSD about 25 percent of the estimated transmissivity (50 ft^2/d). Zone 775–789 feet below LSD about 25 percent of the estimated transmissivity (50 ft^2/d). Zone 789–804 feet below LSD about 25 percent of the estimated transmissivity (50 ft^2/d).

Summary

The Pantex Plant is a U.S. Department of Energy/National Nuclear Security Administration (USDOE/NNSA)-owned, contractor-operated facility managed by Babcock & Wilcox Technical Services Pantex, LLC (B&W Pantex) in Carson County, Tex., approximately 17 miles northeast of Amarillo. The U.S. Geological Survey (USGS), in cooperation with B&W Pantex through the USDOE/NNSA, made a series of flowmeter measurements and collected other borehole geophysical logs during July–September 2008 to analyze vertical flow in screened intervals of four selected monitoring wells at the Pantex Plant. Hydraulic properties

32

(transmissivity values) of the section of High Plains (Ogallala) aquifer penetrated by the wells also were computed.

The USGS collected borehole geophysical data consisting of vertical flow rates, fluid resistivity/temperature, and natural gamma radiation in the four monitoring wells (PTX01-1012, PTX06-1044, PTX06-1056, and PTX06-1068). Vertical flow rates were measured under ambient and pumped flow conditions in the four monitoring wells. Unusually large drawdowns occurred at two monitoring wells (PTX06-1044 and PTX06-1056) while the wells were pumped at relatively low rates (about 1.5 gal/min), which might adversely affect the accuracy of the calculated transmissivity values. Accordingly, a decision was made to redevelop those wells. Logs were run again after redevelopment during ambient and pumped flow conditions in the two monitoring wells.

Flowmeter and fluid resistivity/temperature data were analyzed by (1) plotting the logs with existing pertinent information such as other geophysical logs and casing and wellconstruction records provided by B&W Pantex, (2) evaluating the flowmeter data to identify potential zones of fluid movement to or from the wellbore and the magnitude and direction of vertical flow, (3) evaluating the flowmeter data with the USGS Flow–B numerical model to compute total transmissivity and distribution of transmissivity and head (as depth to water) in the screened intervals, and (4) plotting the transmissivity and head values on the logs.

Logs collected in monitoring well PTX01-1012 during ambient conditions indicate a dynamic environment that probably was affected by pumping of nearby irrigation or publicsupply wells. Downward flow ranged from 0.2 to 2.1 gal/min. During pumping, downward vertical flow that occurred during ambient conditions was either reversed or reduced. The flow (production) zones in the well were defined from Flow–B numerical model results as originating

33

below the following depths below LSD: 600, 650, 750, and 810 feet. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed from about 715 to 575 feet below LSD. Estimated total transmissivity for the four identified production zones taken together was calculated to be about 3,100 ft²/d. The zone of highest transmissivity (1,860 ft²/d) corresponds with a sand unit at about 650–715 below LSD.

Logs collected in monitoring well PTX06-1044 during ambient conditions before redevelopment indicate a static environment with no flow. During pumping there was upward vertical flow at rates ranging from 0.1 to about 1.5 gal/min. The flow zones in the well were defined from Flow–B numerical model results as originating below the following depths below LSD: 495, 530, 555, 570, and 590 feet. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed from about 590 to 542 feet below LSD. Estimated total transmissivity before redevelopment for the five identified production zones taken together was calculated to be about 95 ft^2/d ; but this and associated transmissivity values for the individual zones are considered to be in error because of the lack of communication between the well and the aquifer before redevelopment.

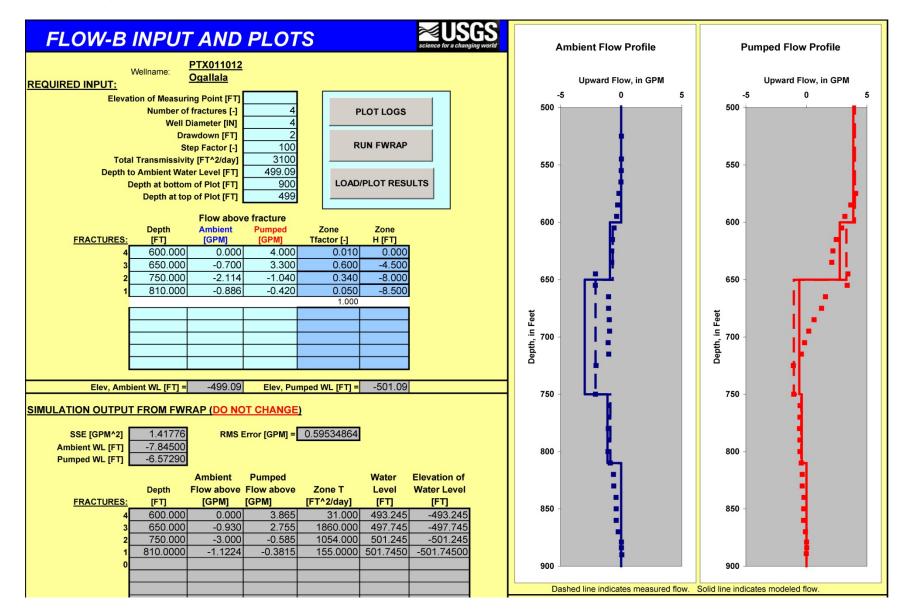
Logs collected in monitoring well PTX06-1044 during ambient conditions after redevelopment indicate a near-static environment with minimal downward flow (-0.17 gal/min). During pumping there was upward vertical flow at rates ranging from 0.5 to about 4.8 gal/min. The flow zones defined from Flow–B numerical model results were the same as those defined before redevelopment. During pumping, a gradual trend of more positive flowmeter values (upward flow of 0.5 to 2.4 gal/min) with distance up the well was observed from about 590 to 540 feet below LSD. A large increase in upward flow occurred between 540 and 530 feet below LSD indicating the most productive zone between those depths. Estimated total transmissivity after redevelopment for the five identified production zones taken together was calculated to be about 520 ft^2/d . The zone of highest transmissivity (486 ft^2/d) corresponds with a thin sand unit.

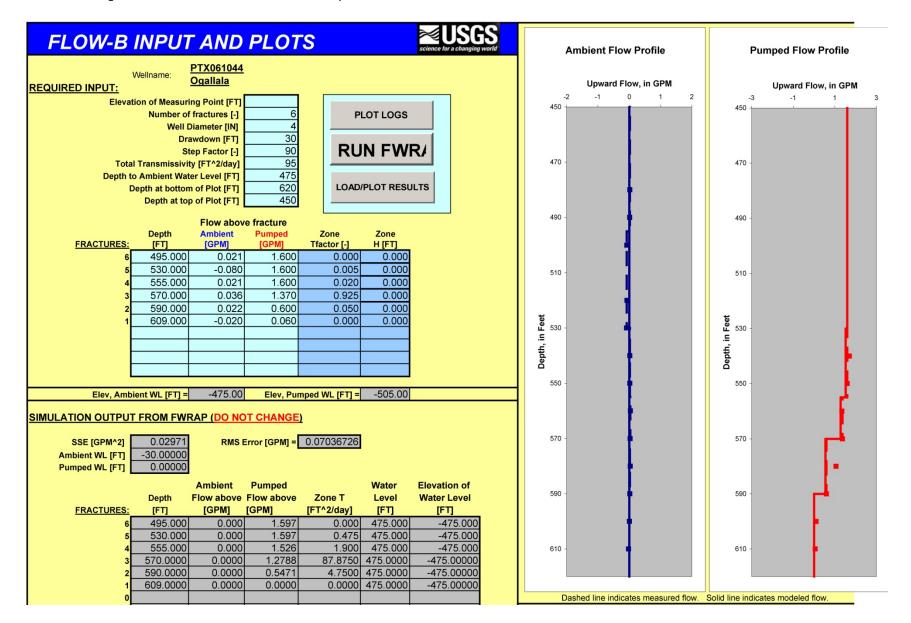
Logs collected in monitoring well PTX06-1056 during ambient conditions before redevelopment indicate a static environment with no flow. During pumping there was upward vertical flow at rates ranging from 0.3 to about 1.5 gal/min. The flow zones in the well were defined from Flow–B numerical model results as originating below the following depths below LSD: 415, 431, 453, and 460 feet. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed from about 455 to 432 feet below LSD. Estimated total transmissivity before redevelopment for the four identified production zones taken together was calculated to be about 450 ft²/d. The zone of highest transmissivity (427 ft²/d) corresponds with a sand unit 443–460 feet below LSD.

Logs collected in monitoring well PTX06-1056 during ambient conditions after redevelopment indicate a near-static environment with no flow from about 401 to 456 feet below LSD. A very small amount of downward flow occurred during ambient conditions at 461 feet below LSD. During pumping there was upward vertical flow at rates ranging from 0.7 to about 2.9 gal/min. The flow zones in the well were defined from Flow–B numerical model results as originating below the following depths below LSD: 415, 431, 453, 460, and 466 feet. During pumping, a sharp increase in positive flowmeter values (upward flow) ranging from 0.7 to 1.85 gal/min occurred from about 456 to 451 feet below LSD and indicates a zone of dominant inflow. Estimated total transmissivity after redevelopment for the five identified production zones taken together was calculated to be about 330 ft²/d. The zone of highest transmissivity (264 ft²/d) corresponds with a sand unit 443–460 feet below LSD.

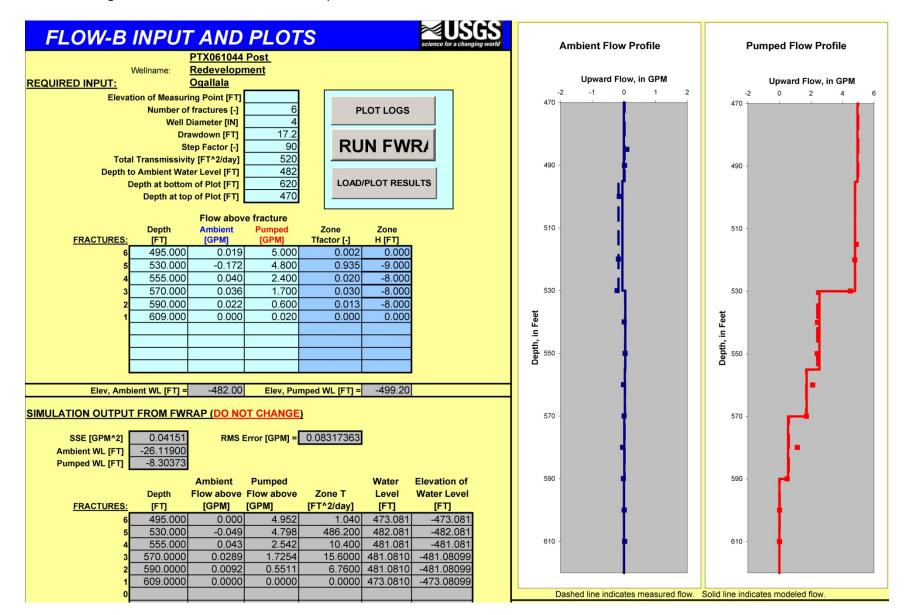
35

Logs collected in monitoring well PTX06-1068 during ambient conditions indicate a static environment with no flow. During pumping there was upward vertical flow at rates ranging from 0.4 to 4.8 gal/min. The flow zones in the well were defined from Flow–B numerical model results as originating below the following depths below LSD: 565, 650, 775, and 789 feet. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed from about 789 to 765 feet below LSD. Estimated total transmissivity for the four identified production zones taken together was calculated to be about 200 ft²/d and is evenly distributed among the selected zones.

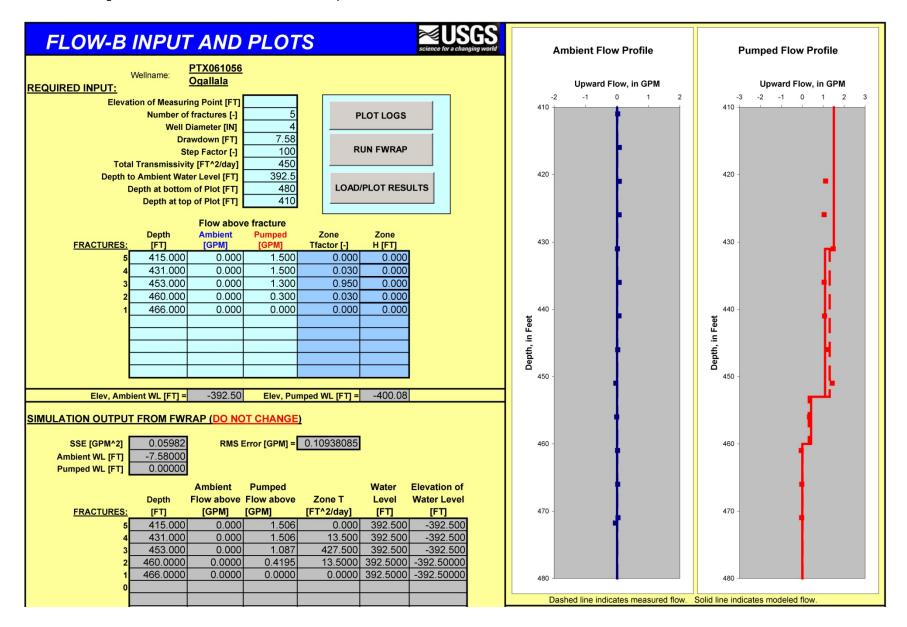

References

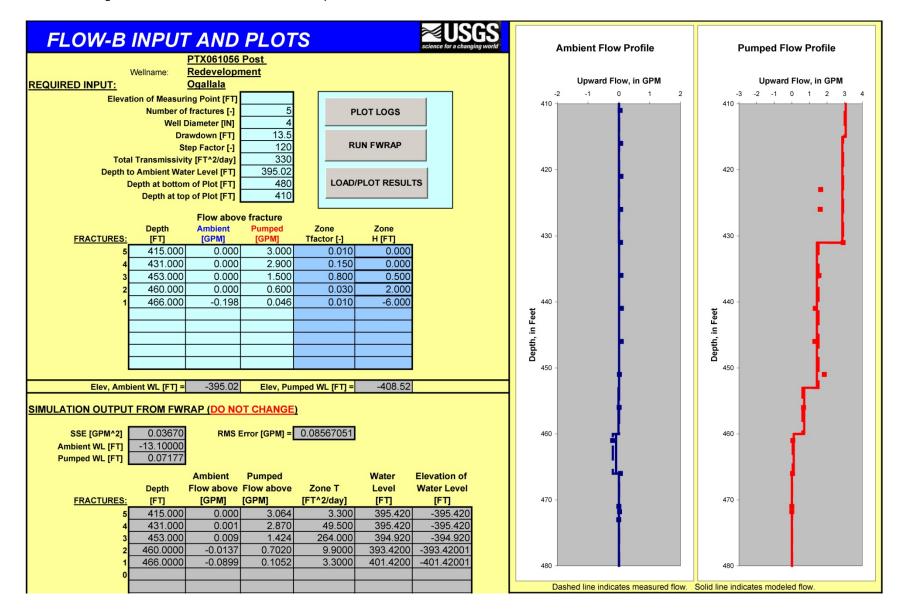

- Century Geophysical Corporation, 2006, 9721 Logging tool—E-M flowmeter: accessed December 22, 2008, at *http://www.century-geo.com/9721-index.html*
- Holliday, V.T. 1989, The Blackwater Draw Formation (Quaternary)—A 1.4-plus-m.y. record of eolian sedimentation and soil formation of the southern High Plains: Geological Society of America Bulletin 101, p. 1,598–1,607.
- Keys, W.S., 1997, A practical guide to borehole geophysics in environmental investigations: Boca Raton, Fla., CRC-Lewis Publishers, 176 p.
- Paillet, F.L., 2000, A field technique for estimating aquifer parameters using flow log data: Ground Water, v. 38, no. 4, p. 510–521.
- U.S. Department of Energy, 2009, Pantex info—General overview: National Nuclear Security Administration Pantex Plant, accessed January 14, 2009, at http://:www.pantex.com/ucm/groups/exweb/@exweb/@pr/documents/web_content/ex_doc_gen _ovrview.pdf

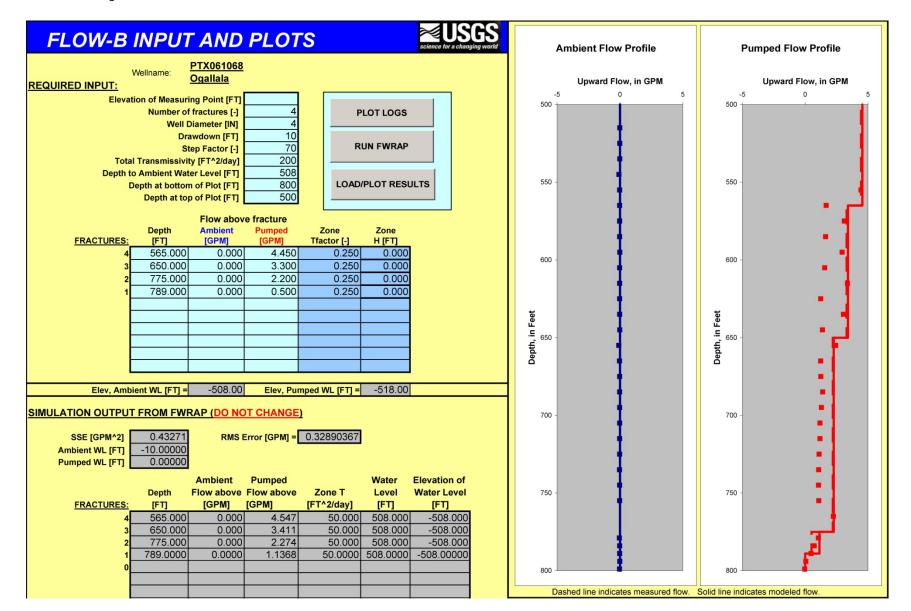
Appendix 1 – Flowmeter Analyses of Monitoring Wells with Flow–B


Numerical Model Input and Results

1.1 Monitoring Well PTX01-1012




1.3 Monitoring Well PTX06-1044 after Redevelopment


1.4 Monitoring Well PTX06-1056 before Redevelopment

1.5 Monitoring Well PTX06-1056 after Redevelopment

1.6 Monitoring Well PTX06-1068

APPENDIX C

Chromium in Perched Groundwater Wells

C.1. INTRODUCTION

Total chromium has been observed at concentrations above background in many of the perched groundwater monitoring wells constructed with stainless steel screens. Analysis of metals data in perched groundwater shows that a statistical relationship exists among the constituents found in stainless steel (specifically, chromium, manganese, molybdenum, and nickel) at wells with stainless steel screens. The correlation among chromium, manganese, molybdenum, and nickel concentrations indicates measured concentrations of these constituents do not relate to groundwater contamination, but rather to sample contamination contributed by stainless steel well construction materials. Although these wells may not be suitable for monitoring of total chromium and other constituents found in stainless steel (i.e., manganese, molybdenum, and nickel), the presence of chromium in the samples does not preclude the wells from providing representative samples for other constituents.

This appendix presents a summary of conclusions presented in the Baseline Human Health Risk Assessment (BHHRA) Report (BWXT Pantex, 2006) and Groundwater RFIR (Stoller, 2004) regarding water sample contamination caused by stainless steel well construction materials. In the BHHRA, a statistical analysis of metals data in perched groundwater was conducted to determine the relationship of stainless steel corrosion products in groundwater to well casing material. For the Groundwater RFIR, well screen corrosion was visually confirmed by downhole video in nine perched groundwater wells; analytical data for chromium, manganese, and nickel acquired from those wells were removed from the RFIR dataset and the rationale for removing those data was presented. Based on the statistical analysis and visual evidence, analytical data for chromium, manganese, molybdenum, and nickel from stainless steel wells were not included in the Baseline HHRA evaluation for perched groundwater.

C.2. CHEMICAL CHARACTERISTICS OF STAINLESS STEEL WELLS

Many studies have confirmed that groundwater quality data can be biased by the presence of well construction materials in the sample as a result of leaching, desorption, or volatization (USGS, 1997). According to EPA, when constituents are leached from well materials, "constituents that are not indicative of formation water quality may be detected in samples collected from the well" (1989). These "false positives" only indicate that the sample has been affected by the well casing material.

Because well screen materials have a large surface area exposed to groundwater, the screen is the part of a well most susceptible to corrosion and leaching of its constituents. In a ranking of well screen materials by potential to leach inorganic constituents, the USGS lists stainless steel among the most leaching of potential well construction materials even though stainless steel generally has high corrosion resistance (1997). Stainless steel type 316, the type used in most stainless steel wells at Pantex, is composed of 30 to 37 percent chromium, manganese, molybdenum, and nickel (USGS, 1997).

C.3. CHROMIUM IN PERCHED GROUNDWATER

Based on historical information and soil and groundwater sampling, two separate source areas of hexavalent chromium in Zone 12 South have impacted perched groundwater. The two plumes commingle southeast of Zone 12 and extend offsite beneath Texas Tech property south of Pantex. Chromium has been detected in samples from many stainless steel wells located either upgradient or far away from these plumes. These detections do not indicate the presence of chromium contamination in perched groundwater at these locations, but are related to corrosion of stainless steel well screens as shown by the statistical evaluation presented in the BHHRA. Further, it is not plausible that a widespread chromium plume could result from well casing corrosion because well casings do not contain sufficient mass of chromium.

As an example, consider an aquifer of 20-ft saturated thickness and porosity of 0.25 containing a circular (1,000-ft radius) plume of chromium with a uniform concentration of 1 mg/L. The mass of chromium in this volume of groundwater is about 980 lb (445 kg). By comparison, a 20-ft length of 4-inch stainless steel monitoring well casing weighs about 220 lb (100 kg) based on screen weight of 11 lb/ft and contains at most 40 lb (18 kg) of chromium. Therefore, at least 25 well screens would need to be completely dissolved in the groundwater to create the small plume in the aquifer. This rather extreme example illustrates that apparent water quality impacts caused by well screen corrosion affect only the water contained within the well bore and cannot measurably affect water quality in the aquifer away from the well.

As presented in Section I.3.1 of the BHHRA, the majority of chromium, manganese, molybdenum, and nickel action level exceedances occur at well locations with stainless steel screens, while no hexavalent chromium exceedances occur at stainless steel wells. The presence of elevated concentrations of total chromium without corresponding hexavalent chromium coupled with the high occurrence of exceedance among the other corrosion constituents suggests that corrosion of the stainless steel screens is likely the cause. A statistical correlation analysis supports this hypothesis. For this analysis, total and hexavalent chromium results for 3 stainless steel wells located downgradient of known total chromium and hexavalent chromium source areas were removed. Among non-stainless steel wells where corrosion would not be expected to occur, poor relationships between the corrosion constituents (chromium, manganese, molybdenum, and nickel) are observed. In addition, the statistically significant correlation between total chromium and hexavalent chromium indicates the observed chromium detections can be attributed to a source. Conversely, the relationship between the corrosion constituents from wells with stainless steel screens showed statistically significant correlations. These results among wells with stainless steel screens coupled with the poor correlation between total chromium and hexavalent chromium would suggest that the presence of the corrosion constituents is not indicative of source contamination.

C.4. SUMMARY AND CONCLUSIONS

In the BHHRA, metals data acquired for chromium, manganese, molybdenum, and nickel in wells constructed with stainless steel screens were removed from the groundwater datasets because measured concentrations of these constituents are only localized occurrences associated with wells exhibiting corrosion. Removal of this data is consistent with the data evaluation in the Groundwater RFIR and is supported by visual observations (by downhole video) of corroded well screens, the observed extent of chromium in perched groundwater from known source areas, statistical evaluations of total and hexavalent chromium, manganese, molybdenum, and nickel in perched monitoring wells, and published data from EPA and USGS. In addition, a simple calculation of the mass of chromium in a stainless steel well screen shows that well corrosion cannot measurably affect water quality in the aquifer away from the well.

Wells constructed with stainless steel screens may not be suitable for monitoring of total chromium and other constituents found in stainless steel (i.e., manganese, molybdenum, and nickel), but these wells can provide representative samples for other constituents. Aside from chromium, none of the other constituents found in stainless steel were identified as constituents of concern in perched groundwater. Chromium impacts to perched groundwater are associated with releases of hexavalent, not total, chromium, and a separate analytical method is used to quantify concentrations of hexavalent chromium. Therefore, it is recommended that the presence of chromium and other constituents found in stainless steel at elevated concentrations not be used in the determination of the need for well replacement without other information indicating that a particular well can no longer provide representative samples of perched groundwater quality, such as visual evidence of well screen deterioration obtained from downhole video or hydraulic data from slug or pump tests.

C.5. REFERENCES

- BWXT Pantex, 2006. Baseline Human Health Risk Assessment Report for Zones 10, 11, and 12, Fire Training Area, Ditches and Playas, Independent Sites, and Groundwater. Prepared for Pantex Plant, Amarillo, Texas.
- Stoller, 2004. Groundwater RCRA Facility Investigation Report. Prepared for Pantex Plant, Amarillo, Texas.
- USEPA (L. Aller, T.W. Bennett, G. Hackett, R.J. Petty, J.H. Lehr, H. Sedoris, D.M. Nielson, and J.E. Denne), 1989. Handbook of Suggested Practices for the Design and Installation of Ground-Water Monitoring Wells. Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, EPA/600/4-89/034.
- USGS (W.W. Lapham, F.D. Wilde, and M.T. Koterba), 1997. Guidelines and Standard Procedures for Studies of Ground-Water Quality: Selection and Installation of Wells, and Supporting Documentation. U.S. Geological Survey Water-Resources Investigations Report 96-4233.

APPENDIX D

Table of Wells and Coordinates

Well ID	Easting	Northing	Well ID	Easting	Northing
Ogallala Wells					
PTX01-1010	630576.88	3771397.26	PTX06-1064	635900.45	3773557.90
PTX01-1011	629986.45	3771397.29	PTX06-1068	643403.70	3773360.30
PTX01-1012	632664.21	3773264.13	PTX06-1072	635047.45	3758434.63
PTX01-1013	628976.89	3773218.25	PTX06-1076	637327.32	3752978.41
PTX06-1032	645981.41	3752592.58	PTX06-1137A	647901.00	3758634.00
PTX06-1033	642614.48	3759581.41	PTX06-1138	646435.00	3760502.00
PTX06-1043	640711.00	3765225.21	PTX06-1139	646920.00	3756375.00
PTX06-1044	642706.18	3764538.54	PTX06-1140A	646959.05	3762805.39
PTX06-1056	643767.03	3754642.87	PTX06-1141	633445.46	3766872.54
PTX06-1057A	629630.04	3768142.23	PTX06-1143	639245.28	3770497.08
PTX06-1058	624894.00	3759747.11	PTX06-1144	640250.00	3773335.00
PTX06-1061	625651.61	3773186.59	PTX07-1R01	627914.28	3764159.91
PTX06-1062A	633017.18	3771685.22	PTX-BEG2	632652.49	3756906.56
Perched Wells				l l	
1114-MW4	636151.93	3757809.40	PTX06-1089	646637.32	3760258.95
OW-WR-38	640645.32	3765201.69	PTX06-1090	647727.51	3757684.39
PTX01-1001	630592.95	3769641.90	PTX06-1091	646554.01	3756363.40
PTX01-1002	628496.92	3769596.99	PTX06-1093	645529.01	3759922.32
PTX01-1004	630729.82	3770768.71	PTX06-1094	643813.77	3751494.55
PTX01-1008	629942.97	3770782.89	PTX06-1095A	640634.87	3755598.65
PTX01-1009	630594.67	3769018.50	PTX06-1096A	630823.57	3766548.35
PTX04-1001	641458.10	3772334.66	PTX06-1097	633104.35	3765068.63
PTX04-1002	641818.01	3772165.27	PTX06-1098	640266.14	3753628.43
PTX06-1002A	641161.56	3759984.00	PTX06-1100	640285.97	3753579.52
PTX06-1003	641498.93	3758711.05	PTX06-1101	640383.57	3753437.09
PTX06-1005	640545.44	3756139.87	PTX06-1102	642751.09	3754532.94
PTX06-1006	637450.19	3757599.75	PTX06-1103	641228.13	3752946.88
PTX06-1007	637679.37	3759513.00	PTX06-1118	641644.92	3752736.07
PTX06-1008	639441.93	3759325.25	PTX06-1119	642646.10	3752739.01
PTX06-1010	639886.62	3758067.00	PTX06-1120	643152.43	3752735.03
PTX06-1011	639178.93	3757219.75	PTX06-1121	643645.57	3752750.09
PTX06-1012	634640.91	3755068.80	PTX06-1122	640677.35	3752308.74
PTX06-1013	643710.38	3764075.09	PTX06-1123	642051.96	3752319.94
PTX06-1014	643758.88	3755125.71	PTX06-1124	642877.91	3752327.45
PTX06-1015	643765.00	3753617.00	PTX06-1125	643377.53	3752331.14
PTX06-1023	642773.84	3764603.10	PTX06-1126	635034.72	3755562.85
PTX06-1030	644670.42	3755008.03	PTX06-1127	635901.90	3755432.03
PTX06-1031	644674.92	3753348.03	PTX06-1130	644270.36	3759745.02
PTX06-1034	646555.62	3752434.98	PTX06-1131	629371.66	3754232.94
PTX06-1035	633027.45	3755092.64	PTX06-1133	645285.00	3751284.00
PTX06-1036	638615.43	3752455.56	PTX06-1134	635211.37	3754129.45
PTX06-1037	641549.25	3752194.06	PTX06-1135	638343.76	3753631.93
PTX06-1038	643802.04	3760426.35	PTX06-1136	634860.00	3766768.00
PTX06-1039A	643807.47	3759272.56	PTX06-1146	645978.91	3757691.87
PTX06-1040	643811.23	3758262.93	PTX06-1147	645431.85	3753953.21
PTX06-1041	643803.61	3757622.78	PTX06-1148	636465.02	3754720.72
PTX06-1042	643812.20	3755779.88	PTX06-1149	635896.51	3754720.72
PTX06-1045	642697.65	3752300.00	PTX06-1150	635234.30	3754720.72
PTX06-1046	643802.63	3752292.55	PTX07-1O01	638532.53	3767695.22

Monitoring Wells and Coordinates

Well ID	Easting	Northing	Well ID	Easting	Northing
PTX06-1047A	643817.46	3752004.39	PTX07-1002	639106.56	3768117.46
PTX06-1048A	642103.43	3766957.63	PTX07-1003	639046.64	3767462.56
PTX06-1049	633343.53	3763376.96	PTX07-1006	638814.40	3768536.81
PTX06-1050	636746.04	3766622.06	PTX07-1P02	637817.70	3763019.08
PTX06-1051	640332.91	3752279.10	PTX07-1P05	637136.13	3762886.83
PTX06-1052	639100.91	3753957.66	PTX07-1Q01	629274.83	3755836.12
PTX06-1053	636576.74	3753672.06	PTX07-1Q02	628876.97	3756408.66
PTX06-1055	633521.90	3767254.87	PTX07-1Q03	630542.61	3757408.87
PTX06-1069	646317.00	3762879.60	PTX07-1R03	627664.39	3764501.80
PTX06-1071	642601.46	3773219.43	PTX08-1001	638950.13	3762969.23
PTX06-1073A	634963.34	3758072.00	PTX08-1002	640878.64	3763005.65
PTX06-1077A	637201.80	3760689.50	PTX08-1003	635385.36	3760136.56
PTX06-1080	638901.00	3772643.95	PTX08-1005	635316.66	3756346.19
PTX06-1081	641222.41	3770912.33	PTX08-1006	636400.41	3756761.86
PTX06-1082	653856.27	3780321.59	PTX08-1007	638898.35	3758429.95
PTX06-1083	658643.46	3779777.76	PTX08-1008	637485.10	3755695.51
PTX06-1085	629059.82	3760418.31	PTX08-1009	638866.95	3755275.01
PTX06-1086	631411.81	3759843.32	PTX08-1010	641401.47	3773206.74
PTX06-1088	639902.10	3757059.42	PTX10-1013	639664.44	3759944.21

APPENDIX E

Modified Compliance Plan Attachment B Well Specifications

COMPLIANCE PLAN ATTACHMENT B MODIFIED WELL DESIGN AND CONSTRUCTION SPECIFICATIONS

The following well design and construction specifications should be used as guidance when designing a groundwater Compliance Monitoring Program (Section XI.C.) or a Corrective Action Program (Section XI.D.). This guidance is provided to establish minimum well design and construction specifications for the Compliance Plan.

- 1. Well drilling methods that minimize potential adverse effects on the quality of water samples withdrawn from the well and that minimize or eliminate the introduction of foreign fluids into the borehole must be utilized.
- 2. All wells shall be constructed such that the wells can be routinely sampled with a pump, bailer, or alternate sampling device. Piping associated with recovery wells should be fitted with sample ports or an acceptable alternative sampling method to facilitate sampling of the recovered groundwater on a well by well basis.
- 3. Above the saturated zone the well casing may be two (2)-inch diameter or larger schedule 40 or 80 polyvinyl chloride (PVC) rigid pipe or stainless steel or polytetrafluoroethylene (PTFE or "teflon") or an approved alternate material. The PVC casing must bear the National Sanitation Foundation logo for potable water applications (NSF-pw). Solvent cementing compounds shall not be used to bond joints and all connections shall be flush-threaded. In and below the saturated zone, the well casing shall be stainless steel or PTFE.

PVC or fiberglass reinforced resin may be used as an alternate well casing material in and below the saturated zone provided that it yields samples for groundwater quality analysis that are unaffected by the well casing material.

- 4. Any well that has deteriorated due to incompatibility of the casing material with the groundwater contaminants or due to any other factors must be replaced if the well material interferes with the evaluation of groundwater against expected conditions.
- 5. Well casings and screens shall be steam cleaned prior to installation to remove all oils, greases, and waxes. Well casings and screens made of fluorocarbon resins shall be cleaned by detergent washing.
- 6. Screen lengths exceeding ten (10) feet may be installed in groundwater recovery or injection wells to optimize the groundwater remediation process in accordance with standard engineering practice. Monitoring well screen length shall be installed as noted below:
 - Perched screen across the entire saturated thickness (less than 40 ft in most cases).
 - Ogallala screen across the entire saturated interval with blank casing segments set across less transmissive zones and between each screen interval. The uppermost screen interval will be based on the anticipated rate of decline in the water table, but will be no greater than 40 feet. Subsequent screen intervals up to 40 feet will be continued to enable sampling near the top of the water table for 30 years after installation. Blank casing segments separating the screen intervals will be 15 feet long. Screening of the lower portion of the aquifer will be determined by evaluation of lithologies and geophysical logs.
- 7. The intake portion of a well shall be designed and constructed so as to allow sufficient water flow into the well for sampling purposes and minimize the passage of formation materials into the well during pumping. The intake portion of a well shall consist of commercially manufactured stainless steel or PTFE screen or approved alternate material. The annular space between the screen and the borehole shall be filled with clean siliceous granular material (i.e., filter pack) that has a proper size gradation to provide mechanical retention of the formation sand and silt. The well screen slot size shall be compatible with the filter pack size as determined by sieve analysis data. The filter pack should extend no more than three (3) feet above the well screen. A silt trap, no greater than one (1) foot in length, may be added to the bottom of the well screen to collect any silt that may enter the well. The bottom of the well casing shall be capped with PTFE or stainless steel or approved alternate material.

Groundwater recovery and injection wells shall be designed in accordance with standard engineering practice to ensure adequate well production and accommodate ancillary equipment. Silt traps exceeding one (1) foot may be utilized to accommodate ancillary equipment. Well heads shall be fitted with mechanical wellseals, or equivalent, to prevent entry of surface water or debris.

8. A minimum of two (2) feet of pellet or granular bentonite shall immediately overlie the filter pack in the annular space between the well casing and borehole. Where the saturated zone extends above the filter pack, pellet or granular bentonite shall be used to seal the annulus. The bentonite shall be allowed to settle and hydrate for a sufficient amount of time prior to placement of grout in the annular space. Above the minimum two (2)-foot thick bentonite seal, the annular space shall be sealed with a cement/bentonite grout mixture. The grout shall be placed in the annular space by means of a tremie pipe or pressure grouting methods equivalent to tremie grouting standards.

The cement/bentonite grout mixture or TCEQ approved alternative grout mixture shall fill the annular space to within two (2) feet of the surface. A suitable amount of time shall be allowed for settling to occur. The annular space shall be sealed with concrete, blending into a cement apron at the surface that extends at least two (2) feet from the outer edge of the monitor well for above-ground completions. Alternative annular-space seal material may be proposed with justification and must be approved by the executive director prior to installation.

In cases where flush-to-ground completions are unavoidable, a protective structure such as a utility vault or meter box should be installed around the well casing and the concrete pad design should prevent infiltration of water into the vault. In addition, the following requirements must also be met 1) the well/cap juncture is watertight; 2) the bond between the cement surface seal and the protective structure is watertight; and 3) the protective structure with a steel lid or manhole cover has a rubber seal or gasket.

- 9. Water added as a drilling fluid to a well shall contain no bacteriological or chemical constituents that could interfere with the formation or with the chemical constituents being monitored. For groundwater recovery and injection wells, drilling fluids containing freshwater and treatment agents may be utilized in accordance with standard engineering practice to facilitate proper well installation. In these cases, the water and agents added should be chemically analyzed to evaluate their potential impact on in-situ water quality and to assess the potential for formation damage. All such additives shall be removed to the extent practicable during well development.
- 10. Upon completion of installation of a well, the well must be developed to remove any fluids used during well drilling and to remove fines from the formation to provide a particulate-free discharge to the extent achievable by accepted completion methods and by commercially available well screens. Development shall be accomplished by reversing flow direction, surging the well or by air lift procedures. No fluids other than formation water shall be added during development of a well unless the aquifer to be screened is a low-yielding water-bearing aquifer. In these cases, the water to be added should be chemically analyzed to evaluate its potential impact on in-situ water quality, and to assess the potential for formation damage.

For recovery and injection wells, well development methods may be utilized in accordance with standard engineering practice to remove fines and maximize well efficiency and specific capacity. Addition of freshwater and treatment agents may be utilized during well development or re-development to remove drilling fluids, inorganic scale or bacterial slime. In these cases, the water and agents added should be chemically analyzed to evaluate their potential impact on in-situ water quality and to assess the potential for formation damage. All such additives shall be removed to the extent practicable during well development.

- 11. Each well shall be secured and/or designed to maintain the integrity of the well borehole and groundwater.
- 12. The above-ground portion of the well must be protected by bumper guards and/or metal outer casing protection when wells are located in traffic areas or outside the secured plant area.

- 13. Copies of drilling and construction details demonstrating compliance with the items of this provision shall be kept on site. This record shall include the following information:
 - . name/number of well (well designation);
 - . intended use of the well(sampling, recovery, etc.);
 - . date/time of construction;
 - . drilling method and drilling fluid used;
 - well location (± 0.5 ft.);
 - . bore hole diameter and well casing diameter;
 - . well depth (\pm 0.1 ft.);
 - . drilling and lithologic logs;
 - . depth to first saturated zone;
 - . casing materials;
 - . screen materials and design;
 - . casing and screen joint type;
 - . screen slot size/length;
 - . filter pack material/size;
 - . filter pack volume (how many bags, buckets, etc.);
 - . filter pack placement method;
 - . sealant materials;
 - . sealant volume (how many bags, buckets, etc.);
 - . sealant placement method;
 - . surface seal design/construction;
 - . well development procedure;
 - . type of protective well cap;
 - . ground surface elevation (\pm 0.01 ft. MSL);
 - . top of casing elevation (\pm 0.01 ft. MSL); and,
 - . detailed drawing of well (include dimensions).
- 14. Construction or plugging and abandonment of each well shall be completed in accordance with the requirements of 16 TAC Chapter 76 and must be reported/certified to the TCEQ that such proper construction or plugging and abandonment has occurred following installation or plugging and abandonment. Well completion logs for each newly installed or replaced well shall be included with the report. The certification shall be prepared by a qualified geologist or geotechnical engineer. Each well certification shall be accompanied by a certification report, including an accurate log of the soil boring, which thoroughly describes and depicts the location, elevations, material specifications, construction details, and soil conditions encountered in the boring for the well. A copy of the certification and certification report shall be kept on-site, and a second copy shall be submitted to the executive director.
- 15. The well number must be clearly marked and maintained on each well at the site.
- 16. The elevation of the top of each well casing must be measured in feet above mean sea level to the nearest 0.01 foot.
- 17. Wells must be replaced at any time the well integrity or materials of construction or well placement no longer enable the well to yield samples representative of groundwater quality.
- 18. Soil test borings shall be plugged and wells removed from service with a cement/bentonite grout mixture so as to prevent the preferential migration of fluids in the area of the borehole. Certification of each plugging shall be reported in accordance with Provision 14. The plugging of wells shall be in accordance with 16 TAC Chapter 76 dealing with Well Drilling, Completion, Capping and Plugging.
- 19. A well's screened interval shall be appropriately designed and installed to meet the well's specific objective (i.e., either DNAPL, LNAPL, both, or other objective of the well). All wells designed to detect, monitor, or recover DNAPL must be drilled to intercept the bottom confining layer of the aquifer. The screened interval to detect DNAPL should extend from the top of the lower confining layer to above the portion of

the aquifer saturated with DNAPL. The screened interval for all wells designed to detect, monitor, or recover LNAPL must extend high enough into the vadose zone to provide for fluctuations in the seasonal water table. In addition, the sandpacks for the recovery or monitoring well's screened interval shall be coarser than surrounding media to ensure the movement of NAPL to the well.

APPENDIX F

Well Construction Diagrams and Approach to Construction of New Ogallala Aquifer Wells

F. WELL CONSTRUCTION DIAGRAMS AND APPROACH TO CONSTRUCTION OF NEW OGALLALA AQUIFER WELLS

Seven new wells are proposed in the Ogallala Aquifer as early detection wells near perched groundwater contamination and for uncertainty management. This section provides the diagrams and information for proposed well installations.

F.1. OGALLALA AQUIFER DRILLING AND WELL INSTALLATION DECISION PROCESS

Ogallala aquifer monitoring well drilling will progress in steps. An Air Rotary Casing Hammer (ARCH) drilling rig will initially be used to bore through the Blackwater Draw and upper Ogallala Formations to the FGZ, generally about 260 to 290 feet bgs. An 8-inch carbon steel conductor casing will then be set and permanently cemented from the FGZ to ground surface. The Portland cement used to grout the conductor casing will be allowed to cure a minimum of 24 hours before drilling operations continue. Mud rotary drilling then will be used to complete the borehole. This method includes a containment system that will hold all drilling fluids and cuttings until the well is completed. All grout will be segregated from this system. The borehole will be advanced to the Permian redbeds. At completion of drilling activities, a series of geophysical surveys will be run in the borehole. The geophysical logging suite will consist of natural gamma, spontaneous-potential, and resistivity. A video survey may also be completed on the Ogallala aquifer monitoring well. This survey will be completed after the well is developed and at the end of the drilling program in order to ensure clarity of the well. At the conclusion of logging activities and following evaluation of the geophysical and lithological logs by the field geologist, 5-inch, Schedule 10, Type 316, stainless steel screen and casing will be used to construct the well. This procedure will be used for any other Ogallala aquifer monitoring wells that may be installed during the project. Drilling activities are described in more detail below.

During all drilling operations, the lithology of the soil and rock cuttings will be described and logged on standard field forms. Lithologic descriptions will conform to USCS criteria. Munsell soil and rock color charts will be used to facilitate uniform naming of soil/rock colors. Additionally, the on-site geologist may conduct field sieve analysis of soil samples collected from selected intervals using a core barrel or split-spoon type sampler.

After installation of the conductor casing, drilling will continue with mud rotary methods through the Ogallala and Dockum Formations to the Permian redbeds. The Triassic/Permian contact beneath the site is often difficult to identify based solely on drill cuttings. It is necessary to penetrate the Permian formation at least ten feet in order to identify the correct natural gamma and resistivity curves on a geophysical log. Therefore, drilling will terminate when the field geologist has identified the contact based on lithology, penetration-rate, and inferred data from the nearest existing wells. This will occur at about ten to fifteen feet into the Permian formation.

The well will be constructed using a 5-inch, Schedule 10, Type 316 stainless steel riser and screen with a sump up to 5 feet in length. Well materials will either be pre-cleaned and packaged for environmental use by the manufacturer, or steam-cleaned at the decontamination pad prior to installation. Sand will be used to fill the bottom 10 to 15 feet of the over-drilled hole beneath the well. The bottom of the well screen will be set as close as possible to the Triassic/Permian contact. The top of the well screen will be set about five feet above the saturated interval of the Ogallala aquifer. A sand filter pack will be placed around the screened interval in the annulus between the well and borehole. The filter pack will extend from total depth of the well to at least three feet above the well screen. A five-foot thick bentonite seal will be placed in the annulus on top of the sand pack. The remaining annular space will be filled with Volclay or equivalent grout to the surface.

The surface completion of the Ogallala aquifer monitoring well will be constructed similarly to existing wells. Unauthorized access to the well will be restricted with a temporary cover until the permanent wellhead is constructed. The wellhead will consist of a 10-inch steel protective casing with a locking cover installed over the well and centered in a concrete pad. The concrete pad will have 25 square feet of surface area measuring 5 feet by 5 feet. The pad will be 8 inches thick with 6 inches below ground. Four 3-inch steel bollards will be placed exactly vertical within the concrete pad and equidistant from the edges of the pad and each other. The concrete pad and bollards will be oriented parallel to adjacent roads and/or fences. The wellhead will be painted to match existing wellheads. A brass plate stamped with the well number will be set in the surface of the pad to serve as the survey marker.

F.2. MULTIPLE WELL SCREEN INTERVAL DETERMINATION

The primary method for determination of the depth intervals for the different screen lengths and intervening blank casing sections is the interpretation of the geophysical logs. While there usually is sufficient and detailed information available from the field notes (provided in final form as lithologic logs), there can be a lag time for specific sediment intervals to be transported to the surface via the drilling mud/water solution. This lag time results in depth intervals for the various geologic strata (gravels, sands, clays) in the geologic field note descriptions being off slightly from those shown on the geophysical logs. Sometimes the discrepancy can be 20 feet or more. Therefore, the geophysical logs are used as the primary guidance for well construction.

Examination of well logs from two previously installed wells show clayey intervals that were "blankedoff" from the screened sections. Some of the clay intervals were not noted on the lithologic logs, but in general all significant sand and/or gravel zones were noted. These sediments are usually easier to identify when drilling with mud-rotary methods. The geophysical logs also help identify prominent sandy/gravelly zones.

Field methods utilized for well completion will be as described above for lithologic descriptions followed by conducting the geophysical logging as soon as the drill stem is removed from the borehole. Following the logging, a printout is made in the field and the geologist compares it to the notes made during drilling to determine the approximate lag time between observed depths of sediments and their actual depths. Once the entire saturated interval has been evaluated, a determination will be made if there are significant clayey layers that should be eliminated, or "blanked-off" from the screened section. Equally important is well construction that ensures screened intervals "capture" significant sand/gravel layers that may be preferentially transmissive zones. This information will be provided to the Pantex technical representative and upon agreement, conveyed to the drilling subcontractor and well construction started. The time interval between geophysical logging completion and well construction start-up should be as soon as possible (1 hour preferred) to prevent borehole collapse.

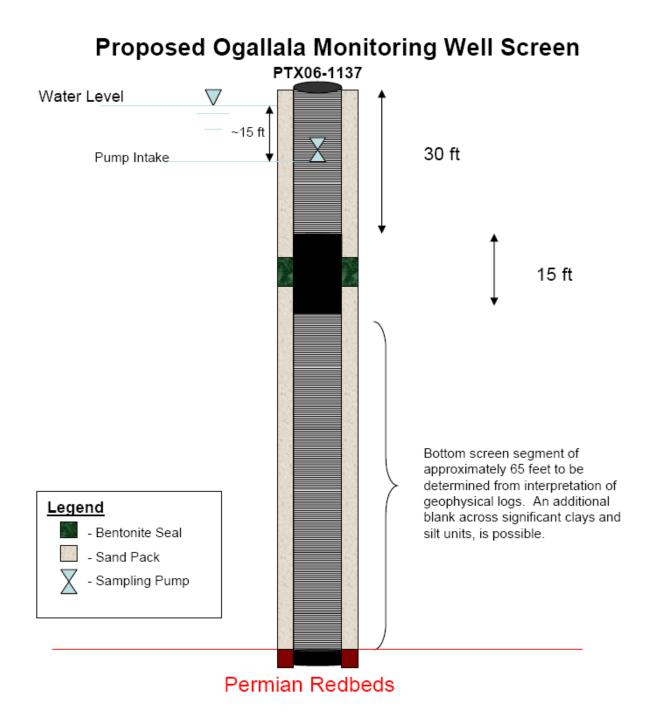
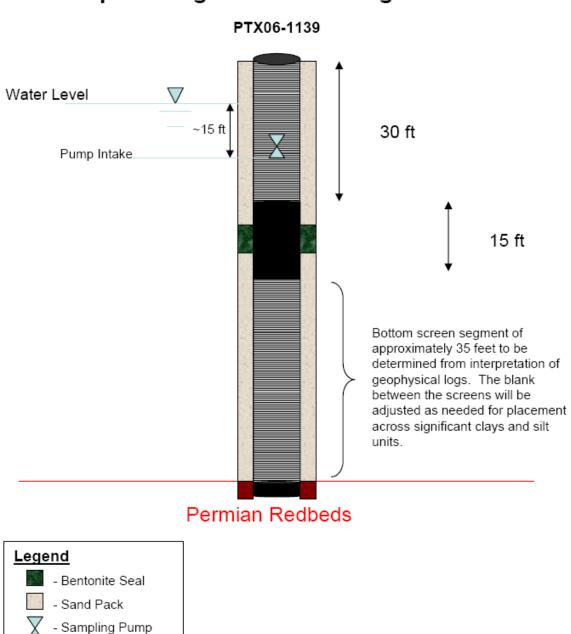
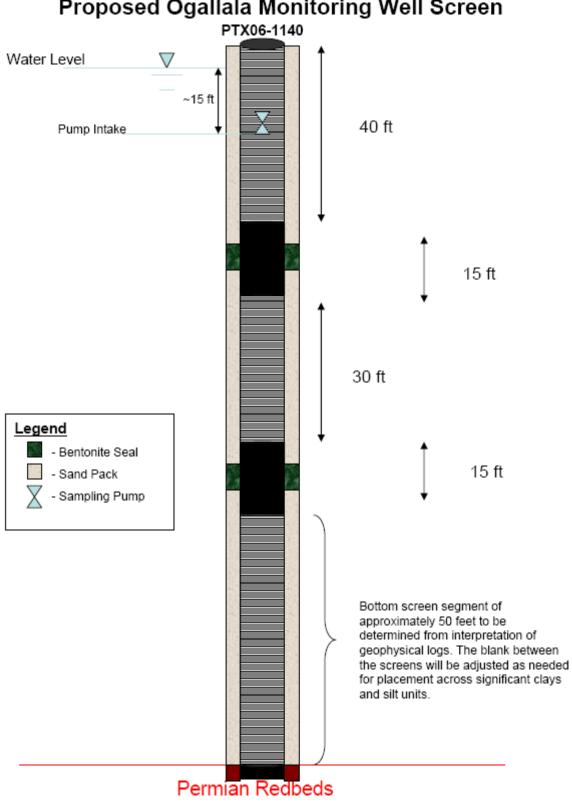
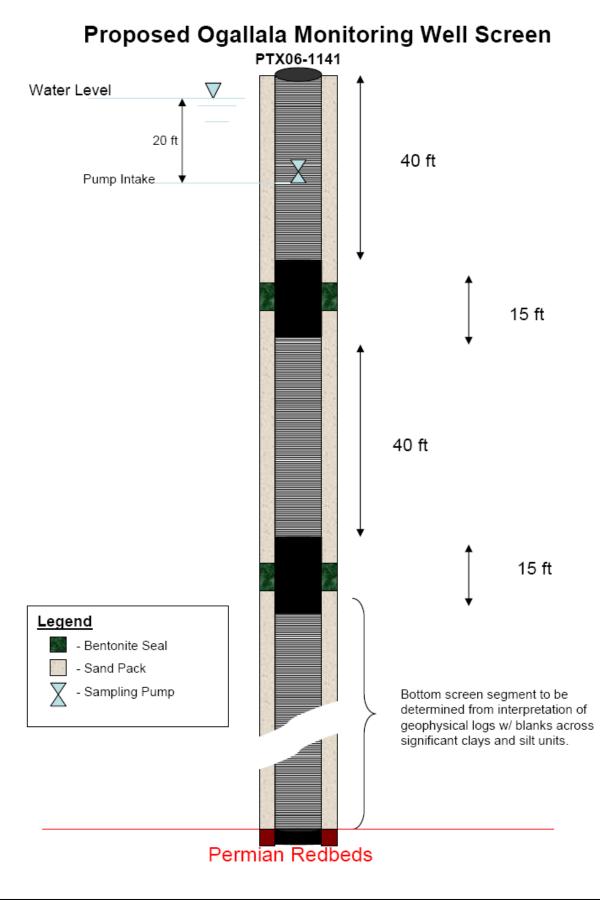

Well ID	Projected Saturated Thickness (ft)	Observed Rate of Decline (ft/yr)	Estimated 30-yr Decline ¹ (ft)	First Screen Segment ² (ft)	Second Screen Segment (ft)	No. of 15-ft Blank Segments	Bottom Screen Segment (ft)
PTX06-1137	105	0.9	27	30	N/A	1	63
PTX06-1138	107	1.1	33	40	N/A	1	59
PTX06-1139	70	0.7	21	30	N/A	1	34
PTX06-1140	145	1.2	36	40	30	2	49
PTX06-1141	282	1.2	36	40	40	2	176
PTX06-1143	272	2	60	40	40	2	172
PTX06-1144	315	2	60	40	40	2	215

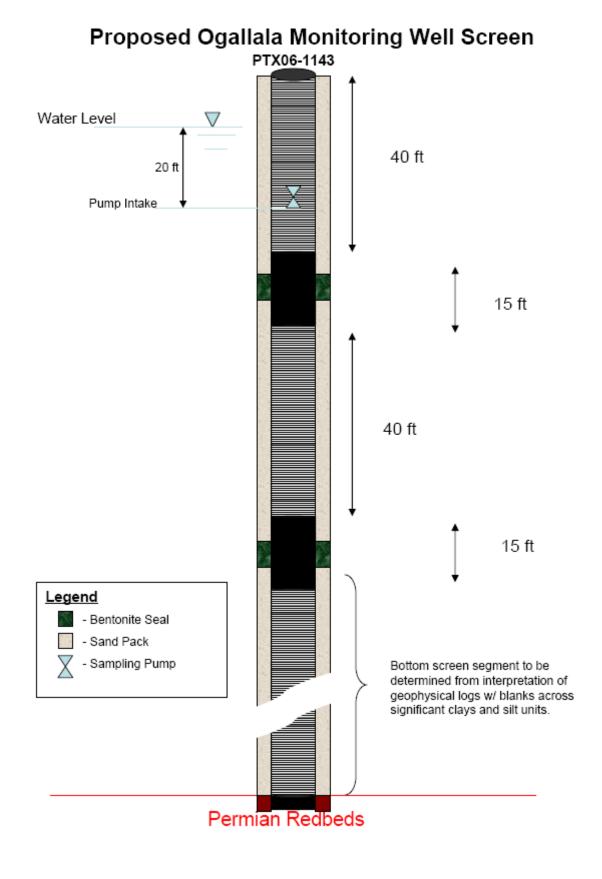
Table F-1. Proposed Screen	Segments for New	Ogallala Wells
Tuble I III I oposed bereen	beginemes for them	Ogununa mens

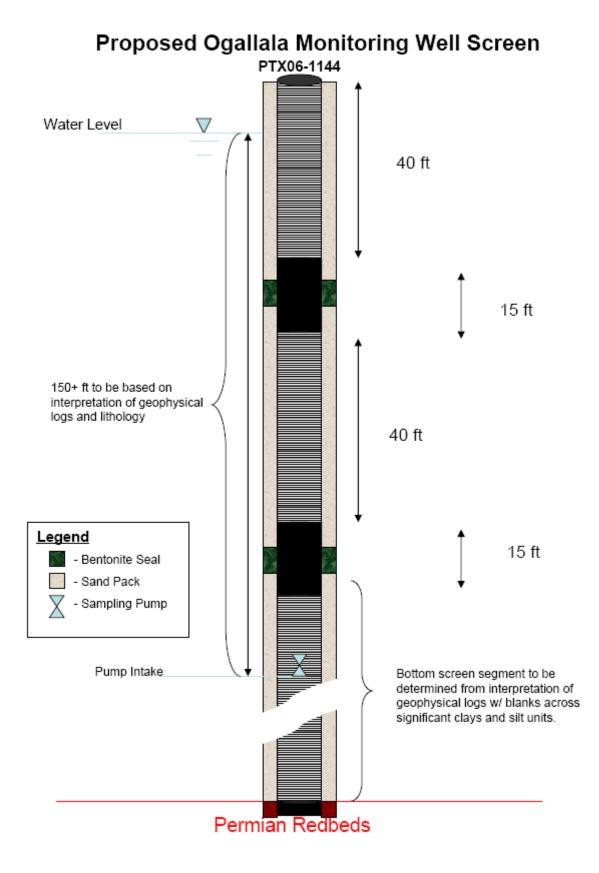

¹ Based on review of trends for the annual rate of water level decline in nearby Ogallala Aquifer monitoring wells.

² Accounts for screen above the top of water (between 3 and 10 feet); length of this segment limited to no more than 40 feet.


F.3. PROPOSED WELL CONSTRUCTION DIAGRAMS






Proposed Ogallala Monitoring Well Screen

Proposed Ogallala Monitoring Well Screen

F.4. WELL CONSTRUCTION DIAGRAMS

BEG-PTX-02

Contractor:

Contract #:

OPTIX #:

Included Documents

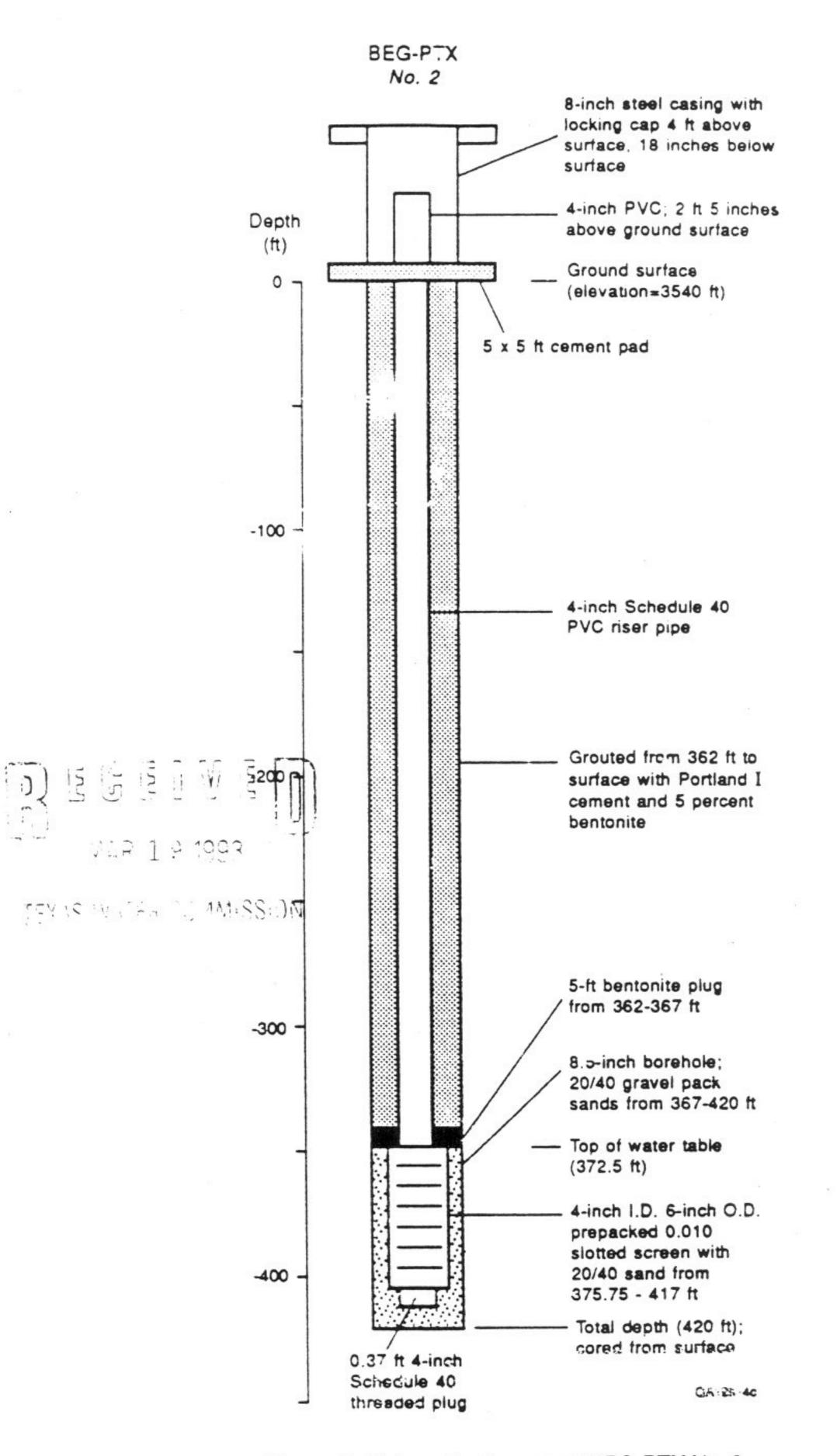
___Drilling Log ___Draft ___Final

_X_Installation Log

___Lithologic Logs ___Draft ___Final

____Geophysical Logs

____Neutron


___Gamma

____e-log

___Bond Log

____Deviation log

_X_State Well Report

.

Figure 8. Schematic diagram of BEG-PTX No. 2.

Send original copy by certified mail to: Texa	as Water Commission, P.O. 8	lox 13067, Aus	in, Texas 787	711			Please use	
ATTENTION OWNER: Confidentiality Privilege Notice on Reverse Side	BEG PTX-=		of Texas REPORT		•	P.	er Well Drill O. Box 1308 In, Texas 78	7
			the second second second		· H.		70	9120
1) OWNER U.S. Departm	ent of Energy	ADDRE	ss P.O.	Box 300	30 4 FI	M 2373	Amaril	lo TX
2) LOCATION OF WELL:	Name) Pantex Plant	Reserva	tion	(Street or RFD	(Cit)	1)	(State) (Zip)
County Carson	in Zone 10	miles in	east	dir	ection fromBatch	n Plant		
			(NE, SV	V, etc.)		(Tow	n)	3
Driller must complete the legal description				tion or survey I	ines, or he must locate an	identify the	well on an o	fficial
Quarter- or Half-Scale Texas County Ge	neral Highway Map and attach	the map to this i	orm.					
Section No Block No	o Township		Abstract N	ю	Survey Name			
Distance and direction from two inte								
SEE ATTACHED MAP								
3) TYPE OF WORK (Check):	4) PROPOSED USE (Ch	eck):			5) DRILLING METHO	DD (Check):		Driven
New Weil Deepening	Domestic Indus	strial 🖾 Mon	itor DP	ublic Supply	Mud Rotary	Air Hamme	r 🗌 Jetted	Bored
Reconditioning Plugging	Irrigation Test	Well 🗌 Inje	ction 🗆 🗆	e-Watering	Air Rotary	Cable Tool	Other	Auger
6) WELL LOG:	DIAMETER OF HO	LE	7) B(REHOLE CO	IPLETION:			
Date Drilling:	Dia. (in.) From (ft.)	To (ft.)		Open Hole	Straight Wall	Un	derreamed	
Started 02-12 1992	8.5 Surface	420.00		Gravel Packe		867	120	
Completed 02-15 1992			4	sravel Packed	give interval from	<u>,,,,</u> ft	. 10 _ 420	/ ft.
From (ft.) To (ft.) D	escription and color of formatio	n material		ASING, BLANK	PIPE, AND WELL SCRI	EEN DATA:		
			New			Settin	g (ft.)	Gage
See attached bor	ing log for No.	2	Dia. or (in.) Used	Perf., Skot	ted, etc. fg., if commercial	From	То	Casting Screen
		14 18 1		PVC Ca		+2.5	367	Sch 40
			4 2 N	PVC S	and the second sec	367	417	0.010
	161			1				
		MIC IN	1993					
			1001					
		WITCH DE	MMSSS	EMENTING DA	TA [Rule 287.44(1)] 0 ft. to 362	the of Se	cke Llead	145
			Ĭ		ft. to			
(Use reverse	side if necessary)		м	ethod used	Tremie Pipe			
13) TYPE PUMP: N/A			c	emented by _	David Fendle	ey		
	Submersible Cylinde	r	10) S	URFACE COM	PLETION			
				_	face Slab Installed [Ruk	287.44(2)(A	01	
Depth to pump bowls, cylinder, jet,	etc., /t.			Specified Ste	el Sleeve Installed [Rule	287.44(3)(A)]	
14) WELL TESTS: N/A	12.21			Pitiess Adapt	er Used [Rule 287.44(3))(B)]		
The second secon		Estimated		Approved Alt	ernative Procedure Used	[Rule 287.7	'1]	
Yield: gpm with	ft. drawdown after	hrs.	11) W	ATER LEVEL:	N/A			
15) WATER QUALITY:			s	tatic level	ft. below land s	urface	Date	
Did you knowingly penetrate any s constituents?	trata which contained undesiral	ble	· ·	rtesian flow _	gpr	n.	Date	
_ #	INT TREPORT OF UNDESIRABL	E WATER	12) P	ACKERS:	Тур	e e	Dept	h
Type of water?	Depth of strata			Bentoni	te Pellets 30	52' to	367'	
Was a chemical analysis made?	□Yes □No							
hereby certify that this well was drilled by that failure to complete items 1 thru 15 will it					are true to the best of my	knowledge a	and belief. I u	inderstand
Eugro Co	eosciences, Inc.			ILLER'S LICE	NSE NO	0279	1-M	
	pe or print)		. WELL OF	ILLEN O LIVE				
ADDNESS /	Rookin		Houston		Tex		7707	4
(Street	or BED)	-	(City)		(Sta	ate)	(Zip)	
(Signed)	ed Well Driller) David E	Indian	(Signed)		(Registered Dri	ller Traince)		
(License	David I	Fondley	6		(nogistered Di	and mained)		
Please attach electric log, chemical analys	is, and other pertinent intermati	on, if available.		For TWC use	only: Well No	Loca	ated on map	
WWD-012 (Rev. 05-18-90)		VAS WATED						

TEXAS WATER COMMISSION COPY

Contractor: S.M. Stoller

Contract #: 3350-105

OPTIX #:

Included Documents

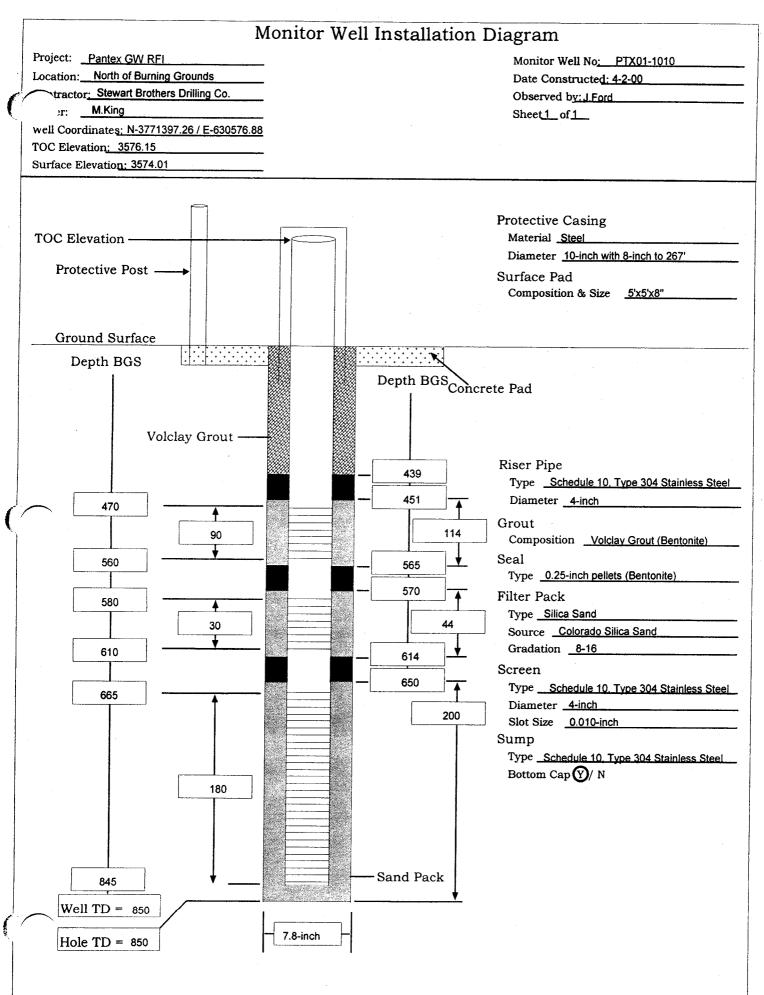
___Drilling Log ___Draft ___Final

_X_Installation Log

_X_Lithologic Logs ___Draft _X_Final

___Geophysical Logs

____Neutron


___Gamma

____e-log

___Bond Log

____Deviation log

____State Well Report

footer: ph E:\projects\Pantexcovs\pantex.apr Layout2 (6.6.2000)

Pantex GW RFI		Pantex Plant (B	urning Grounds)	l	Amarillo, Tex
Project Number:	3589-10)2	Client:	Mason & Hanger C	orporation
Geologist:		R. Rupp/B. King	Northing: 3771397.26	Easting: 630576.8	8
Drilling Contractor:		Brothers Drilling	Total Depth of Borehole:	850' BGS	
Dates Drilled:	03/13/0	0 - 04/04/00	Depth to Water:	479.4' BTOC 05/25	5/00
Borehole Type:	12 3/4"	ARCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well, 4	' Stainless Ste
Ground Elevation:	3574.01		TOC Elevation:	3576.15'	
Completion [1] Debth (LT)		 Since the second second	Description soft, dry to moist, Topsoil h yellow to yellowish red (57) e MnO2, caliche nodules <1/		Sample Number
		YL			
			y, reddish yellow (7.5YR 6/6 rd, damp, trace caliche lense:		
		caliche stringers	brown (7.5YR 6/6), increase		
			ay, yellowish red (5YR 5/6), y, w/ caliche nodes & thin le		

Pantex GW RFI		Pantex Plant (B	urning Grounds)		Amarillo, Tex
Project Number:	3589-102		Client:	Mason & Hanger	Corporation
Geologist:	J. Ford/R.	. Rupp/B. King	Northing: 3771397.26	Easting: 630576.	88
Drilling Contractor:	Stewart B	rothers Drilling	Total Depth of Borehole:	850' BGS	
Dates Drilled:	03/13/00	- 04/04/00	Depth to Water:	479.4' BTOC 05/2	25/00
Borehole Type:	12 3/4" A	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well,	4" Stainless Ste
Ground Elevation:	3574.01'	-	TOC Elevation:	3576.15'	
Completion (Et.)	Lithology USCS		Description	Sample	Sample Number
	99.5 9	nodules and broken pieces	OCK, pinkish white (5YR 8/2		
	RX	medium dense, dry	(7.5YR 7/4), fine to very fine brown (7.5YR 6/4), loose to		
		97-110' SILT, sandy, pink	c (7.5YR 7/4), dry, siltyer wi	th depth	
		fine grain, subangular, poo	t, brownish yellow (10YR 6/3 orly graded, loose to medium '; coarsening to medium grain	dense,	

Pantex GW RFI		Pantex Plant (B	urning Grounds)		Amarillo, Tex
Project Number:	3589-102		Client:	Mason & Hanger (
Geologist:	J. Ford/R.	Rupp/B. King	Northing: 3771397.26	Easting: 630576.	88
Drilling Contractor:	Stewart B	rothers Drilling	Total Depth of Borehole:	850' BGS	
Dates Drilled:	03/13/00	- 04/04/00	Depth to Water:	479.4' BTOC 05/2	25/00
Borehole Type:	12 3/4" A	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well,	4" Stainless Ste
Ground Elevation:	3574.01'		TOC Elevation:	3576.15'	
Completion Depth (Ft.)	Lithology USCS		Description	Sample	Sample Number
	SP ML SP SP	medium dense, dry, mode 133-160' SAND, trace sil 6/4), fine to very fine grait dry to damp 160-182' SAND, light yel	% silt, light brown (7.5YR 6 rately cemented sandstone pe t with depth, reddish yellow (n, subangular, poorly graded, llowish brown (10YR 6/4), fi coarse grain, subangular, poor hin cemented layers	(7.5YR loose, ne to	
S.M. STOLL		PORATION			Page 3

Project Number:	3589-102	T untex T hunt (D	urning Grounds) Client:	Mason & Hanger	Amarillo, Tex
Geologist:		Rupp/B. King	Northing: 3771397.26	Easting: 630576.	-
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	850' BGS	00
Dates Drilled:		- 04/04/00	Depth to Water:	479.4' BTOC 05/2	25/00
Borehole Type:		RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well,	
Ground Elevation:	3574.01'	Ref 7 776 Wide Rotary	TOC Elevation:	3576.15'	+ Stanness St
Depth (Ft.)	Lithology USCS		Description	Sample	Sample Number
			silty, brownish yellow (10Yf dium dense with well cemen		
			llowish brown (10YR 6/4), 10 10% coarse grain, subangular y		
-210	-		lowish brown (10YR 6/4), 8 graded, medium dense to den		
			-85% sand, strong brown (7. e grain trace medium, suban ense, damp to moist		
		to medium 20% very fine	lowish brown (10YR 6/4), 60 20% coarse with some very o ened), subrounded, well grade	coarse	

Drilling Contractor: Dates Drilled: Borehole Type: Ground Elevation:	Stewart B 03/13/00	Rupp/B. King Frothers Drilling - 04/04/00 RCH 7 7/8" Mud Rotary	Client: Northing: 3771397.26 Total Depth of Borehole: Depth to Water: Well Type: TOC Elevation: Description	Easting: 630. 850' BGS 479.4' BTOC	
Geologist: Drilling Contractor: Dates Drilled: Borehole Type: Ground Elevation: Completion	Stewart B 03/13/00 12 3/4" A 3574.01' CO SO SO SO SW -	rothers Drilling - 04/04/00 RCH 7 7/8" Mud Rotary	Total Depth of Borehole:Depth to Water:Well Type:TOC Elevation:	850' BGS 479.4' BTOC Monitoring W	05/25/00 Tell, 4" Stainless Ste Sample
Dates Drilled: Borehole Type: Ground Elevation:	03/13/00 12 3/4" A 3574.01' CO CO SCD SW -	- 04/04/00 RCH 7 7/8" Mud Rotary	Depth to Water: Well Type: TOC Elevation:	479.4' BTOC Monitoring W	fell, 4" Stainless Sto Sample
Borehole Type: Ground Elevation:	12 3/4" A 3574.01' Cool Cool Cool Cool	RCH 7 7/8" Mud Rotary	Well Type: TOC Elevation:	Monitoring W	fell, 4" Stainless Sto Sample
Ground Elevation:	3574.01' A Go Og A I C C C C C C C C C C C C C C C C C C C		TOC Elevation:	•	Sample
	Lithology			3576.15'	Sample Number
Completion (Ft)			Description		Sample Number
	••••• •••••• ••••••	yellowish brown (10YR 5 well graded, dry; "silver d 248-250' SAND, silty, cla red (5YR 5/6), well sorted 250-258' SILT, clayey, sa plasticity, medium dense, 258-260' SILT, very sand nonplastic, fine grained sa 267-267.5' CLAY, silty, s medium plastic, stiff, dam 267.5-271.5' SAND, silty grain some med, rnded, da laminations, clay lense 26 271.5-273.5' CLAY, silty 7.5YR 5/4), med plastic, y 273.5-275.5' SAND, clay 6/4), fine grain, rnded-wel specks 275.5-277.5' CLAY, sand 277.5-285' SAND, silty, I dense, dry-dmp 285-287' SAND, silty to S v fine grain, hard-dense, d dense	ayey, 40% silts and clays, yel <u>1 sand, moist</u> andy, reddish yellow (5YR 6/ moist, calcic granules dy, reddish yellow (5YR 6/6), and, medium dense, moist to sandy, light brown (7.5YR 6/ p v, lt yellowish brn (10YR 6/4) ense, moist, v thin hvy miner 19-270'; BEGIN CORE SAM v, yellowish brn-brn (10YR 5	bunded, $\overline{(6)}$, $\overline{10w}$ $\overline{(6)}$, $\overline{(6)}$, (6)	PTX01-1010-2-0 VOC, HE PTX01-1010-2-0 Permeability Ana PTX01-1010-2-0 VOC, HE PTX01-1010-2-2 Permeability Ana PTX01-1010-2-2 Permeability Ana PTX01-1010-2-2 Permeability/Grad

Pantex GW RFI		Pantex Plant (B	urning Grounds)		Amarillo, Texa
Project Number:	3589-102		Client:	Mason & Han	ger Corporation
Geologist:	J. Ford/R.	. Rupp/B. King	Northing: 3771397.26	Easting: 630	576.88
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	850' BGS	
Dates Drilled:	03/13/00	- 04/04/00	Depth to Water:	479.4' BTOC	05/25/00
Borehole Type:	12 3/4" A	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring W	ell, 4" Stainless Stee
Ground Elevation:	3574.01'	1	TOC Elevation:	3576.15'	
Depth (Ft.)	Lithology USCS		Description		Sample Number
	00 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00000 00000 00000 00000 00000 00000 00000 00000 000000 00000 000000000	305-320' SAND, silty, lig brown (5YR 6/4), very fin	nodules (white) up to 1/4" - ht brown (7.5YR 6/4) to ligh e to fine grain size, subround	t reddish led to	
-310-		well rounded, dense to ver (5YR 8/2) cemented nodu	y dense, with some pinkish v les (sand grains) up to 1/2" d	vhite iameter	PTX01-1010-2-03 Permeability/Gradat
		315' increase in cemented			PTX01-1010-2-03 Permeability/Grada
	0, , 0, 0 0, 0		ht reddish brown (5YR 6/4), ell rounded, primarily quartz damp		
-330-	SP	fine to medium grain size,	SAND, light reddish brown (subrounded to well rounded y; with pinkish white (5YR 8/ les throughout	very	
-340-	o SM- ML	(5YR 6/4), very fine grain CORING	SILT, sandy, light reddish bro ed, rounded, dense, damp; El	ND OF	PTX01-1010-2-33
-350-	0::0:0 0::0:0 0::0:0 0::0:0 0::0:0 0::0:0 0::0:0 0::0:0 0::0:0 0::0:0 0::0:0 0::0:0 0::0:0 0 0::0:0 0 0::0:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	340-375' SAND, silty, rec	ldish brown (5YR 6/4), very	fine to	Permeability/Grada

Project Number: 3589-102 Client: Mason & Hanger Corporation Geologist: J. Ford/R. Rupp/B. King Northing: 3771397.26 Easting: 603076.88 Dates Drilling: 03/13/00 - 04/04/00 Depth to Water: 479.4' BTOC 05/25/00 Borchold: Type: 12.3/4" ARCH 7.78" Mud Rotary Well Type: Monitoring Well, 4" Stainless. Ground Elevation: 3574-01' TOC Elevation: 3376-15" Completion If the ground Elevation: 3574-01' TOC Elevation: 3376-15" Completion If the ground Elevation: 3575-401' Samp Numb -				
Geologist: J. Ford/R. Rupp/B. King Northing: 3771397.26 Easing: 630576.88 Drilling Contractor: Stewart Brothers Drilling Total Depth of Borehole: 850 BCS Dates Drilled: 031300 - 040400 Depth to Water: 479.4' BTOC 0525/00 Borehole Type: 12 3/4" ARCH 778" Mud Rotary Well Type: Monitoring Well, 4" Stainless Ground Elevation: 3574.01" TOC Elevation: 3576.15" Completion Easing: SM SM Geologist: Image: Signal State Sta	Pantex GW RFI	Pantex Plant (B	urning Grounds)	Amarillo, Te
Drilling Contractor: Stewart Brothers Drilling Total Depth of Borehole: 850° BGS Dates Drilled: 03/13/00 - 04/04/00 Depth to Water: 479.4 BTOC 05/25/00 Borehole Type: 12.3/4" ARCH 77/8" Mud Rotary Well Type: Monitoring Well, 4" Stainless Ground Elevation: 357.15" TOC Elevation: 3576.15" Completion End by the stainless Soft Samp	2			
Dates Drilled: 03/13/00 - 04/04/00 Depth to Water: 479.4' BTOC 05/25/00 Borchold Type: 12 3/4' ARCH 7 7/8" Mud Rotary Well Type: Monitoring Well, 4" Stainless Ground Elevation: 3574.01' TOC Elevation: 3576.15' Completion If the ground Elevation: 3576.15' Description If the ground Elevation: 0 If the ground Elevation: 3576.15' Description If the ground Elevation: If t				-
Borehole Type: 12 3/4" ARCH 7 7/8" Mud Rotary Well Type: Monitoring Well, 4" Stainless Ground Elevation: 3574.01" TOC Elevation: 3576.15" Completion 11/11 10/0 Description 10/0 400 11/11 10/0 SAND, silty, brown (7.5YR 5/4), fine grained, 10/0	-			
Ground Elevation: 3574-01' TOC Elevation: 3576.15' Completion Edg Sg Samp Mumber SS Samp Number Solution: SS Samp Number Samp Solution: SS Samp Number Samp Solution: SS Samp Samp Number Solution: SS Samp Samp Number Solution: Samp Samp Samp Number Solution: Samp Samp Samp Number Solution: Samp Samp Samp Samp Solution: Samp Samp S			-	
Completion $\begin{array}{c c c c c c c c c c c c c c c c c c c $				Monitoring Well, 4" Stainless Ste
- -	Ground Elevation:	3574.01'	TOC Elevation:	3576.15'
SM 	Depth (Ft.)		Description	Sample De Number
		1 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	own (7.5YR 5/4), fine graine	d,

			1-1010		
Pantex GW RFI		Pantex Plant (B	urning Grounds)		Amarillo, Tex
Project Number:	3589-102		Client:	Mason & Hanger	<u>.</u>
Geologist:		Rupp/B. King	Northing: 3771397.26	Easting: 630576	.88
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	850' BGS	
Dates Drilled:		- 04/04/00	Depth to Water:	479.4' BTOC 05	/25/00
Borehole Type:		RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well	4" Stainless Ste
Ground Elevation:	3574.01'	1	TOC Elevation:	3576.15'	
Depth (Ft.) Depth (Ft.)	Lithology USCS		Description	Comula	Sample Number
	9:: 0:: 0:: 0: 0:: 0:: 0: 0: 0:: 0: 0: 0: <td>5/3)</td> <td>th sand, brown (7.5YR 5/4) t own (7.5YR 6/4), fine to med</td> <td>o (10YR</td> <td></td>	5/3)	th sand, brown (7.5YR 5/4) t own (7.5YR 6/4), fine to med	o (10YR	
ON OTOTI	ED COD	PORATION			Page 8

Pantex GW RFI		Pantex Plant (B	urning Grounds)			marillo, Texas
Project Number:	3589-102		Client:	Mason & H	anger Co	orporation
Geologist:		Rupp/B. King	Northing: 3771397.26	Easting: 6	30576.88	}
Drilling Contractor:		others Drilling	Total Depth of Borehole:	850' BGS		
Dates Drilled:	03/13/00		Depth to Water:	479.4' BTO		
Borehole Type:		RCH 7 7/8" Mud Rotary	Well Type:		Well, 4"	Stainless Stee
Ground Elevation:	3574.01'		TOC Elevation:	3576.15'		
Completion Debth (Ft.)	Lithology USCS]	Description		Sample	Sample Number
	SP SP					
S.M. STOLLEI	R COR	PORATION				Page 9

Pantex GW RFI		Pantex Plant (B	urning Grounds)		Amarillo, Tex		
Project Number:	3589-10		Client:	Mason & Hanger			
Geologist:	J. Ford/F	R. Rupp/B. King	Northing: 3771397.26	Easting: 630576.	-		
Drilling Contractor:		Brothers Drilling	Total Depth of Borehole:	850' BGS			
Dates Drilled:	03/13/00) - 04/04/00	Depth to Water:	479.4' BTOC 05/25/00			
Borehole Type:	12 3/4" 4	ARCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well,	4" Stainless Ste		
Ground Elevation:	3574.01		TOC Elevation:	3576.15'			
Depth (Ft.)	Lithology		Description	Sample	Sample Number		
	CI		llowish brown (10YR 5/6), s	tiff			
	G	some pea-gravel, clayey	sh brown (10YR 5/6), very co	barse with			
	CI		llowish brown (10YR 5/6)				
- 590-	CI		llowish brown (10YR 5/6)				
S.M. STOLL	ER COI	RPORATION			Page 10		

	2500 1		urning Grounds)	Mana 0 II	Amarillo, Tex			
Project Number:	3589-1		Client:		nger Corporation			
Geologist:		/R. Rupp/B. King	Northing: 3771397.26	Easting: 630	0.88			
Drilling Contractor:		t Brothers Drilling	Total Depth of Borehole:	850' BGS 479.4' BTOC 05/25/00				
Dates Drilled:		00 - 04/04/00						
Borehole Type:		ARCH 7 7/8" Mud Rotary	Well Type:		Vell, 4" Stainless Ste			
Ground Elevation:	3574.0	<u>l'</u>	TOC Elevation:	3576.15'				
Depth (Ft.)	Lithology	: NSCS	Description		Sample Sumber Sumber			
		CL 630-650' SAND, some cla SC 650-720' SAND, silty, lig						

Pantex GW RFI		Pantex Plant (B	urning Grounds)			marillo, Texa			
Project Number:	3589-102		Client:	Mason & H	-	-			
Geologist:		Rupp/B. King	Northing: 3771397.26	Easting: 6	530576.88				
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	850' BGS					
Dates Drilled:		- 04/04/00	Depth to Water:			C 05/25/00			
Borehole Type:		RCH 7 7/8" Mud Rotary	Well Type:		g Well, 4"	Stainless Stee			
Ground Elevation:	3574.01'		TOC Elevation:	3576.15'					
Completion Depth (Ft.)	Lithology USCS			Sample	Sample Number				
	9:1:6 9:1:7 9 1:6 1:9 9 9:1:6 9 9 9:1:6								
		PORATION				Page 12			

			1-1010		
Pantex GW RFI			urning Grounds)		Amarillo, Texa
Project Number:	3589-102		Client:	Mason & Hanger	-
Geologist:		Rupp/B. King	Northing: 3771397.26	Easting: 630576.	88
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	850' BGS	
Dates Drilled:	03/13/00	- 04/04/00	Depth to Water:	479.4' BTOC 05/2	25/00
Borehole Type:	12 3/4" A	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well,	4" Stainless Ste
Ground Elevation:	3574.01'	1	TOC Elevation:	3576.15'	1
Completion Debth (Ft.)	Lithology USCS		Description	Sample	Sample Number
	0,000 0,	medium grain 740-760' SAND, reddish	y, reddish brown (2.5YR 4/4 brown (5YR 4/4), fine graine	ed	
S.M. STOLL		PORATION			Page 13

Pantex GW RFI Project Number: Geologist: Drilling Contractor: Dates Drilled: Borehole Type: Ground Elevation: Completion Image: transform transfo	Stewart B 03/13/00 12 3/4" Al 3574.01' SCS CSC CSC SCS CSC CSC SCS SCS SCS SC	Rupp/B. King rothers Drilling - 04/04/00 RCH 7 7/8" Mud Rotary	Client: Northing: 3771397.26 Total Depth of Borehole: Depth to Water: Well Type: TOC Elevation: Description	Mason & Har Easting: 630 850' BGS 479.4' BTOC Monitoring V 3576.15'	nger Corpor 0576.88 05/25/00 Vell, 4" Stai	
Geologist: Drilling Contractor: Dates Drilled: Borehole Type: Ground Elevation: Completion	J. Ford/R. Stewart Bi 03/13/00 12 3/4" Al 3574.01' SC SC SC SC SC SC SC SC SC SC	rothers Drilling - 04/04/00 RCH 7 7/8" Mud Rotary	Northing: 3771397.26 Total Depth of Borehole: Depth to Water: Well Type: TOC Elevation:	Easting: 630 850' BGS 479.4' BTOC Monitoring V	0576.88 05/25/00 Vell, 4" Stai	
Drilling Contractor: Dates Drilled: Borehole Type: Ground Elevation: Completion	Stewart Bi 03/13/00 12 3/4" Al 3574.01' SCO SCO SCO SCO SCO SCO SCO SCO SCO SCO	rothers Drilling - 04/04/00 RCH 7 7/8" Mud Rotary	Total Depth of Borehole: Depth to Water: Well Type: TOC Elevation:	850' BGS 479.4' BTOC Monitoring V	05/25/00 Vell, 4" Stai	nless Stee
Dates Drilled: Borehole Type: Ground Elevation: Completion	03/13/00 12 3/4" Al 3574.01' SCS N SCS SC SC SC SC SC SC SC SC SC SC SC SC	- 04/04/00 RCH 7 7/8" Mud Rotary	Depth to Water: Well Type: TOC Elevation:	479.4' BTOC Monitoring V	Vell, 4" Stai	nless Stee
Borehole Type: Ground Elevation: Completion	12 3/4" A 3574.01' NSCS NSCS	RCH 7 7/8" Mud Rotary	Well Type: TOC Elevation:	Monitoring V	Vell, 4" Stai	nless Stee
Ground Elevation: Completion (1) Update Opdate Completion (2) Completion (2) Comp	3574.01' Althology NSCS		TOC Elevation:			nless Stee
Completion () Debth Debth	Lithology USCS]		3576.15'		
	2012019		Description			
						Sample Number
	00000000000000000000000000000000000000	780-800' SAND, fine grai 800-842' CLAY, brown (7				
S.M. STOLLE	R COR	PORATION			ц Г	age 14

			1-1010					
Pantex GW RFI		Pantex Plant (B	urning Grounds)		Amarillo, Tex			
Project Number:	3589-102		Client:		anger Corporation			
Geologist:		Rupp/B. King	Northing: 3771397.26	Easting: 63	0576.88			
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	850' BGS				
Dates Drilled:		- 04/04/00	Depth to Water:		79.4' BTOC 05/25/00			
Borehole Type:	12 3/4" A	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well, 4" Stainless S				
Ground Elevation: 3574.01		1	TOC Elevation:	3576.15'				
Completion (1) Debth Debth Debth	Difference		Description		Sample Number			
		split barrel sampler prior t Well Completion Details: Borehole Diameter 12 3/4 8 5/8" steel conductor casi BGS Borehole Diameter 7 7/8" 4-inch, Schedule 10, Type Screen Installed 5' Sump (845' - 850'); 180' - 665'); 30' Screen (580' - 0 Screen (470' - 560'); 472' 0 Colorado Silica Sand at sc 614'), (451' - 565'); Benton (439' - 451'); Bentonite Gr (5'X5'X8") with 4 bollards locking cover.	s red from 265' to 340' using a o mud rotary drilling. " from surface to 267' BGS ing cemented from surface to	267' and sing (610'); 90' sk, 8/16 570' - - 570'), e Pad				
S.M. STOLLI	ER COR	PORATION			Page 15			

SOURCES/N	SAMPLE RVAL	ASDE	LOGGING SPEED	MODULE TYPE, S/N	PROBE TYPE, S/N	TIME SINCE CIRC.	Rmat TENP	FLUID TYPE	FLUID LEVEL	WI TNESSED BY	RECORDED BY	TOP LOGGED INTERVAL	BTW LOGGED INTERVAL	DEPTH-LOGGER	DEPTHORIELER	LOG TYPE	NUN NUNBER	DATE AUQUIRED	DRILL MEAS. FROM:	LOG MEAS. FROM: Ground Surface	PERMANENT DATUM: Ground Surface	COM WEL FLD: ST:	L: PTX0 PANT TX	1-10 EX COUNT	0 Y:CA			ELF CT		<u> </u>	
None	0.1	9.9	15 ft/min	UM 1524	RABPF 2171	N/A	N/A	Mud	70'	Ford	Davis	LSurface	L 846'	851'	850	Game	>	3/30/00	Ground Surface	round Surface	: Ground Surface		LOCATION:	STATE: TX	FIELO: P,		COMPANY: SI	TRIC LOG			
None	0.1	0.9'	15 ft/min	UM 1524	EPF1567							267	85Q			Electric		3/30/00		0.0 FT ABOVE PERM. DATUM	ELEVATION: NA	TWP RGE	OTHER SERVICES:	X COUNTY: CARSON	PANTEX	PTX01-1010	SM STOLLER	G	PHONE: (303) 279-0171 FAX: (303) 278-0135	COLOG Division of Layne Christensen Company	
BOK	EH	OL E	E RE	EC0	RD					~ 								I	C	ASII	NG R	ECORD	<u>_</u>	ana							

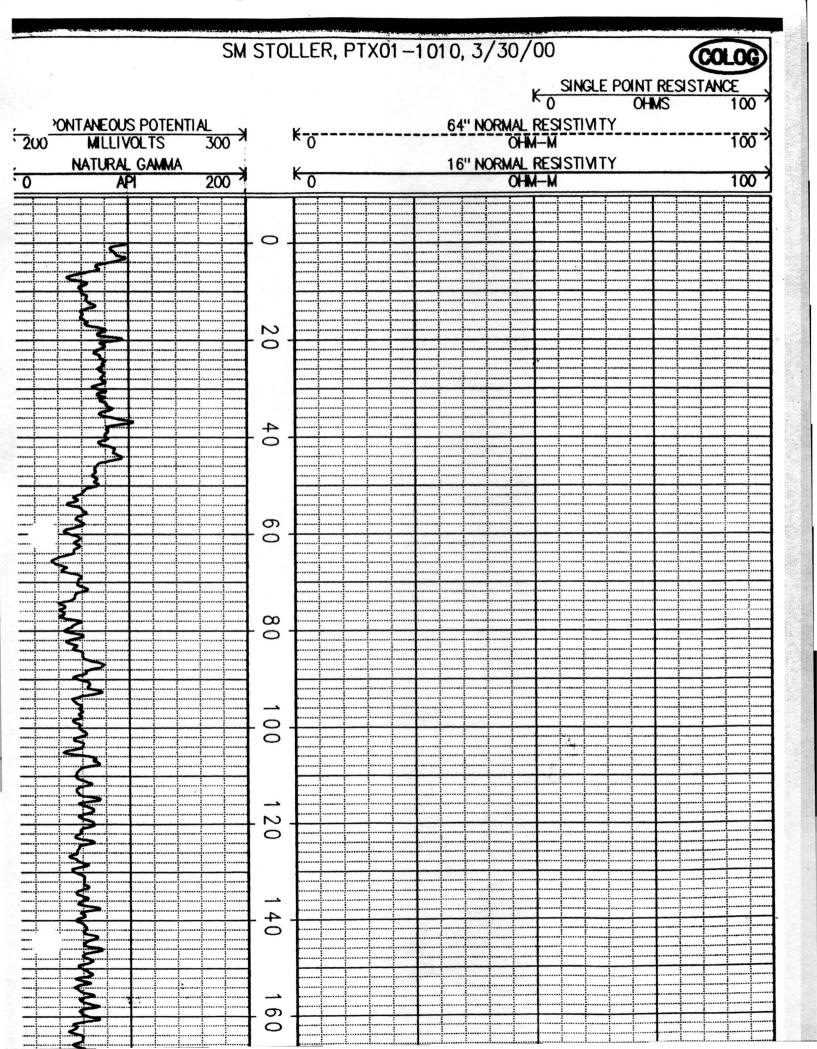
	CORD		I UASING RECON	CASING RECORD						
BIT SIZE	FROM	TO	SIZE/WGT	FROM	Ιτ					
10"	Surface	267'	Sump		850'	-				
<u>8"</u>	267	850'	Screen	470'	845'					
			Riser	Surface	470'					
	·				·····					

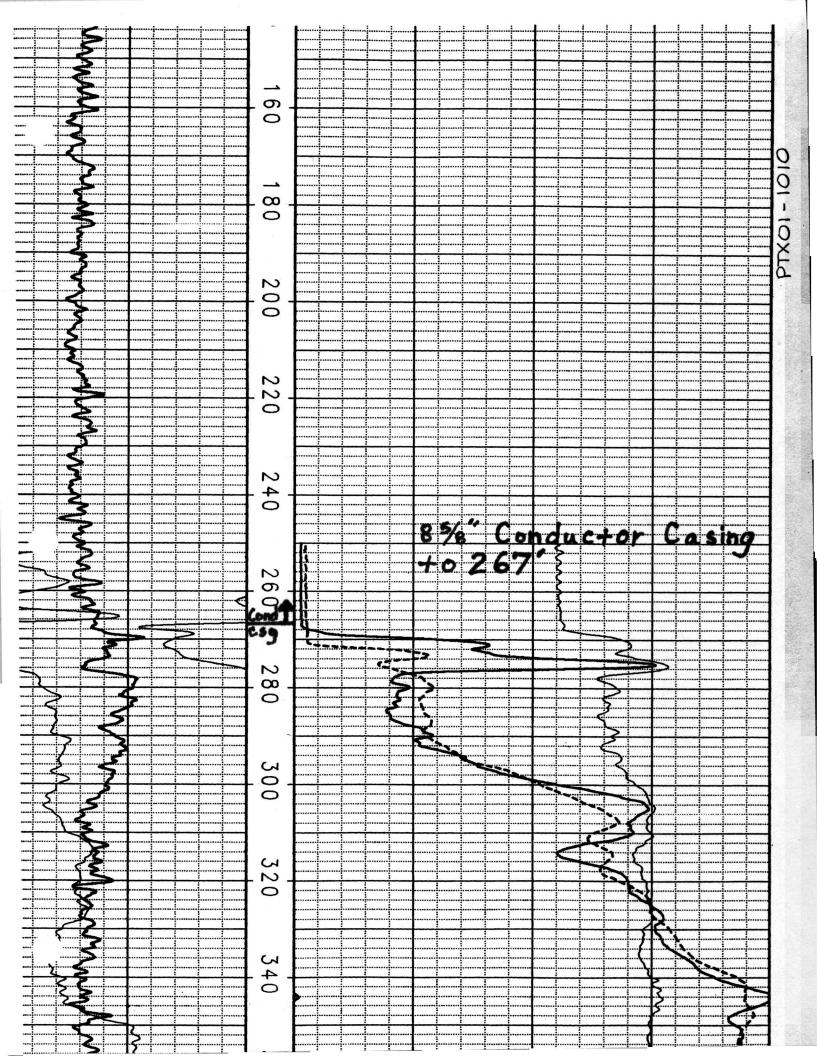
COMMENTS:

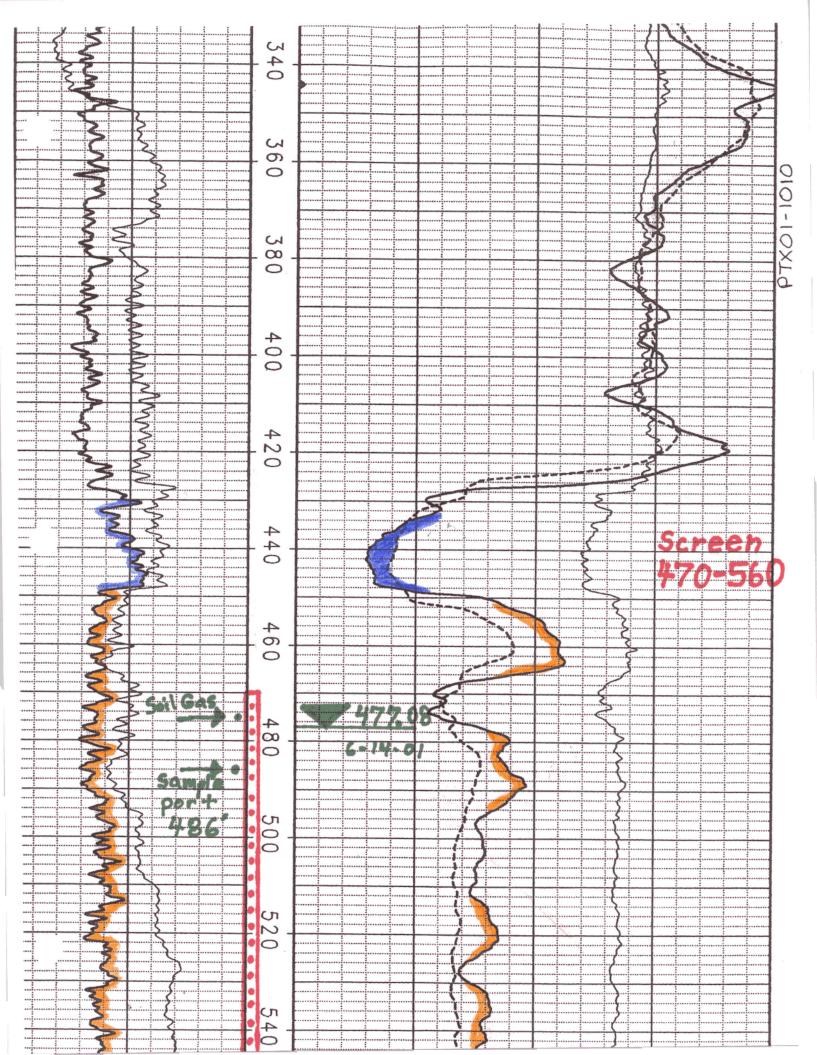
Drill Type: ARCH 0-267' Mud Rotory 267-850'

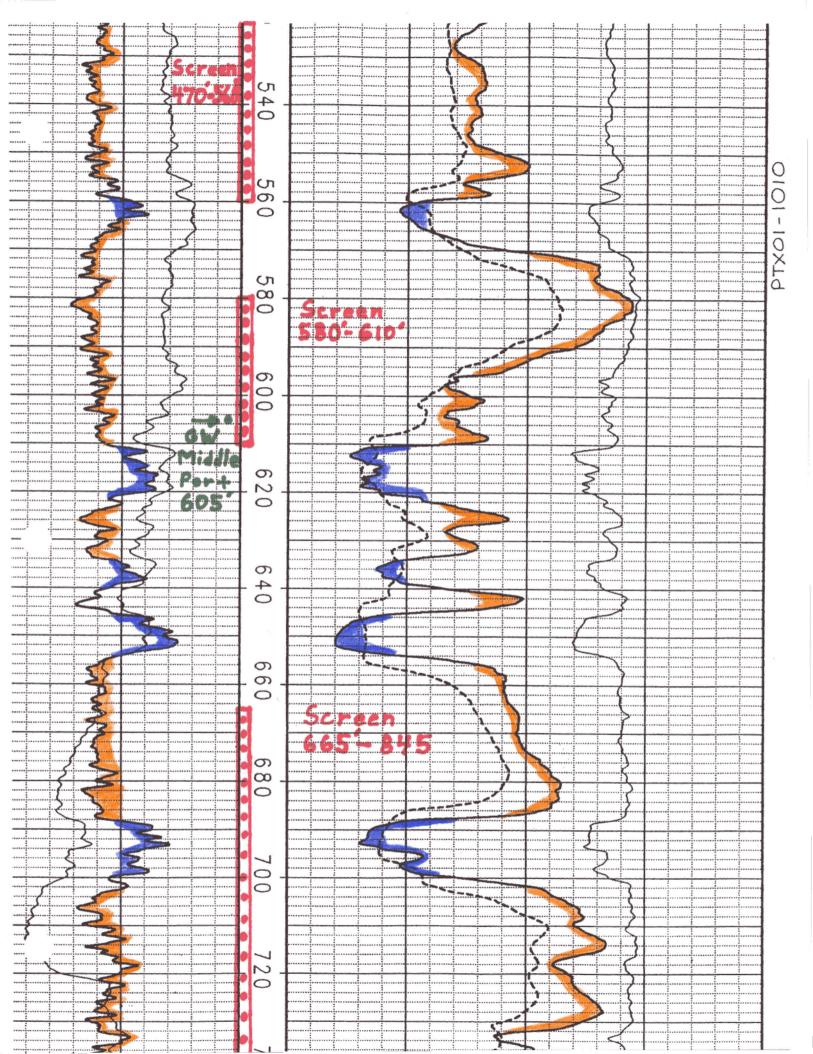
.

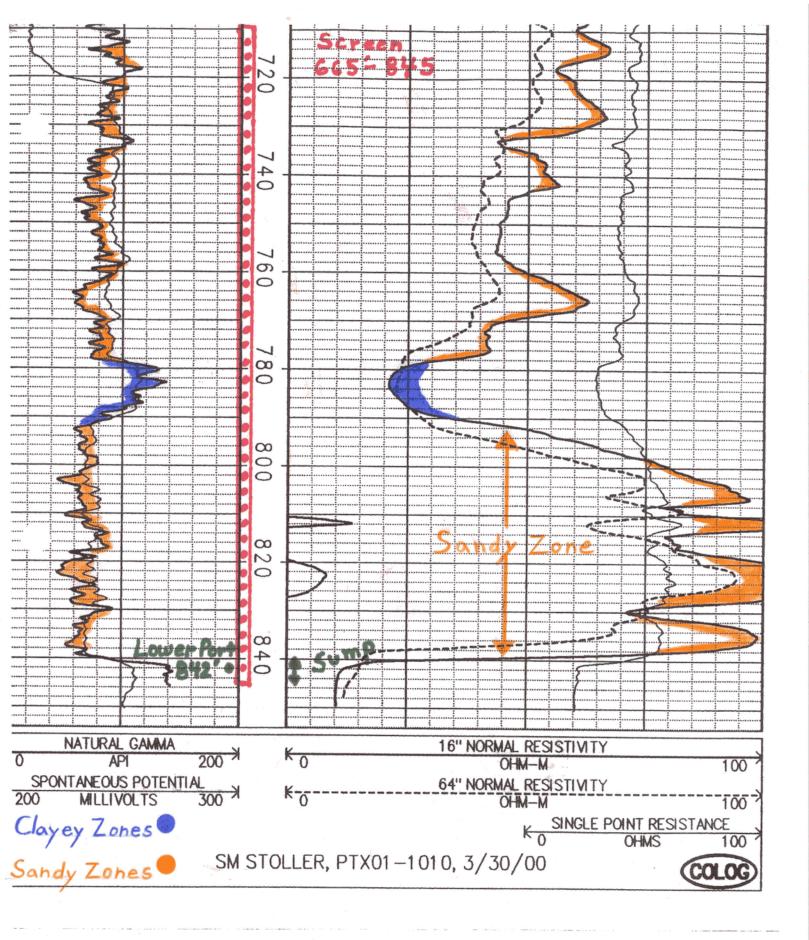
8 5/8" Conductor Casing Set Surface to 267'

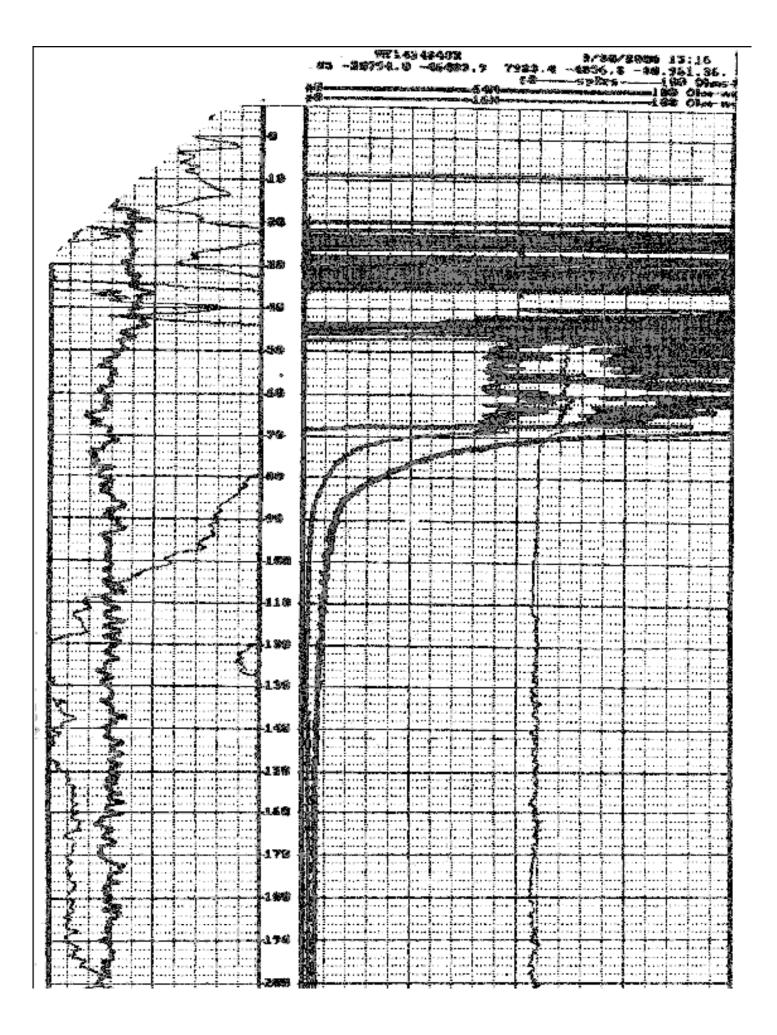

COMMENTS:

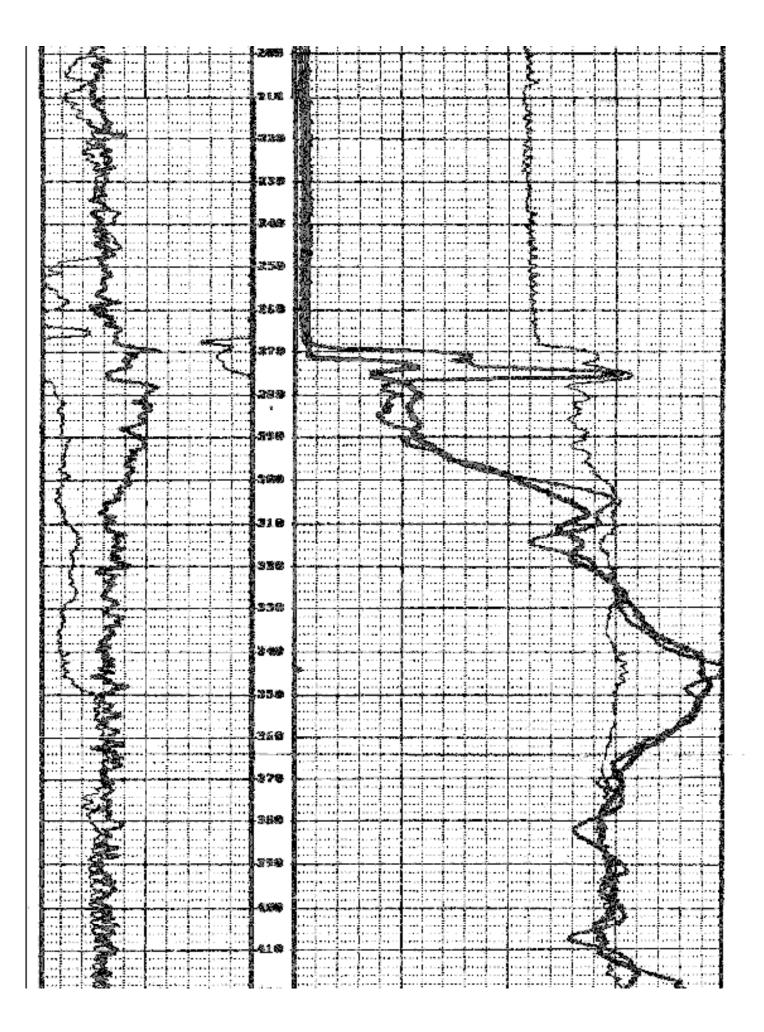

4" Type 304 Stainless Steel Casing & Screen Screen Slot 0.010

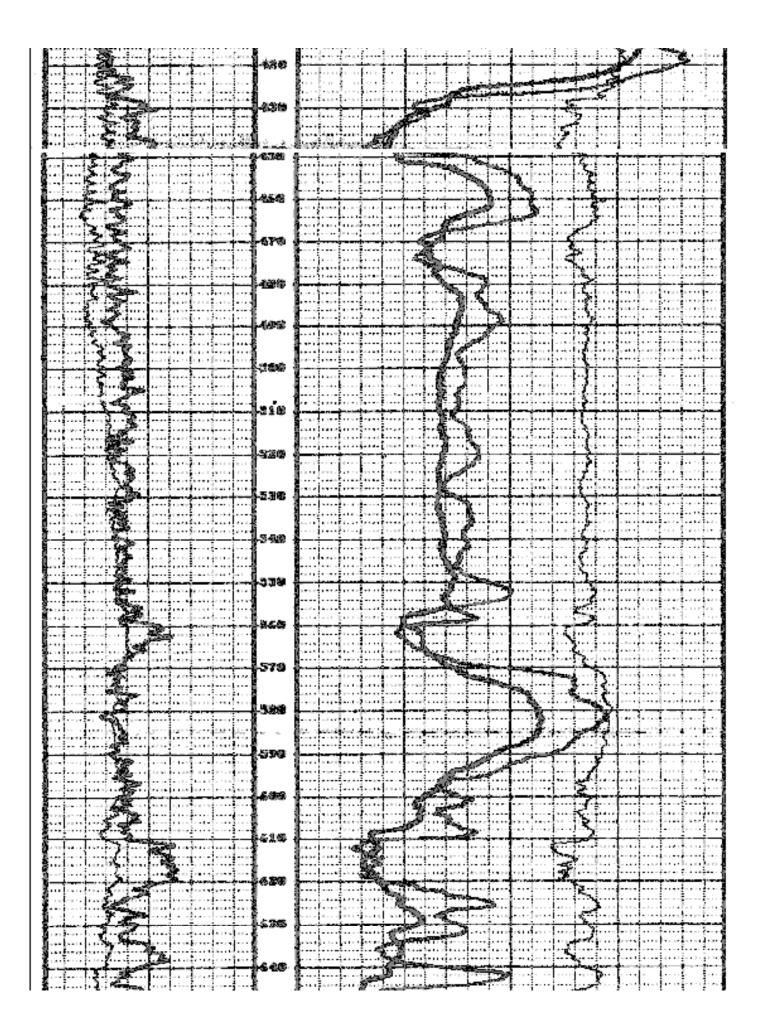

Borehole Logged Open Hole from 267-850'

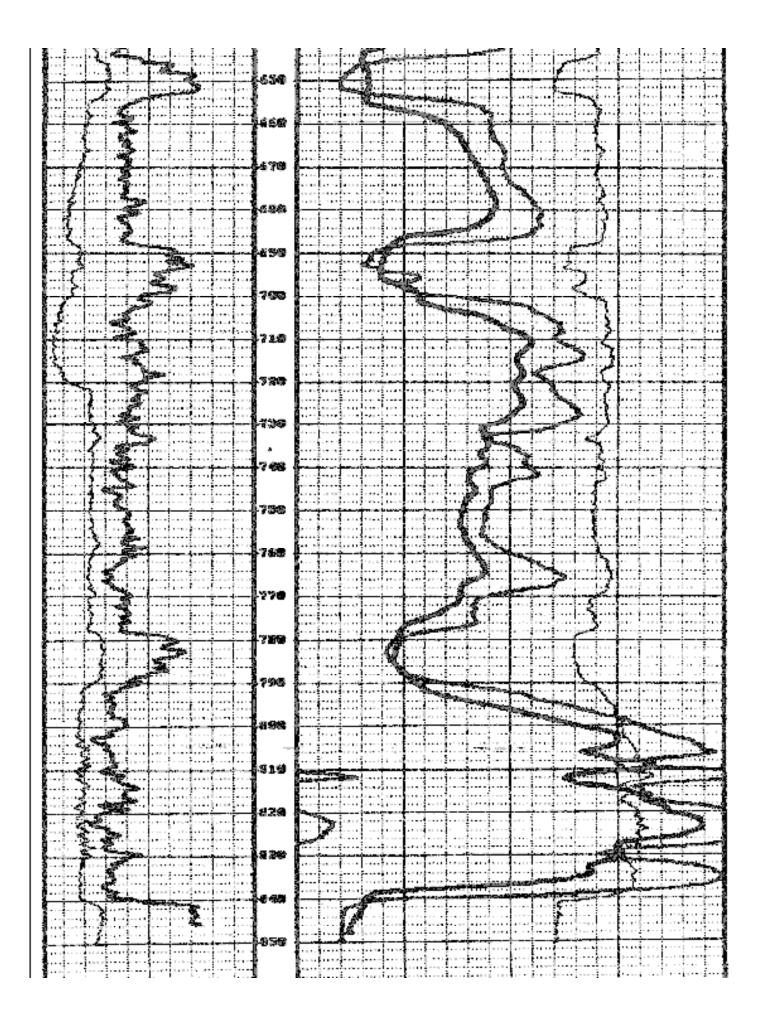

NA - NOT AVAILABLE, N/A - NOT APPLICABLE


DIGITAL FILES: 1010,dat, 1010.HDP, 1010.PLP









\$...

860	
007:1414.840 (00) BC:16 BY:1 953.30 146.5 \$2.1 5.3	13.54 10.3 11.9 317.5 333.3 3.55.7 Al
20	All and a set of the s

Form No. 98-DOM-01

Panhandle Ground Water Conservation District No. 3 Application For Water Well Registration

	WELL RRUNDSEIRON ATE	
R B	ECEIVED Y	
	OMPLETION ATE	

1. Well Owner	U.S. Department of Energy - Pantex Plant
	<u>0.0. Department of Energy</u> Fantex Flam

Address P.O. Box 30020 Amarillo, Texas 79120

Phone (806) 477-3183

2. Well Location: <u>Carson</u> County

NW1/4 NE1/4 SW1/4 SE1/4 Section <u>51</u> Block <u>M-4</u> Survey <u>J.H. Gibson</u> (Circle One that Applies)

4	miles N S and	17	miles E W of the town of	<u>Amarillo, Texas</u>
---	---------------	----	--------------------------	------------------------

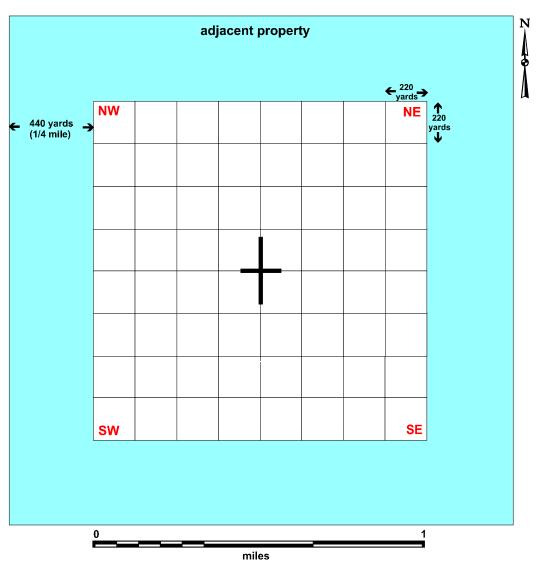
_____ measured yards from N or S, (property) or (section) line, and

_____ measured yards from E or W, (property) or (section) line (Circle all that apply)

Latitude_____ Longitude_____ (if known)

Easting <u>630717.7</u> Northing <u>3769642.9</u>

3. Well Description: **PTX01-1010**


Anticipated Drill Date <u>1-20-00</u> Driller <u>Peterson Drilling</u>

Casing Size <u>4"</u>

Pump Size Sample Pump

4. Well Use: Domestic Stock Watering Other <u>Monitoring Well</u>

5. Locate well by marking dot inside a circle <u>within the grid</u> to show proposed well location. Grid represents one section or one square mile.

I agree that this well will be drilled within

ten (10) yards of the location specified and not elsewhere, and that I will furnish the Board of Directors the completed well log immediately upon completion of this well and prior to the production of water. I hereby certify that I have read the foregoing statements, and that all data therein contained are true and correct to the best of my knowledge and belief.

This notice given by:

(Signature of Owner or Agent)

Title

I, hereby, certify that this application has been verified and is in compliance with the Rules of the District.

District Manager

Date

aka:

Contractor: S.M. Stoller Contract #: 3350-105 Contractor's Project #: Drilled date: 04/26/2000

OPTIX #:

Last Update: 07/28/2004 (add missing pages/better pages from Stoller data)

Standard Included Documents

(Others may also be included)

Drilling/Boring Log

____ Draft

____ Final

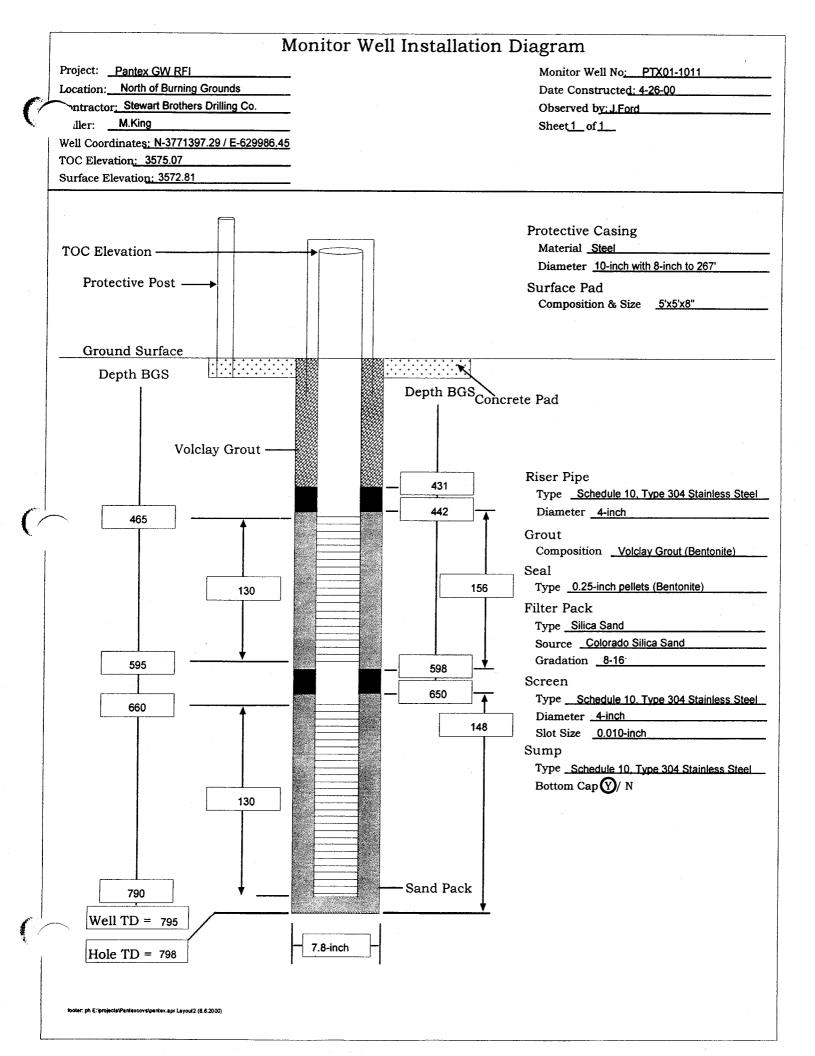
_X__ Installation Log/Diagram

Lithologic Logs

___ Draft Visual Classification of Soils (handwritten)

X Final Visual Classification of Soils (computerized)

Geophysical Logs


- ____ Neutron
- ____ Gamma
- ____ Compensated Density

____ e-Log

- ___ Bond Log
- ____ Deviation Log

___State Well Report

____State Plugging Report

Pantex GW RFI		· · · · · · · · · · · · · · · · · · ·	urning Grounds)		Amarillo, Tex
Project Number:	3589-102		Client:		nger Corporation
Geologist:	J.Ford / T		Northing: 3771397.29	Easting: 62	9986.45
Drilling Contractor:		Brothers Drilling	Total Depth of Borehole:	798' BGS	
Dates Drilled:		- 04/26/00	Depth to Water:	475.45' BTC	
Borehole Type:	12.75" A	RCH 7 7/8" Mud Rotary	Well Type:		Well, 4" Stainless Ste
Ground Elevation:	3572.81'	1	TOC Elevation:	3575.07'	1 1
Depth (Ft.) Depth (Ft.)	Lithology USCS		Description		Sample Sample Number
	ML		(10YR 4/3), soft, moist, Top		
	ML- CL	stiff, with caliche nodules	AY, silty, yellowish red (5YF and lenses	R 5 /6),	
	ML	plasticity, medium stiff, dr specks	ish yellow (7.5YR 7/6), low y, with caliche stringers and	MnO2	
	ML	plasticity, very fine sand, i caliche nodules (1-2 mm)	y, reddish yellow (7.5YR 6/6 nedium stiff, dry, with MnO throughout		
		PORATION			Page 1

Pantex GW RFI			urning Grounds)			narillo, Tex
Project Number:	3589-10		Client:	Mason & H	-	poration
Geologist:	J.Ford /		Northing: 3771397.29	Easting: 6	29986.45	
Drilling Contractor:		Brothers Drilling	Total Depth of Borehole:	798' BGS		/2.0
Dates Drilled:		- 04/26/00	Depth to Water:	475.45' BTO		
Borehole Type:	12.75" A	·	Well Type:		Well, 4"	Stainless Ste
Ground Elevation:	3572.81		TOC Elevation:	3575.07'		
Completion Debth (F.)	Lithology		Description		Sample	Sample Number
X X		60-63' CALICHE layer, p	ink (5YR 8/3), very dense			
			clay, yellowish red (5YR 5/6 unded, moderately dense, dar			
	0 SN 0 SN 0 SN 0 SN 0 SN 0 SN 0 SN					
	R		pinkish white (5YR 8/2), har	d		
		dense, dry, with caliche no	c (5YR 7/4), fine and medium odules and lenses	n grain,		
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	1 with caliche and cemented				
	SI	subrounded to well rounde	e brown (10YR 8/4), fine to ed, loose, dry	medium,		
S M STOLLI		RPORATION				Page 2

Pantex GW RFI	2500 105	· · · · · · · · · · · · · · · · · · ·	urning Grounds)) ()) · · · ·	Amarillo, Te
Project Number:	3589-102		Client:		nger Corporation
Geologist:	J.Ford / T		Northing: 3771397.29	Easting: 62	9986.45
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	798' BGS	
Dates Drilled:		- 04/26/00	Depth to Water:	475.45' BTO	
Borehole Type:	12.75" AI	RCH 7 7/8" Mud Rotary	Well Type:		Well, 4" Stainless St
Ground Elevation:	3572.81'	Τ	TOC Elevation:	3575.07'	
Completion Compl	Lithology USCS		Description		Sample Sumber Sumber
	SP SP- SM SP- SM	fine grained, loose, dry	SAND, pink (7.5YR 7/4), ver 10YR 7/6), very fine to fine, ose, dry; thin, dense, sandsto		
	SP SP SM	with trace medium, subrou	e brown (10YR 7/4), very fir inded to rounded, loose, dry AND, light brown (7.5YR 6/ rounded, loose, dry		-
	SP		e brown (10YR 7/4) to light ained, loose, dry; same as ab		_

-	3589-10 J.Ford /		Client:	Mason & Han	ger Corporation
Drilling Contractor: Dates Drilled:			NL 41	E dia Coo	006 45
Dates Drilled:			Northing: 3771397.29	Easting: 629	980.43
		Brothers Drilling	Total Depth of Borehole:	798' BGS	05/25/00
Borehole Type:		0 - 04/26/00	Depth to Water:	475.45' BTOC	
0 1 1 1	12.75" A	· · · · · · · · · · · · · · · · · · ·	Well Type:		ell, 4" Stainless Ste
Ground Elevation:	3572.81		TOC Elevation:	3575.07'	
Depth (Ft.)	Lithology		Description		Sample Number
	SI				
	SF SN	fine to medium, subrounde	AND, light brown (7.5YR 6, ed to well rounded, loose, da ees		
			e brown (10YR 7/4), fine to ed, loose to very dense on sa		
	SI	230' color change to strong	g brown (7.5YR 5/6)		
	SF	to medium with coarse gra dense, dry	lowish brown (10YR 6/4), v in, subangular to rounded, n		

Pantex GW RFI Project Number:	3589-102	i untes i iunt (D	urning Grounds) Client:	Mason & Un	Amarillo, Te nger Corporation
2	J.Ford / T	Hall	Northing: 3771397.29	Easting: 62	
Geologist: Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	798' BGS	770U. 4 J
Dates Drilled:		- 04/26/00	Depth to Water:	475.45' BTO	C 05/25/00
Borehole Type:		CH 7 7/8" Mud Rotary	Well Type:		Vell, 4" Stainless St
Ground Elevation:	3572.81'	CII / //o IVIUU KUIdIY	TOC Elevation:	3575.07'	wen, 4 Stanness Su
	3372.81			5575.07	
Completion Debth (Ft.)	Lithology USCS		Description		Sample Number
	SP	(10YR 7/4), subrounded, n	DSTONE lenses, very pale b noderately dense to very den	se, dry	-
	SP- SM	to medium grain, moderate 248-250' SAND, silty, wit	h some clay, brown (7.5YR	~	-
	9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	5/4), fine to coarse, moder	AND, clayey, silty, brown (/	-
	GM	gravel, angular to flat and	rounded; fine to coarse sand	; dense	
	○`○`SM- ○`○`ML ML-	6/4), fine grain, damp 262-267' SILT, sandy, cla	ILT, sandy, light reddish bro yey, to CLAY, silty, reddish	brown	_
	CL		creases with depth, dense, da caliche nodules in siltstone-li		-
-270-	CL	207-275 CLAY, increasin	ig as above		
		275-285' SILT, sandy, ligl grained sand	ht reddish brown (5YR 6/4),	fine	-
	0: 0: 0: SM- 0: 0: 0: ML				
		285-295' SAND, silty, red fine grained	dish brown (5YR 5/4), very	fine to	-
	SM				
	CL	295-299' CLAY, sandy, y	ellowish brown (10YR 5/6),	stiff	
S.M. STOLL		PORATION			Page 5

Dantan CW/DEI					A
Pantex GW RFI	3589-102		urning Grounds) Client:	Magor & II	Amarillo, Tex
Project Number:					* *
Geologist: Drilling Contractor:	J.Ford / 7		Northing: 3771397.29	Easting: 629 798' BGS	7700.43
Drilling Contractor: Dates Drilled:		Brothers Drilling - 04/26/00	Total Depth of Borehole:	475.45' BTO	05/25/00
			Depth to Water:		
Borehole Type:	12.75" A	RCH 7 7/8" Mud Rotary	Well Type: TOC Elevation:		Vell, 4" Stainless Ste
Ground Elevation:	3572.81'		TOC Elevation:	3575.07'	
Completion Debth (Ft.)	Lithology		Description		Sample Sample Number
	SP SM SM	grained with some pea-siz (<6") yellow-brown clay la 330-370' SAND, brown (medium, same as above	AND, reddish brown (5YR 5 ed angular pebbles; with som enses 7.5YR 5/4), fine grained with	ne thin	
S.M. STOLLI	ER COF	RPORATION			Page 6

Pantex GW RFI		```````````````````````````````````````	urning Grounds)		Amarillo, Tex
Project Number:	3589-102		Client:	Mason & Hanger	
Geologist:	J.Ford / T		Northing: 3771397.29	Easting: 629986	.45
Drilling Contractor:		Brothers Drilling	Total Depth of Borehole:		
Dates Drilled:	03/15/00	- 04/26/00	Depth to Water:	475.45' BTOC 0	
Borehole Type:		RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well,	4" Stainless Ste
Ground Elevation:	3572.81'	1	TOC Elevation:	3575.07'	
Completion Depth (Ft.)	Lithology USCS		Description	Samule	Sample Number
	SP	medium grain size	ht reddish brown (5YR 6/4),	fine with	
	SP	385-445' SAND, light bro trace medium 405' Same, light brown (7	own (7.5YR 6/4), fine grained	1 with	
		420' Same, light reddish b	prown (5YR 6/4)		
		RPORATION			

Geologist:JDrilling Contractor:SDates Drilled:CBorehole Type:1Ground Elevation:3		rothers Drilling - 04/26/00 RCH 7 7/8" Mud Rotary	Client: Northing: 3771397.29 Total Depth of Borehole: Depth to Water: Well Type: TOC Elevation: Description	Mason & Hai Easting: 629 798' BGS 475.45' BTO Monitoring V 3575.07'	9986.45 C 05/25	5/00
Drilling Contractor: S Dates Drilled: 0 Borehole Type: 1 Ground Elevation: 3 Completion (1)	Stewart Bi 03/15/00 12.75" AR 3572.81' 500 00 SOS 01 SOS 01 SOS 01 SOS	rothers Drilling - 04/26/00 RCH 7 7/8" Mud Rotary	Total Depth of Borehole: Depth to Water: Well Type: TOC Elevation:	798' BGS 475.45' BTO Monitoring V	C 05/25 Well, 4"	5/00 Stainless Ste Sample
Dates Drilled: 0 Borehole Type: 1 Ground Elevation: 3 Completion (f_{1}) (f_{2}) (f_{3}) (f_{4})	03/15/00 12.75" AR 3572.81' SO SO SO SO	- 04/26/00 CH 7 7/8" Mud Rotary	Depth to Water: Well Type: TOC Elevation:	475.45' BTO Monitoring V	Well, 4"	Stainless Ste Sample
Borehole Type: 1 Ground Elevation: 3 Completion $(1, 1)$ Hdg $(2, 2)$ Hdg $(2, 3)$ Hdg $(2, 3)$	12.75" AR 3572.81' SOSN SOSN	CH 77/8" Mud Rotary	Well Type: TOC Elevation:	Monitoring V	Well, 4"	Stainless Ste Sample
Ground Elevation: 3 Completion (1) Hdg (1) Ground Elevation: 3 Hdg (1) Hdg (1)	TITINOLOGY LICENSE		TOC Elevation:			Sample
Completion ()	USCS		1	3575.07'	Sample	
			Description		Sample	
	SP					
	o o o o o o s SP- SM	450-470' SAND, some sili grained with trace medium	$\overline{\text{wn}}$ (10YR 6/3), fine to media	fine		

Project Number: 3589-102 Client: Mason & Hanger Corporation Geologist: JFord / T.Hall Northing: 3711307.29 Existing: COPROS: 4.5 Dates Drilling: Total Depth of Derohol: 798 BGS Dates Drilling: Total Depth of Derohol: 798 BGS Dates Drilled: 03/15/00 - 04/26/00 Depth to Water: 475.45' BTOC 05/25/00 Borchol: 798' Null Rotary Well Type: Moniformg Well, 4' Stainless Ste Ground Elevation: 3572.81' TOC Elevation: 3575.07' Completion $\frac{4}{41}$ $\frac{7}{32}$ $\frac{7}{32}$ $\frac{7}{32}$ Mumber $\frac{1}{490}$ $\frac{9}{41}$ $\frac{9}{32}$ Sample Number $\frac{1}{-490}$ $\frac{1}{-490}$ $\frac{1}{-500}$						
Geologist J. Ford / T. Hall Northing 3771397.29 Easing: 629986.45 Drilling Contractor: Stewart Brothers Drilling Total Depth of Borchole: 708 BGS Data Drilled: 7041 Depth of Borchole: 708 BGS Dates Drilled: 03/1500 04/2600 Depth to Mater: 475.45 BTOC 05/25/00 Barchole Type: 12.75" ARCH 7.78" Mud Rotary Well Type: Monitoring Well, 4" Stainless Ste Ground Elevation: 3572.81" TOC Elevation: 3575.07 Completion E E E Sample Number 90 E Sample Number - - - - Completion E E E Sample Number - - - - - - - - - - - - - - - - - - - - - - - - - - -	Pantex GW RFI		Pantex Plant (B			Amarillo, Texa
Drilling Contractor: Stewart Brothers Drilling Total Depth of Borehole: 798' BGS Dates Drilled: 03/15/00 - 04/26/00 Depth to Water: 475 45' BTOC 05/25/00 Borchold Type: 3572.81' TOC Elevation: 3575.07'' Completion	· ·					
Dates Drilled: 03/15/00 04/26/00 Depth to Water: 475.45 BTOC 05/25/00 Borchole Type: 12.75" ARCH 77.8" Mud Rotary Well Type: Monitoring Well, 4" Stainless Ste Ground Elevation: 3572.81" TOC Elevation: 3575.07" Completion If					-	986.45
Borchole Type: 12.75" ARCH 7.78" Mud Rotary Well Type: Monitoring Well, 4" Stainless Ste Ground Elevation: 3572.81" TOC Elevation: 3575.07" Completion Up to the particular of t	-			-		0.5/0.5/0.0
Ground Elevation: 3572.81' TOC Elevation: 3575.07' Completion End of graph So of graph Sample Number Sample Sample Sample Number Sample Sample Sample Sample Number Sample Sample Sample Sample Sample Same as above Same as above Same as above Sample Sample Same as above Same as above Sample Sample Sample Same as above Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample <						
Completion $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $			RCH 7 7/8" Mud Rotary			ell, 4" Stainless Stee
493' same as above 493' same as above SP 493' same as above 5P 493' same as above 5P 512-540' SAND, light brown (7.YR 6/4), fine grained, well 512-540' SAND, light brown (7.YR 6/4), fine grained, well 50 50 50 50 50 50 50 50 50 50	Ground Elevation:	3572.81'		TOC Elevation:	3575.07'	
493' same as above SP 493' same as above SP 500- 	Completion Depth (Ft.)	Lithology USCS]	Description		Sample Number
		SP	512-540' SAND, light bro	wn (7.YR 6/4), fine grained,	well	
						Page 9

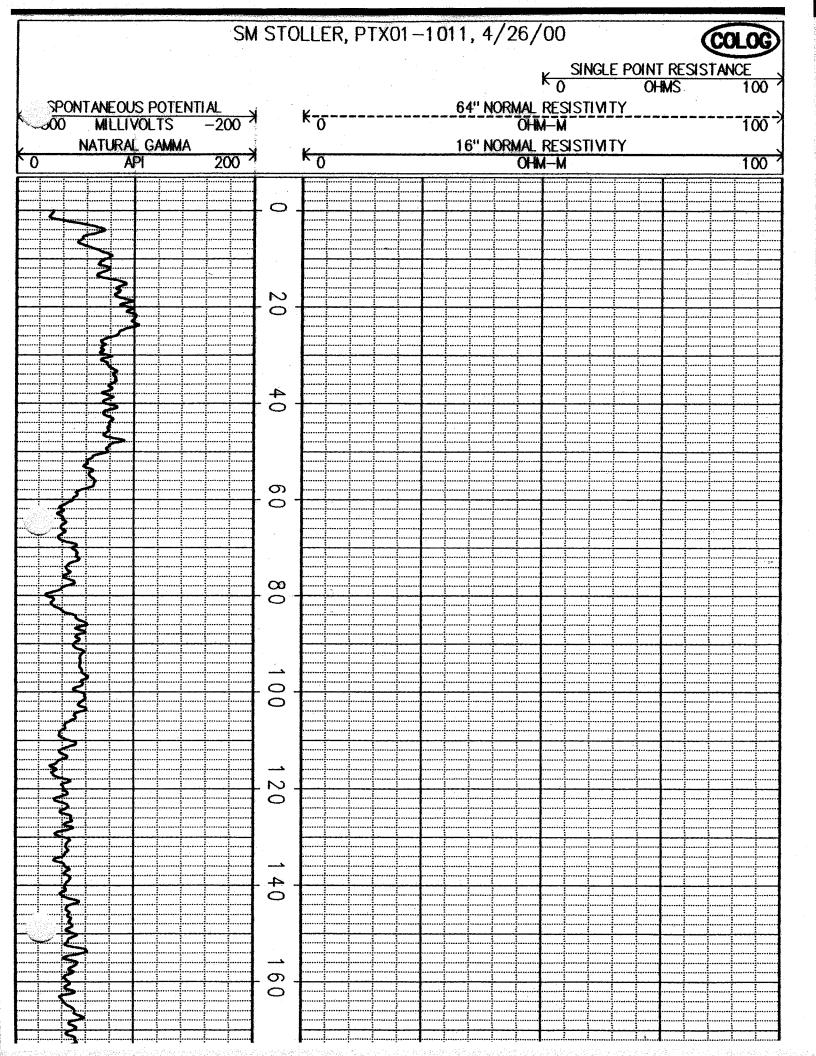
Pantex GW RFI	500 102	Pantex Plant (B	urning Grounds)	Maria 0 II	Amarillo, Texa
	589-102	xx 11	Client:		nger Corporation
	.Ford / T.		Northing: 3771397.29	Easting: 629	9986.45
-		rothers Drilling	Total Depth of Borehole:	798' BGS	0.05/05/00
		- 04/26/00	Depth to Water:	475.45' BTO	
	2.75" AR	CH 7 7/8" Mud Rotary	Well Type:		Vell, 4" Stainless Ste
Ground Elevation: 3	572.81'		TOC Elevation:	3575.07'	
Completion Depth (Ft.)	USCS		Description		Sample Number
	SP	540-600' SAND, light yel medium grained, with silty	lowish brown (10YR 6/4), fi	ne to	
S.M. STOLLER	COR	PORATION			Page 10

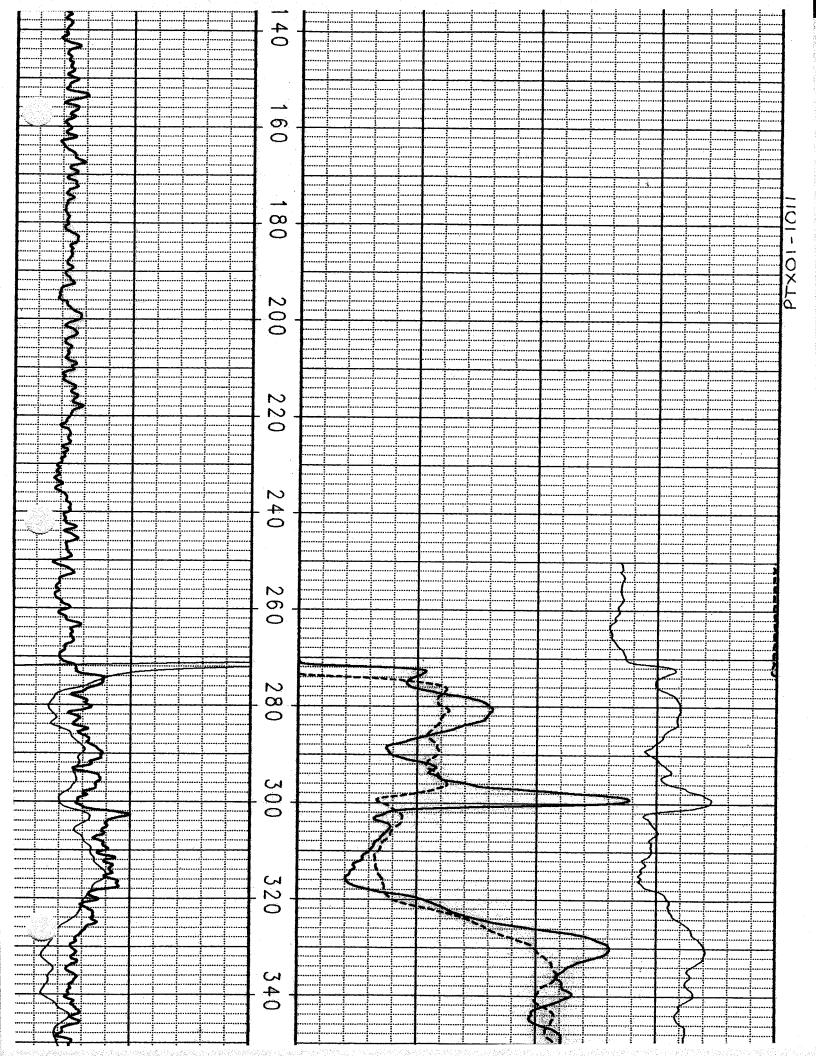
Pantex GW RFI	2500 102		urning Grounds)	M 0 11	Amarillo, Tex
Project Number:	3589-102		Client:		nger Corporation
Geologist:	J.Ford / T		Northing: 3771397.29	Easting: 62	9980.43
Drilling Contractor:		Brothers Drilling	Total Depth of Borehole:	798' BGS	0.05/25/00
Dates Drilled:		- 04/26/00	Depth to Water:	475.45' BTO	
Borehole Type:	12.75" A	RCH 7 7/8" Mud Rotary	Well Type:	-	Vell, 4" Stainless Ste
Ground Elevation:	3572.81'		TOC Elevation:	3575.07'	
Depth (Ft.)	Lithology USCS		Description	icity.	Sample Number
 610	CL	stiff			
		6/4), poorly graded	AND, light yellowish brown	(10YR	
			own (10YR 5/3), low plastici e brown (10YR 7/3), very fin	-	

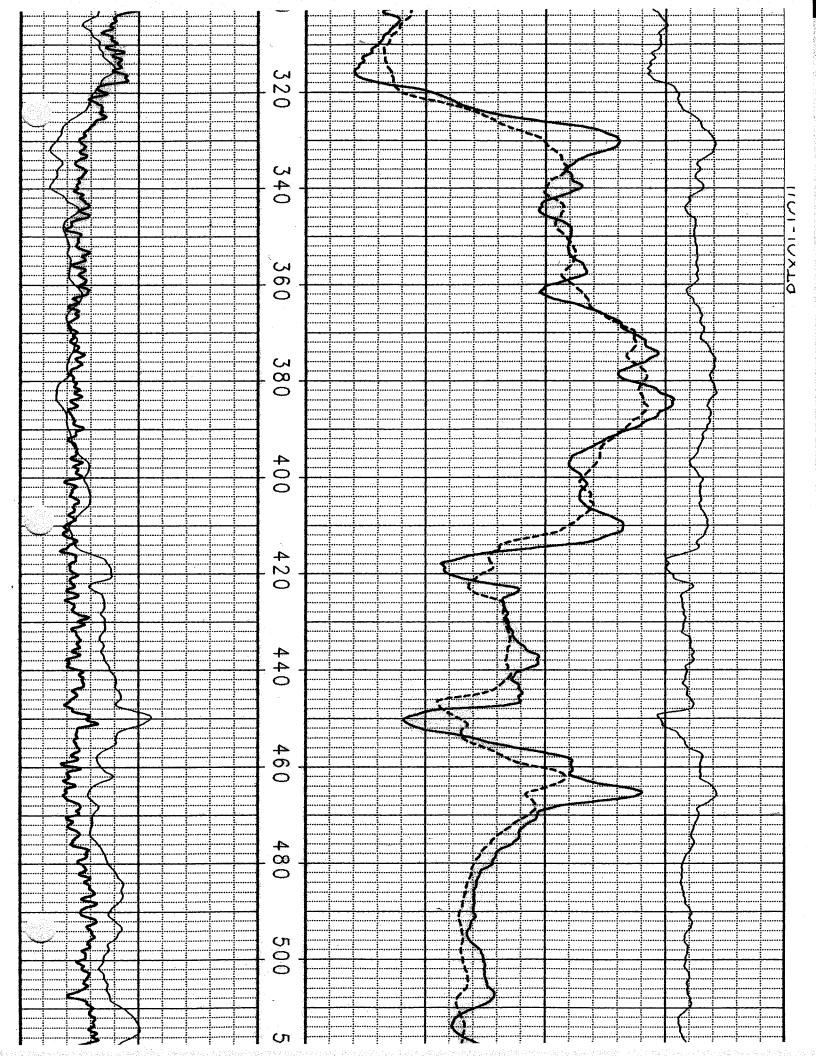
Partex CW RFI Partex Plant (Burring Grounds) Amarille, Tec Project Number: 3589-102 Clieni. Maso & Hanger Corporation Geologist: J. Ford / T. Hall Northing: 3771397.29 Fassing: 62998.6.3 Dates Drilled: 03/15'00 - 04/26:00 Depth to Water: 475.45' BTOC 05/25:00 Borchold: 757.8'' 77/8' Mul Rout Well Type: Monitoring Well, 4* Startless Startless Startless Startless Ground Elevation: 3572.8'' TOC Elevation: 3575.0''' Completion Iffigure Borchold: Sample Number: String: String: Sample Number: String: String: Sample Ground Elevation: String: Sample Number: Ground: Sample: Sample: Number: Ground: Sample: Sample: Sample: </th <th></th> <th></th> <th></th> <th></th> <th></th>					
Geologist: J. Ford / T. Hall Northing: 3771397.29 Easting: 629986.45 Drilling Contractor Stewart Brothers Drilling Total Depth of Borehole: 798 H25 BTOC 05/200 Dates Drilled: 03/15/00 - 04/26/00 Depth to Water: 475.45 BTOC 05/200 Borchold: Type: 3572.81' TOC Flevation: 3575.07' Completion Egg Seg Seg Sample Number Seg Sig Seg Sample Number Seg Seg Sample Number Original Seg Seg Seg Seg Sample Number Seg Seg Seg Sample Number Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg Seg	Pantex GW RFI	Pantex Plant (Bu	urning Grounds)	Amarillo,	Texa
Geologist: J. Ford / T. Hall Northing: 3771397.20 Easting: 629986.45 Drilling Contractor Sewart Brothers Drilling Total Depth of Borehole 708' BGS 500' - 04/26/00 Depth to Water: 475.45' BTOC 05/200' - 05/25' JUC Borchod Type: 3572.81' TOC Elevation: 3575.07' Sample Completion UP So So Sample Number So So Sample Sample Number So Sample Sample Number Sample So Sample Number Sample Number Sample Sample Number Sample Number Sample Sample Sample Number Sample Number Sample Sample Sample Number Sample Number Sample Sample Sample Sample Number Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample </td <td>Project Number: 3589</td> <td></td> <td></td> <td>Mason & Hanger Corporation</td> <td></td>	Project Number: 3589			Mason & Hanger Corporation	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Geologist: J.Fo	ord / T.Hall	Northing: 3771397.29		
Dates Drilled: 03/15/00 - 04/26/00 Depth to Water: 475.45' BTOC 05/25/00 Borehole Type: 12.75' ARCH 7/18" Mud Rotary Well Type: Monitoring Well, 4" Stainless Sta Ground Elevation: 3572.81' TOC Elevation: 3575.07' Completion		wart Brothers Drilling			
Ground Elevation: 3572.81' TOC Elevation: 3575.07' Completion Ground Elevation: 3575.07' Description Ground Elevation: Sample Number Number Spentition Spenition Ground Elevation: Spenition Spenition <td></td> <td></td> <td>-</td> <td>475.45' BTOC 05/25/00</td> <td></td>			-	475.45' BTOC 05/25/00	
Ground Elevation: 3572.81' TOC Elevation: 3575.07' Completion Ground Elevation: 3575.07' Description Ground Elevation: Sample Number Number Spentition Spenition Ground Elevation: Spenition Spenition <td>Borehole Type: 12.7</td> <td>75" ARCH 7 7/8" Mud Rotary</td> <td>Well Type:</td> <td>Monitoring Well, 4" Stainless</td> <td>Stee</td>	Borehole Type: 12.7	75" ARCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well, 4" Stainless	Stee
670 SP 680 680-705" SAND to silty SAND, light yellowish brown (10YR 680 680-705" SAND to silty SAND, light yellowish brown (10YR 690 SP SM SM 700 705-745" SAND, light brown, very fine grained	Ground Elevation: 3572	2.81'	TOC Elevation:		
670 SP 680 680-705" SAND to silty SAND, light yellowish brown (10YR 680 640, fine grained - - -	Depth (Ft.)		Description	Sample Num	
		SP- SM 705-745' SAND to silty S. 6/4), fine grained 705-745' SAND, light bro		T(10YR	

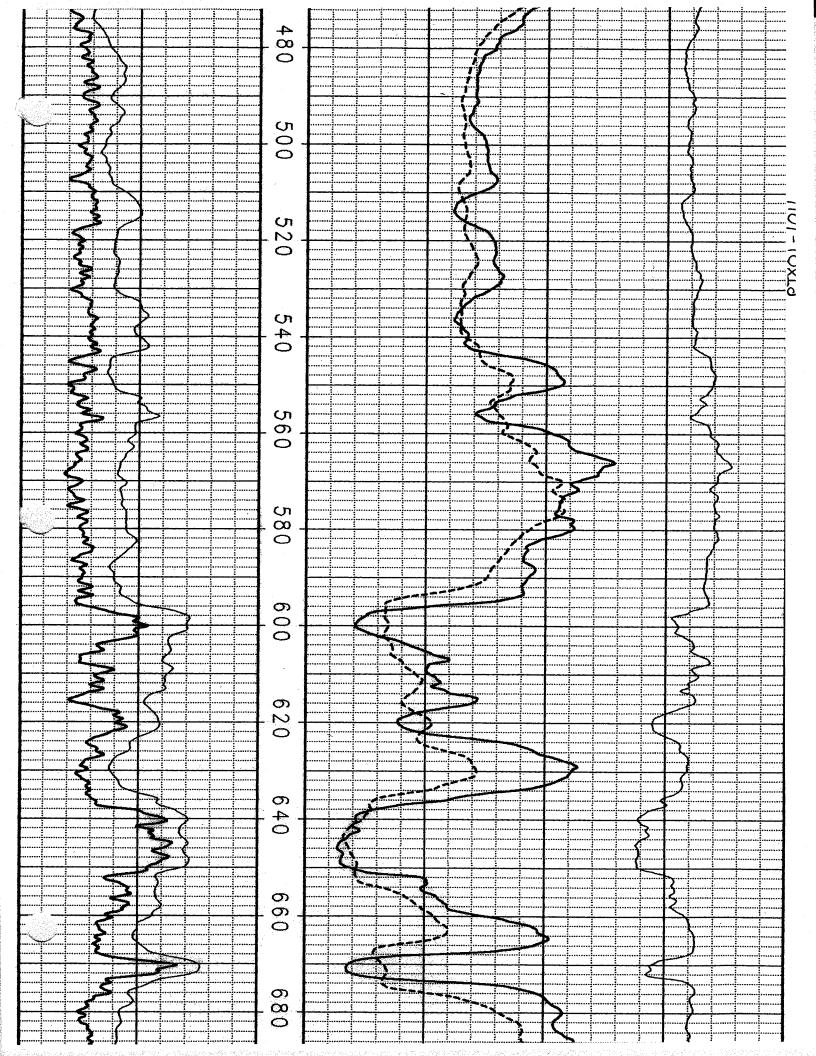
Pantex GW RFI		· · · · · · · · · · · · · · · · · · ·	urning Grounds)		Amarillo, Tex
Project Number:	3589-102		Client:		nger Corporation
Geologist:	J.Ford / T		Northing: 3771397.29	Easting: 629	986.45
Drilling Contractor:		Brothers Drilling	Total Depth of Borehole:	798' BGS	
Dates Drilled:		- 04/26/00	Depth to Water:	475.45' BTO	
Borehole Type:	12.75" Al	RCH 7 7/8" Mud Rotary	Well Type:		/ell, 4" Stainless Ste
Ground Elevation:	3572.81'	1	TOC Elevation:	3575.07'	
Completion Debth (Ft.)	Lithology USCS		Description		Sample Sample Number
	SP SP CL CL CL CL CL CL CL CL CL SC CC SC CC SC CC SC CC SC CC SC S	medium plasticity, stiff 750-775' SAND, clayey, 1 4/5), dense to stiff, interbe	some silt, red (2.5YR 5/6), lo light gray (10YR 7/1) to red dded sands and clays,	(2.5YR	

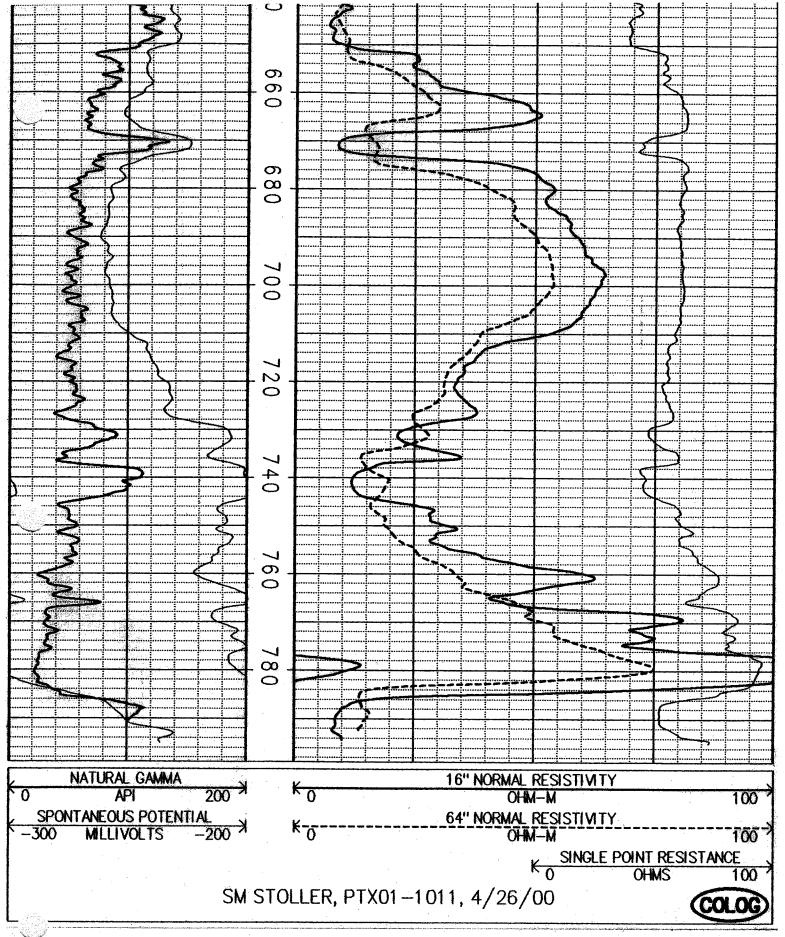
			1-1011		
Pantex GW RFI		Pantex Plant (B	urning Grounds)		Amarillo, Texas
Project Number:	3589-102	2	Client:	Mason & Hanger C	Corporation
Geologist:	J.Ford / T	T.Hall	Northing: 3771397.29	Easting: 629986.4	45
Drilling Contractor:	Stewart E	Brothers Drilling	Total Depth of Borehole:	798' BGS	
Dates Drilled:	03/15/00	- 04/26/00	Depth to Water:	475.45' BTOC 05/	25/00
Borehole Type:	12.75" A	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well, 4	" Stainless Steel
Ground Elevation:	3572.81'		TOC Elevation:	3575.07'	
		786-798' CLAY, red (2.5' formation Total Depth of Borehole 7 Fine Grain Zone 262' BGS Red Beds 786' BGS Well Completion Details: Borehole Diameter 12 3/4' 8 5/8" steel conductor casi Borehole Diameter 7 7/8" 4-inch, Schedule 10, Type Slot Screen 5' Sump (790' - 795'); 130' - 660'); 130' Screen (465' - Pack, 8/16 Colorado Silica 798'), (442' - 598'); Bentor Bentonite Grout (Surface -	TOC Elevation: Description YR 4/6), very stiff to hard rec 98' BGS ' from surface to 270' BGS ng set from surface to 270' BGS	3575.07' 3575.07' all bed all bed a	Sample Number
S.M. STOLLI	ER COF	RPORATION			Page 14


SOUR JZE, S/N None None	າ 	ASDE 0.8 0.8	100	MODULE TYPE, S/N UM 1524 UM 1524	PROBE TYPE, S/N RABPE 2171 EPE1 567	TIME SINCE CIRC. N/A	Rm at TEMP N/A	FLUID TYPE Mud	FLUID LEVEL Surface	WITNESSED BY Ford	RECORDED BY Dovis	TOP LOGGED INTERVAL Surface 272	BTM LOGGED INTERVAL 790' 795'	DEPTH-LOGGER 796'	 LOG TYPE Gamma Electric	ER 1	DATE ACQUIRED 4/26/00 4/26/00	DRILL MEAS, FROM: Ground Surface	LOG MEAS. FROM: Ground Surface 0.0 FT ABO	PERNAMENT DATUM: Ground Surface ELEVATION:			STATE: TX	1	& WELL: PTX01-1011	COMPANY: SM STOLLER	ELECTRIC LOG	PHONE: (303) 279-0171	I I
																		el e de la constante en constante	FT ABOVE PERM. DATUM	R NA	RGE	OTHER SERVICES:	COUNTY: CARSON		 .	D,		Suite 265, Golden Colorado 80401 0171 FAX: (303) 2780135	COLOG olvialan of Layne Christensen Company
Contraction of the		uporoge .	E F	REC	OR	FR	rfa	<u>ce</u>	20112741 20112741 20112741			TO 26 79	7'		 				SIZE Sum	/W(p en/1	RECOR T Blank	FR 79 46			200003330000 20000000000000000000000000	79)5'		
C /) Mik Vritt Vrch Nud	Ty 0-	ре: -26	7'	57	798	3'	• ••••							 				4" Ca	T ype sing	1 TS: 304 : & Scri Slot 0		Stai	nless	s Ste	<u> </u>			


8 5/8" Conductor Casing «et Surface to 267"


Borehole Logged Open Hole 272-TD'


NA - NOT AVAILABLE, N/A - NOT APPLICABLE


DIGITAL FILES: 1011,dat, 1011.HDP, 1011.PLP

Contractor: S.M. Stoller

Contract #: 3350-105

OPTIX #:

Included Documents

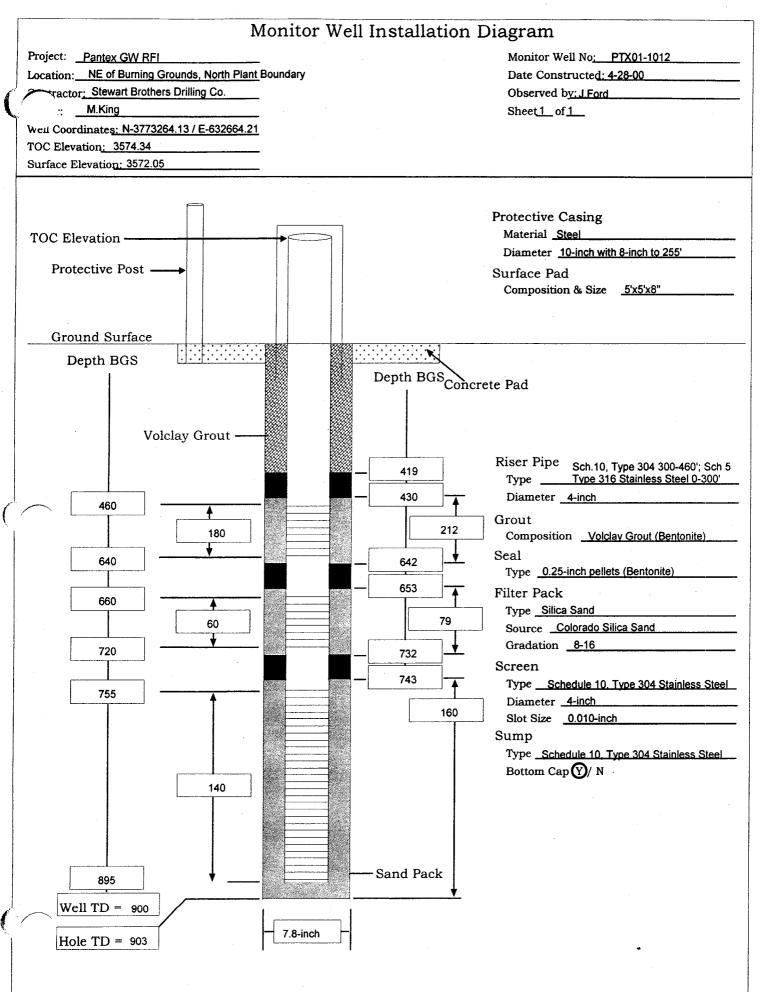
___Drilling Log ___Draft ___Final

_X_Installation Log

_X_Lithologic Logs ___Draft _X_Final

____Geophysical Logs

___Neutron


____Gamma

____e-log

___Bond Log

____Deviation log

____State Well Report

fooler: ph E:\projects\Pantexcove\pantex.apr Layout2 (6.6.2000)

Pantex GW I Project Numb		3589-1		Client:	Mason & Har	Amarillo, Te
•	C I.					• •
Geologist: Drilling Conti	notor:		/ R.Rupp / T.Hall t Brothers Drilling	Northing: 3773264.13 Total Depth of Borehole:	Easting: 632 903' BGS	.004.21
Dates Drilled:			00 - 04/30/00	Depth to Water:	494.6' BTOC	05/25/00
				-		
Borehole Typ Ground Eleva		3572.0	ARCH 7 7/8" Mud Rotary	Well Type:TOC Elevation:	3574.34'	/ell, 4" Stainless St
GIOUIIU Eleva		3372.0	5	TOC Elevation.	3374.34	
Completion	Depth (Ft.)	Lithology	NSCS	Description		Sample Numbe
			ML plasticity, very fine sand, Topsoil 5-17' SILT, clayey, sandy plasticity, increasing clay	ay, reddish brown (5YR 4/3) some fine, soft, damp to mois \overline{y} , light reddish brown (5YR 6 with depth, soft to medium s nt caliche and trace mangane	st; $\overline{b/4}$, \overline{low} tiff, damp	
				y, yellowish red (5YR 5/6), lo n stiff, damp, increasing mar gers and nodes;		
			CL 40' laminar caliche, slight	t increase in sand, very fine g	rain	
			50' Soft, 25% sand, sand	% increasing		
	- 60 - 		CL 5/8), low plasticity, sand g caliche as coarse grain gra	-	lamp,	
	 - 70 		(5YR 7/6) to red (2.5YR 5	% sand 40% clay, reddish ye 5/8) at 75', sand increasing wi porly graded, loose, dry to da	th depth,	
	 - 80-		clay at 40%, caliche to 1 1	OCK, red (2.5YR 5/8) sand a 1/2" diameter, loose and sligh	tly damp	
			80-95' SAND, clayey, wi small nodules to 30%, loo	th 10% silt, pink (5YR 8/2), se, slightly damp	CaCO3 in	
		9. <i>/ /.</i> 9	small nodules to 30%, loo			Page

Pantex GW RFI			L – L V L 2 urning Grounds)		Amarillo, Tex
Project Number:	3589-102		Client:	Mason & Hange	,
Geologist:		2. R.Rupp / T.Hall	Northing: 3773264.13	Easting: 632664	-
Drilling Contractor:		Brothers Drilling	Total Depth of Borehole:	903' BGS	
Dates Drilled:		- 04/30/00	Depth to Water:	494.6' BTOC 05	5/25/00
Borehole Type:		RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well	
Ground Elevation:	3572.05'		TOC Elevation:	3574.34'	
Depth (Ft.)	Lithology		Description		Sample Number
	0 0 0 SC 0 0 0 0 SC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 95-100' SAND, clayey (24 grain sands, CaCO3 nodul 100-130' SAND, clayey, a sandstone lense, nodules to 120' Same as above 130-150' SAND, slightly (10YR 7/3), fine to mediun 140' Same as above 150-180' SAND, very pal- grain sand, subrounded, gr 160' Same as above 	as above, pink (5YR 7/4), hit o 1/2" daimeter, loose, damp clayey some fines, very pale m grain sand, loose, slightly e brown (10YR 8/3), fine to	medium	
S.M. STOLL	ER COI	RPORATION			Page 2

Pantex GW RFI			urning Grounds)		Amarillo, Texa
Project Number:	3589-102	, , , , , , , , , , , , , , , , , , ,	Client:	Mason & Har	nger Corporation
Geologist:	J.Ford / R	Rupp / T.Hall	Northing: 3773264.13	Easting: 632	2664.21
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	903' BGS	
Dates Drilled:	04/13/00	- 04/30/00	Depth to Water:	494.6' BTOC	05/25/00
Borehole Type:	12.75" AI	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring W	Vell, 4" Stainless Stee
Ground Elevation:	3572.05'		TOC Elevation:	3574.34'	
Depth (Ft.)	Lithology USCS]	Description		Sample Number
	SP SP SP	above, very loose, slightly	e brown ($\overline{10YR}$ $\overline{7/4}$), fine to		
		very fine grain, loose, dam diameter	avel, light yellow brown (10) up, with sandstone nodules to dstone lense with nodules to	2"	
-220-		diameter 220' Sandstone decrease 225-240' SAND some gra	avel < 10%, very pale brown	to	_
-230-			very coarse grain sand, well		
-240-	SW CL CL	graded, moist 242-245' CLAY, light bro stiff, dry, with CaCO3 245-251' CLAY, trace san plastic, stiff, dry, with CaC	dish brown (5YR 6/3), plasti	ustic, 	PTX01-1012-2-25 Permeability Anal PTX01-1012-1-25 HE, VOC
S.M. STOLL		PORATION			Page 3

Denter CW DEI					A
Pantex GW RFI	2590 102	Pantex Plant (B	urning Grounds)	Magan & Hanga	Amarillo, Texa
Project Number:	3589-102	Dunn / T II-11	Client:	Mason & Hange	-
Geologist:		.Rupp / T.Hall	Northing: 3773264.13	Easting: 63266	4.21
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	903' BGS	5/25/00
Dates Drilled:		- 04/30/00	Depth to Water:	494.6' BTOC 0	
Borehole Type:		RCH 7 7/8" Mud Rotary	Well Type:		l, 4" Stainless Ste
Ground Elevation:	3572.05'		TOC Elevation:	3574.34'	
Depth (Ft.)	Lithology USCS]	Description	-	Sample Number
	9:: 0: 0: 0 9: 0 9		ne clay, brown (7.5YR 5/4), nd cemented sand nodules th		PTX01-1012-2-02 VOC
-300-	SP	300-310' SAND, strong bi grain, graded 310-320' SAND, as above	rown (7.5YR 5/5) fine to me , with 20% caliche	dium	
-320-	SP	320-340' CALICHE, pink			
	0.0 0.0 0 0.0 <t< td=""><td></td><td>e, with some (20%) SP sand</td><td>in</td><td></td></t<>		e, with some (20%) SP sand	in	
S.M. STOLL		PORATION			Page 4

Denter CW/DEI					A
Pantex GW RFI	2590 102	Pantex Plant (B	urning Grounds)	Magan & Hanga	Amarillo, Texa
Project Number:	3589-102	D	Client:	Mason & Hanger	-
Geologist:		.Rupp / T.Hall	Northing: 3773264.13	Easting: 632664 903' BGS	+.21
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:		125/00
Dates Drilled:		- 04/30/00	Depth to Water:	494.6' BTOC 05	
Borehole Type:	12.75" AH	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well	, 4" Stainless Ste
Ground Elevation:	3572.05'		TOC Elevation:	3574.34'	
Depth (Ft.)	Lithology USCS		Description	Sound	Sample Number
	SM	370-380' SAND, slightly medium grain, graded	silty, light brown (7.5YR 6/4), fine to	
	CL	plasticity, stiff	and fine sand, brown, mediu wn (7.5YR 6/3), very fine to		
	SP				
S.M. STOLLI	ER COR	PORATION			Page 5

Pantex GW RFI			urning Grounds)		Amarillo, Tex
Project Number:	3589-102		Client:	Mason & Hanger Corporatio	
Geologist:	J.Ford / R.Rupp / T.Hall		Northing: 3773264.13	Easting: 632664.21	
Drilling Contractor:	Stewart Brothers Drilling		Total Depth of Borehole:	903' BGS	-
Dates Drilled:	04/13/00 - 04/30/00		Depth to Water:	494.6' BTOC 05/25/00	
Borehole Type:	12.75" ARCH 7 7/8" Mud Rotary		Well Type:	Monitoring Well, 4" Stainless Stee	
Ground Elevation:	3572.05'		TOC Elevation:	3574.34'	
Completion Debth (Ft.)	Lithology USCS	450-480' SAND, light bro	Description wn (7.5YR 6/3), fine to med to well graded, sand is 30% S		Sample Number
	SP				
	0 0 0 0 0 0 0 0 0 0 0 0 0 0	480-500' SAND, clayey, t sand	orown (7.5YR 5/4), 60% clay	/ 40%	
	SP	500-530' SAND, pink (7.5 subangular to subrounded,	5YR 7/4), fine to coarse grain graded	1,	
		530-575' SAND, light bro grain, subangular to subrou	wn (7.5YR 6/4), fine to very unded, well graded	r coarse	
S.M. STOLL	ER COR	PORATION			Page 6

Pantex GW RFI		Pantex Plant (B	urning Grounds)			narillo, Tex
Project Number:	3589-102		Client:	Mason & Ha	-	poration
Geologist:	J.Ford / R.Rupp		Northing: 3773264.13	Easting: 63	2664.21	
Drilling Contractor:	Stewart Brothers		Total Depth of Borehole:	903' BGS		
Dates Drilled:	04/13/00 - 04/3		Depth to Water:	494.6' BTOC		
Borehole Type:		7 7/8" Mud Rotary	Well Type:	Monitoring V	Well, 4" S	Stainless Ste
Ground Elevation:	3572.05'		TOC Elevation:	3574.34'		
Depth (Ft.)	Lithology USCS		Description		Sample	Sample Number
	SW SW SW SW ST5-5 and g SP SP SP SP SP SP SP SP SP SP SP SP	ravels, well graded 95' SAND, fine to n 515' SAND, gravelly sands and gravels, w	r, light brown (7.5YR 6/4), cd	oarse		

Pantex GW RFI		Pantex Plant (B	urning Grounds)		Amarillo, Tex
Project Number:	3589-102		Client:	Mason & Hange	-
Geologist:		Rupp / T.Hall	Northing: 3773264.13	Easting: 63266	54.21
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	903' BGS	- / /0.0
Dates Drilled:		- 04/30/00	Depth to Water:	494.6' BTOC 0	
Borehole Type:	12.75" AR	CH 7 7/8" Mud Rotary	Well Type:	-	l, 4" Stainless Ste
Ground Elevation:	3572.05'		TOC Elevation:	3574.34'	
Depth (Ft.)	Lithology USCS]	Description		Sample Number
	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	655-675' SAND, light bro	wn (7.5YR 6/4), fine to med	ium grain	
	SW		, pink (5YR 7/3), fine to mea ided, with 20% small gravel	lium	
	SP	700-710' SAND, light bro grain, subrounded to round	wn (7.5YR 6/4), fine to med ded	ium	
	SW	710-725' SAND, light bro coarse grain, subrounded t	wn (7.5YR 6/4), fine to med o well rounded	ium with	
S.M. STOLLI	ER COR	PORATION			Page 8

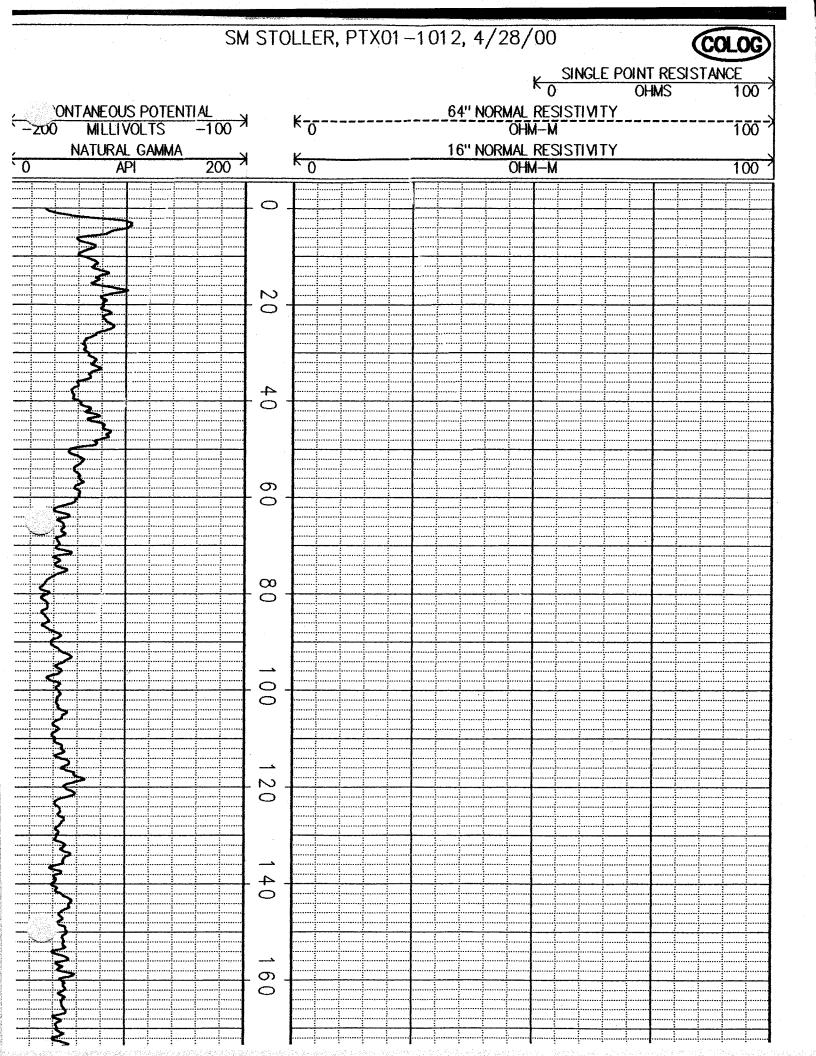
			1-1012		
Pantex GW RFI			urning Grounds)		Amarillo, Tex
Project Number:	3589-102	,	Client:	Mason & Hanger Co	orporation
Geologist:		Rupp / T.Hall	Northing: 3773264.13	Easting: 632664.2	1
Drilling Contractor:		Brothers Drilling	Total Depth of Borehole:	903' BGS	
Dates Drilled:		- 04/30/00	Depth to Water:	494.6' BTOC 05/25	
Borehole Type:	12.75" Al	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well, 4'	' Stainless Ste
Ground Elevation:	3572.05'	1	TOC Elevation:	3574.34'	
Depth (Ft.) Depth (Ft.)	Lithology USCS		Description	Sample	Sample Number
	SW				
	CL	740-790' SAND, very pal- well rounded 795-805' CLAY, dark red	e brown (10YR 7/3), fine gra dish brown (2.5 YR 3/4), sti		
	CL SP	805-820' SAND, white (1	0YR 8/2), fine grained		
S.M. STOLL	ER COR	PORATION		II	Page 9

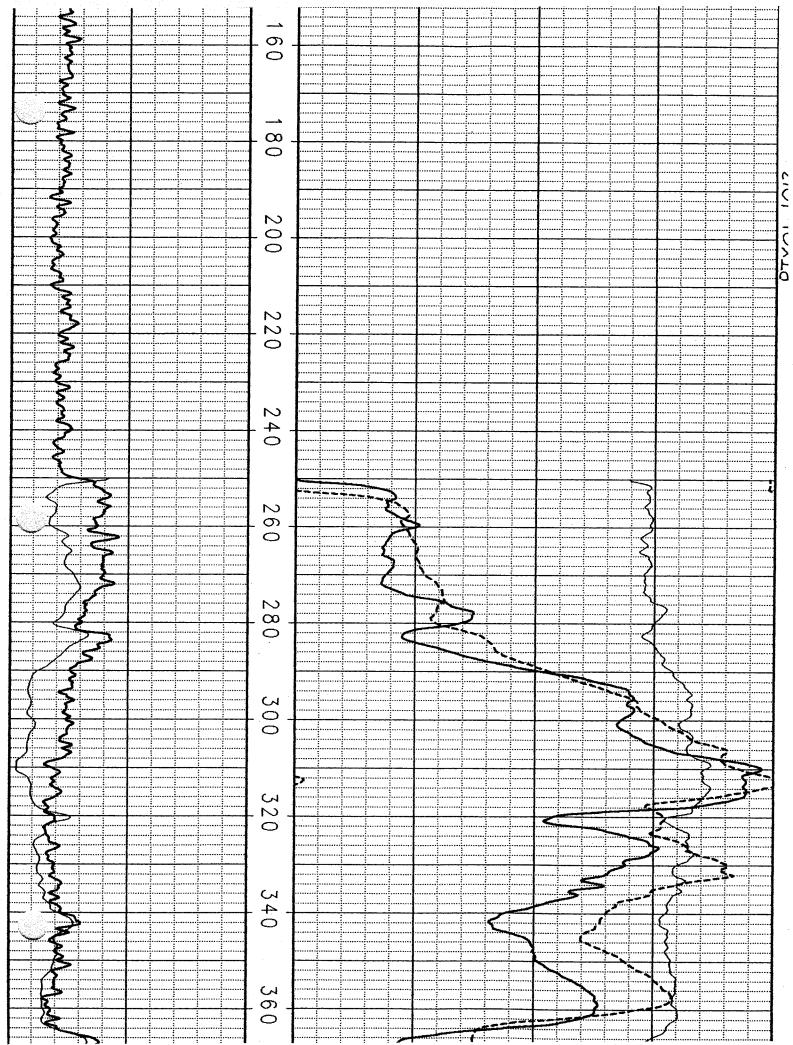
Pantex GW RFI	2500 102	Pantex Plant (B	urning Grounds)		Amarillo, Tex
Project Number:	3589-102	D / T II 11	Client:		ger Corporation
Geologist:		.Rupp / T.Hall	Northing: 3773264.13	Easting: 632	664.21
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	903' BGS	05/25/00
Dates Drilled:		- 04/30/00	Depth to Water:	494.6' BTOC	
Borehole Type:	12.75" AH	RCH 7 7/8" Mud Rotary	Well Type:		ell, 4" Stainless Ste
Ground Elevation:	3572.05'		TOC Elevation:	3574.34'	
Completion Depth (Ft.)	Lithology USCS		Description		Sample Number
	SP CH SP	brown (2.5 YR 3/4), high j 830-860' SAND, white (1 845'	0YR 8/2), fine grain, clay le	ise at	
	, , , , , , , , , , , , , , , , , , ,	860-870' SAND, clayey/C	CLAY, sandy, red (2.5YR 4/0))	
		870-890' SAND, white (1	0YR 8/2), fine grain		
	SP				
	СН	892-903' CLAY, dark red plasticity, stiff-very stiff	dish brown (2.5YR 3/4), hig	h	
S.M. STOLLI	ER COR	PORATION			Page 10

Pantex GW RFI		Pantex Plant (B	urning Grounds)		Amarillo, Texas
Project Number:	3589-102	2	Client:	Mason & Hange	er Corporation
Geologist:	J.Ford / F	R.Rupp / T.Hall	Northing: 3773264.13	Easting: 63266	54.21
Drilling Contractor:	Stewart E	Brothers Drilling	Total Depth of Borehole:	903' BGS	
Dates Drilled:	04/13/00	- 04/30/00	Depth to Water:	494.6' BTOC 0.	5/25/00
Borehole Type:	12.75" A	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Wel	l, 4" Stainless Steel
Ground Elevation:	3572.05'		TOC Elevation:	3574.34'	
Ground Elevation: Completion	3572.05'	Total Depth of Borehole 9 Fine Grain Zone 251' BGS Red Beds 890' BGS Well Completion Details: Borehole Diameter 12 3/4' 8 5/8" steel surface conduc Borehole Diameter 7 7/8" 4-inch, Schedule 10, Type Stainless Steel Casings use with 4-inch, Type 304 Stai 5' Sump (895' - 900'); 140' - 755'); 60' Screen (660' - 7 Screen (460' - 640'); 462' C Colorado Silica Sand at Sc 732'), (430' - 642'); Bentori (419' - 430'); Bentonite Gr	Description 03' BGS ' from surface to 255' BGS ctor casing set from surface to	3574.34' 3574.34' o 255' 16 along ing (720'); 180' :k, #8/16), (653' - ' - 653'), e Pad	Sample Number
	ER COF	RPORATION			Page 11

SUUR JZE, S/N	Ϋ́Ε ΥΞ	ASDE.	LOGGING SPEED	MODULE TYPE, S/N	PROBE TYPE, S/N	TIME SINCE CIRC.	Rm at TEMP	FLUID TYPE	FLUID LEVEL	WITNESSED BY	RECORDED BY	TOP LOGGED INTERVAL	BTM LOGGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	LOG TYPE	RUN NUMBER	DATE ACQUIRED	DRILL MEAS. FROM:	LOG MEAS. FROM: Ground Surface	PERMANENT DATUM: Ground Surface	1		i 1 01 EX XOUNT	2 Y:CA			ELECT		
None None	0.1'	0.9'	15 ft/min 15 ft/min	UM 1524	RABPF 21 71 EPF1 567	N/A	N/A	Mud	Surface	Ford		AL Surface 250	AL 899' 903'	904'		Gamma Electric		4/28/00 4/28/00 1	: Ground Surface	Ground Surface 0.0 FT ABOVE PERM. DATUM	M: Ground Surface ELEVATION: NA	SEC TWP RGE	LOCATION: NA	STATE: TX COUNTY: CARSON	FIELD: PANTEX	WELL: PTX01-1012	COMPANY: SM STOLLER	CTRIC LOG	17301 West Colfax, Suite 265, PHONE: (303) 279-0171	Y
																							OTHER SERVICES:						Golden Colorado 80401 FAX: (303) 278-0135	n Company
BO	REH	IOL	ER	ECO	ORD	 }							· · · · · ·						Tr	124		ECORE	<u></u>							
	r si					FRO	MC				Т	TO	-						_	the second s	/WG		/ FR	OM			TC			
10					Τ	Sur	fac	e			-	250							_	Sump	the second s	• <u>•</u> •••••	89		-		90		·····	
8"						250)'				Ι	TD										lank	46				89			
											Ţ						·····			liser				face	· · · · · · · · ·	·	46			
) MM rill			• •	L_						_1.									OM	MEN	TS:								

Drill Type: Arch 0—255' Mud Rotary 250—905'

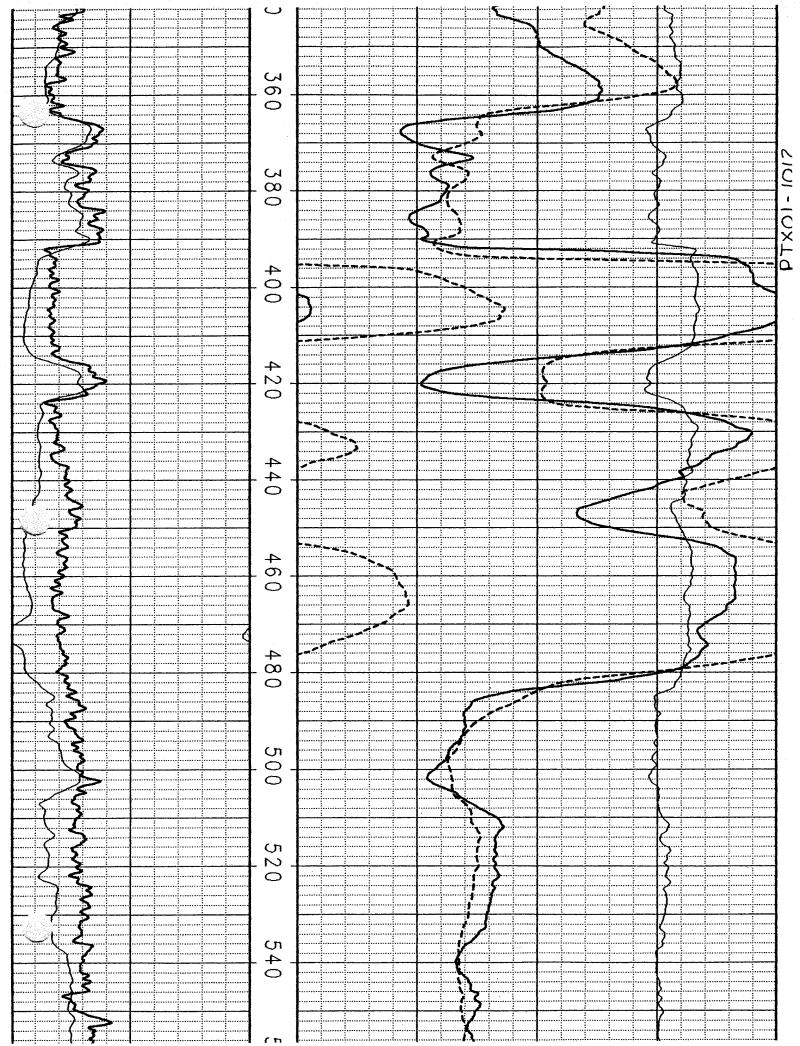

8 5/8" Conductor Casing Set Surface to 250' 4" Type 304 Sch 10 Stainless Steel Casing & Screen 300–900' Screen Slot 0.010

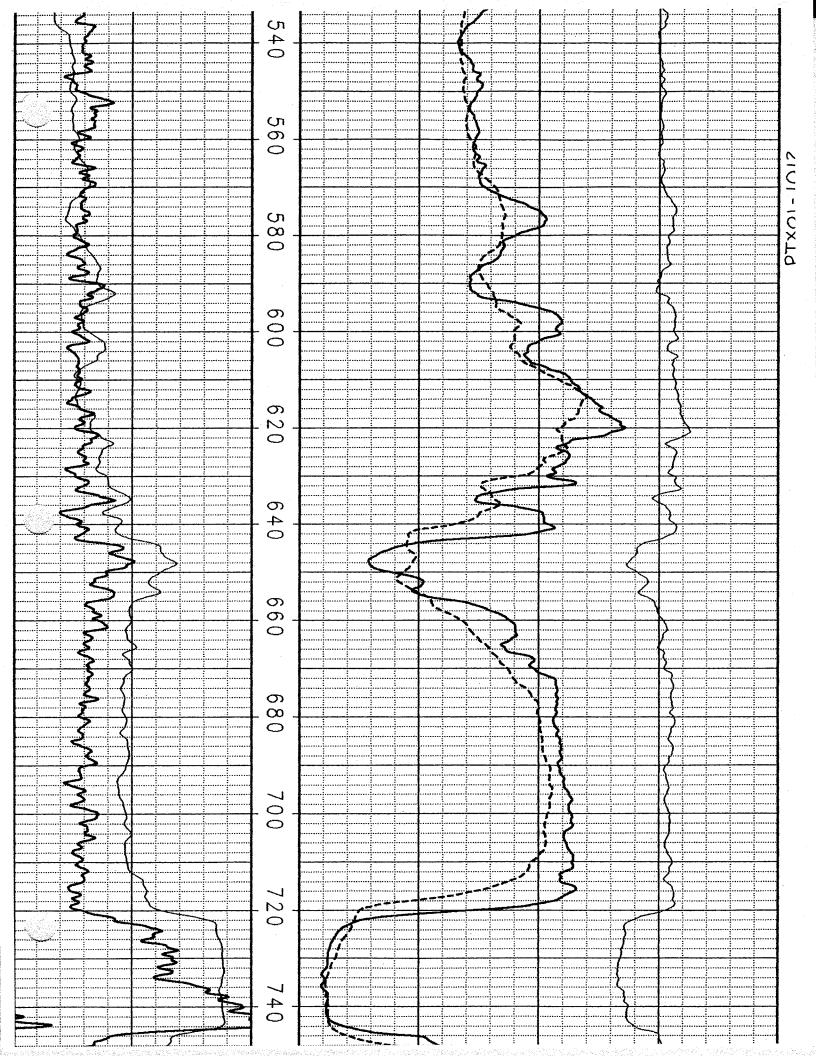

4" Type 316 Sch 5 Stainless Steel Casing Surface-300', MHC Supplied

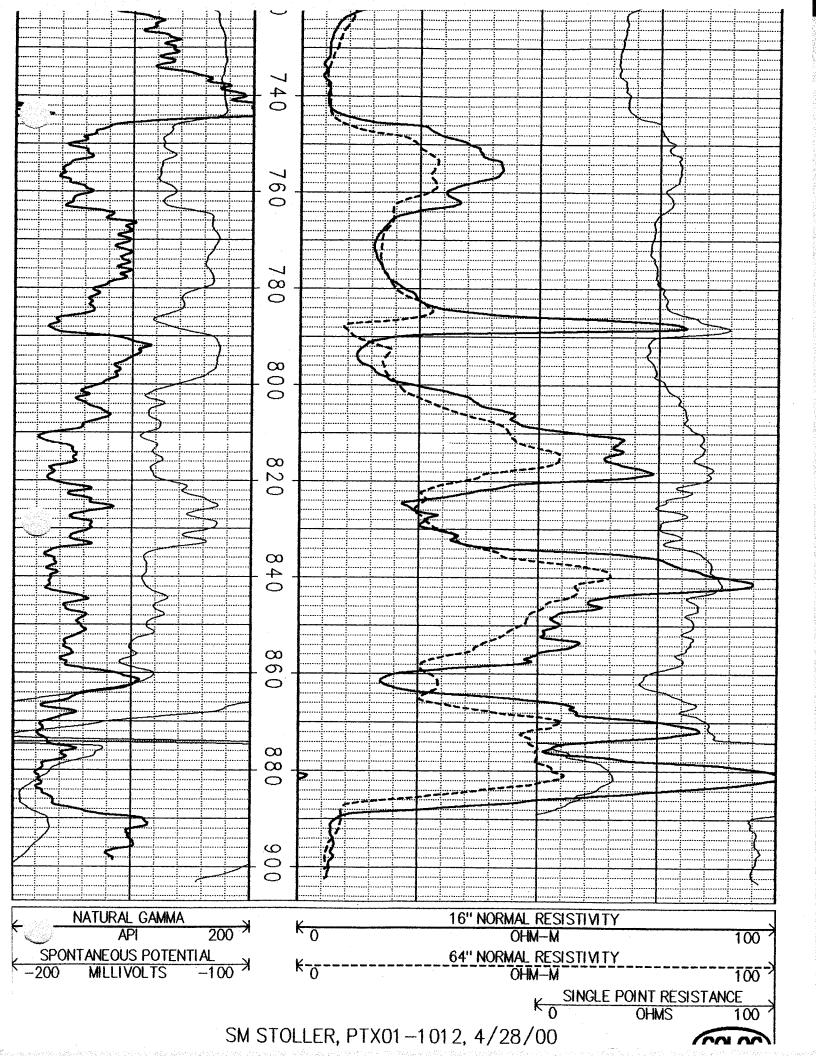
Borehole Logged Open Hole 300-TD'

NA - NOT AVAILABLE, N/A - NOT APPLICABLE

DIGITAL FILES: 1012,dat, 1012.HDP, 1012.PLP






1 1 1 **3 3**

일 것 같은 것 같은 것은 것이 같은 것 같이 같은 것 같이 같이 같이 같이 많이 많이 많이 많이 많이 많이 많이 없다.

e a d'Alexa e a Ca

Contractor: S.M. Stoller

Contract #: 3350-105

OPTIX #:

Included Documents

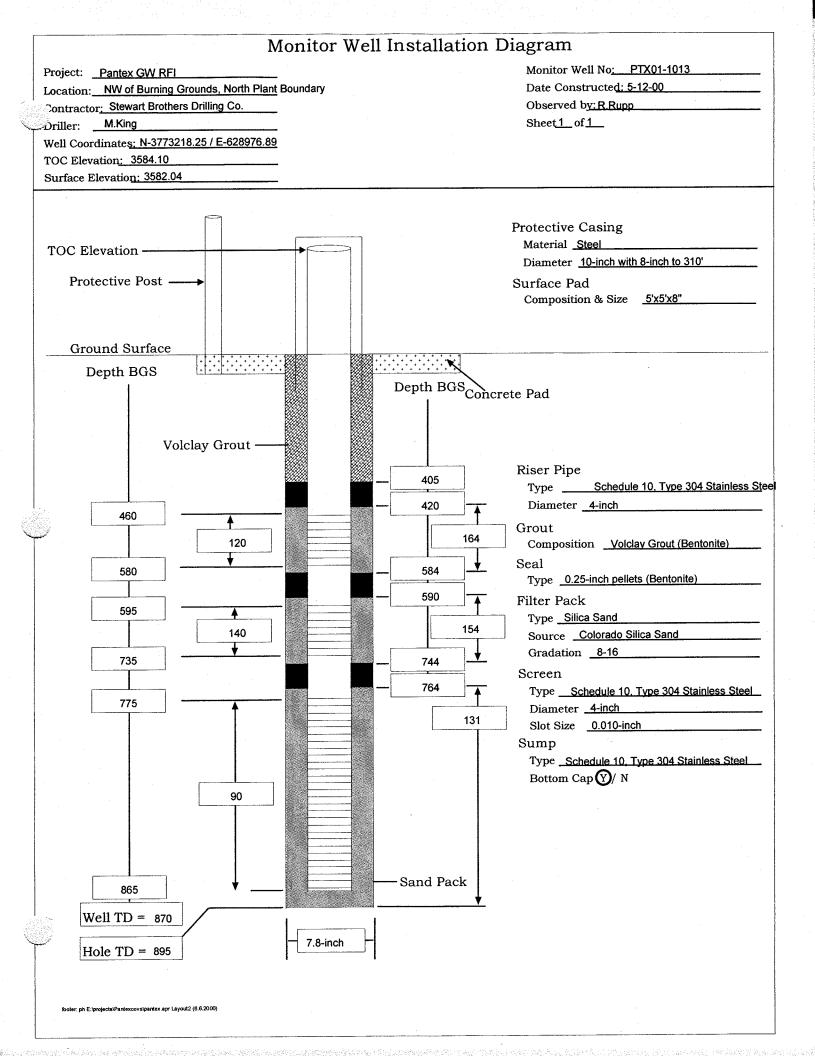
___Drilling Log ___Draft ___Final

_X_Installation Log

_X_Lithologic Logs ___Draft _X_Final

___Geophysical Logs

____Neutron


___Gamma

____e-log

___Bond Log

____Deviation log

____State Well Report

Pantex GW RFI	2500 102		urning Grounds)	Maria	Amarillo, Tex
Project Number:	3589-102		Client:		nger Corporation
Geologist:	R.Rupp /		Northing: 3773218.25	Easting: 628	5976.89
Drilling Contractor:		brothers Drilling	Total Depth of Borehole:	895 BGS'	05/05/00
Dates Drilled:		- 05/13/00	Depth to Water:	485.3' BTOC	
Borehole Type:		RCH 7 7/8" Mud Rotary	Well Type:		Vell, 4" Stainless Ste
Ground Elevation:	3582.04'	1	TOC Elevation:	3584.10'	1 1
Depth (F.)	Lithology USCS		Description		Sample Number
	SM CL	topsoil 5-20' CLAY, silty, sandy, fine sand, medium plastici	reddish brown (5YR 5/4), da light reddish brown (5YR 6/ ty, medium stiff, dry to damp	/4), very	
	ML	medium stiff, dry, strong C	-		
	CL	very fine grain rounded sa			
	ML	50-70' SILT, sandy, grave nonplastic, stiff, dry, highl throughout	elly, reddish yellow (5YR 7/6 y cemented caliche nodules	5), up to 1/2"	
	ML	(5YR 8/2 - 7/3), well deve	n, pinkish white to pink with loped calcrete, sub 1" angula ck-flour, increasing sand with	r	

Pantex GW RF			Pantex Plant (B	urning Grounds)			marillo, Tex
Project Number		89-102		Client:	Mason & I	-	-
Geologist:		Rupp / 🛛		Northing: 3773218.25	Easting: 6	528976.89	
Drilling Contrac			rothers Drilling	Total Depth of Borehole:			
Dates Drilled:	04	/17/00	- 05/13/00	Depth to Water:	485.3' BTC	DC 05/25/	00
Borehole Type:	12	.75" AR	CH 7 7/8" Mud Rotary	Well Type:	Monitoring	g Well, 4"	Stainless Ste
Ground Elevation	on: 35	82.04'		TOC Elevation:	3584.10'		
Completion	Depth (Ft.)	USCS]	Description		Sample	Sample Number
		SM		lish yellow (5YR 6/6), fine subangular, medium dense, o			
	- 100 <u>- 100</u> 	SP	very fine, subangular, grad	5YR 7/4), fine to medium g led, loose, dry andstone as broken nodules	rain some		
	-130		125' weakly cemented san 130-140' cemented sandst	dstone one nodules and somewhat	silty sand		
	-140	SP	140-150' SAND, pink (7.5 subangular, poorly graded,	5YR 7/4), very fine to fine loose, dry	grain,		
	- 150 	, , , , , , , , , , , , , , , , , , ,	medium grain, subrounded				
				yellow (7.5YR 7/6) to light m grain, trace coarse grain,			
	- 170	SP					
			PORATION				Page 2

Geologist: R.Rupp / T.Hall Northing: 3773218.25 Easting: 628976.89 Drilling Contractor: Stewart Brothers Drilling Total Depth of Borehole: 895 BGS' Dates Drilled: 04/1700 - 05/13/00 Depth to Water: 485.3 / BTOC 05/25/00 Borchol: Type: 12.75" ARCH 77/8" Mud Rotary Well Type: Monitoring Well, 4" Stainless 3 Ground Elevation: 3582.04 TOC Elevation: 3584.10" Completion Eg Sg Sg 190 Sg Sg Description Eg 200 Sg Sg Sg Samp 210 Sg Sg Sg Samp 220 Sg Sg Sg Sg Samp 210 Sg Sg Sg Sg Sg Sg 220 Sg	Pantex GW RFI		Pantex Plant (B	urning Grounds)		Amarillo, Texa
Drilling Contractor: Stewart Brothers Drilling Total Depth of Borehole: 895 BGS' Dates Drilled: 04/17/00 - 05/13/00 Depth to Water: 485.3 BTOC 05/25/00 Borehole Type: 0.0010 Elevation: 3582.04 TOC Elevation: 3584.10' Completion <u>55</u> <u>50</u> <u>50 <u>50 </u></u>	Project Number:	3589-102		Client:		*
Dates Drilled: 04/17/00 - 05/13/00 Depth to Water: 485.3' BTOC 05/25/00 Borehole Type: 12.75" AKCH 77.8" Mud Rotary Well Type: Monitoring Well, 4" Stainless 1 Ground Elevation: 3582.04" TOC Elevation: 3584.10" Completion U Egg Description Image: Seg of the second secon		**				76.89
Borchole Type: 12.75" ARCH 77/8" Mud Rotary Well Type: Monitoring Well, 4" Stainless 5 Ground Elevation: 3582.04 TOC Elevation: 3584.10 Completion Image: Completion Image: Completion Image: Completion Image: Completion Image: Completion Image: Comp				·		
Ground Elevation: 3582.04* TOC Elevation: 3584.10* Completion Egg Egg Description Egg 190 Egg 220-230* SAND, silty, light brown (7.5YR 6/4), fine to medium grain, trace coarse, subrounded, medium dense, damp Sm 220 220-230* SAND, silty, light brown (7.5YR 6/4), fine to medium grain, trace coarse, subrounded, medium dense, damp 230-240* SAND, gravelly (flattened angular pea-gravel), very pale brown (10YR 7/3), very fine to coarse grain, subangular, elaye (@ 245', moist 240 252-25* SAND, gravelly, brown (7.5YR 5/4), very fine to coarse grain, subangular, elaye (@ 245', moist 240 252-25* SAND, gravelly, brown (7.5YR 6/4), very fine to coarse grain, subangular, elaye (@ 245', moist 250 Ch. 25* SG CAXD, sitty sndy, +1" < 2", rinded-subang				*		
Completion $\underbrace{\widehat{U}}_{1}$ $\underbrace{\widehat{B}}_{0}$ Samp Numb $\underbrace{\widehat{U}}_{1}$ $\underbrace{\widehat{B}}_{0}$ \underbrace{S}_{0} Samp -190 -190 -190 -190 -190 -200 SP -200 SP -200 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -	••		RCH 7 7/8" Mud Rotary			ell, 4" Stainless Stee
-190 -200 SP -210 -200 SN -210 -200 -200 -210 -200 -200 -210 -200 -200 -210 -200 -200 -210 -200 -200 -210 -200 -200 -210 -200 -200 -210 -200 -200 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210 -210	Ground Elevation:	3582.04'		TOC Elevation:	3584.10'	
200 SP 210 210 220 200 210 210 220 200 210 210 220 210 220 210 220 210 220 210 220 210 220 210 220 210 220 210 220 220 220 220 220 220 230 220 230 230-240' SAND, gravelly (flattened angular pea-gravel), very pale brown (10YR 7/3), very fine to coarse grain, subangular 240 240-245' SAND, gravelly, brown (7.5YR 5/4), very fine to coarse grain, subangular, elaye (245-245' Car S 45) GRAVEL, slty sndy, t1" < 2", rnded-subang	Depth (Ft.)	Lithology USCS		Description		Sample Number
SC 260-270' SAND, 30% clay, reddish yellow (5YR 6/6), low plasticity, 70% very fine grain, some fine and medium, poorly		9 9	grain, trace coarse, subroun 230-240' SAND, gravelly pale brown (10YR 7/3), ve 240-245' SAND, gravelly coarse grain, subangular, c 245-245.5' GRAVEL, slty 245.5-247' SILT sndy lt re mst 247-247.5' SILTSTONE, pink (5YR 7/3), very fine g 247.5-255' CLAY, silty, s very fine sand, medium sti 255-260' SAND, clayey, t 90% very fine 10% fine gr medium dense, dry; stiff 1, 260-270' SAND, 30% clay	nded, medium dense, damp (flattened angular pea-grave ery fine to coarse grain, subar , brown (7.5YR 5/4), very fin elayey @ 245', moist sndy, +1" - < 2", rnded-subar dsh brn (5YR 6/4) vfn snd m trace subrounded flattened g grain, dense, dry andy, light reddish brown (5 ff, moist, dryer with depth race gravel, light brown (7.5 ain, subangular, poorly grad (8" clayballs; angular pea-gra y, reddish yellow (5YR 6/6),	l), very ngular ne to ne to ng ned dns ravel, YR 6/4), YR 6/4), ed, avel low	PTX01-1013-2-0 Sieve Analysis PTX01-1013-2-24 VOC PTX01-1013-2-24 VOC PTX01-1013-2-02 Permeability Anal PTX01-1013-2-24 HE, VOC

Pantex GW R				Pantex Plant (Bu	urning Grounds)			marillo, Texa
Project Number	:	3589-			Client:	Mason & Ha	-	
Geologist:				Г.Hall	Northing: 3773218.25	Easting: 62	8976.89	
Drilling Contra	ctor:			rothers Drilling	Total Depth of Borehole:	895 BGS'		
Dates Drilled:				- 05/13/00	Depth to Water:	485.3' BTOC		
Borehole Type:				CH 7 7/8" Mud Rotary	Well Type:	Monitoring V	Well, 4"	Stainless Ste
Ground Elevati	on:	3582.	04'		TOC Elevation:	3584.10'	1 1	
Completion	Depth (Ft.)	Lithology	USCS]	Description		Sample	Sample Number
			CL	(5YR 5/4), medium plastic stiff, damp to moist with de	0% clay, 40% sand, reddish , very fine grain, some fine,	medium		
	 290 		SW	30% fine, 10% very fine, th graded, loose, dry	race coarse grain, subangula	r, well		
	- 300		SP	grain, some fine grain, trac	dish brown (5YR 6/4), 80% ee medium, subangular, poor ry coarse sand to pea-gravel odes	ly		
	- 310 		SM	(10YR 7/3), with pale yello	% sand, 40% silt, very pale t ow (5Y 7/3) mottling and wl grains, very fine to fine grain n dense to loose, damp	nite		PTX01-1013-2-0: VOC
	- 340		SM		silty, light gray (10YR 7/2), inded, dense, caliche is 50%			
	350 		SM		nt brownish gray (10YR 6/2 bunded, slightly graded, som nt			
				PORATION				

Pantex GW RFI	2500 102	Pantex Plant (B			Amarillo, Tex
Project Number:	3589-102		Client:		nger Corporation
Geologist:	R.Rupp /		Northing: 3773218.25	Easting: 62	89/6.89
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	895 BGS'	0.05/05/00
Dates Drilled:		- 05/13/00	Depth to Water:	485.3' BTOC	
Borehole Type:	12.75" Al	RCH 7 7/8" Mud Rotary	Well Type:		Well, 4" Stainless Ste
Ground Elevation:	3582.04'		TOC Elevation:	3584.10'	
Completion Depth (F.)	Lithology USCS		Description		Sample Number
	9	fine to fine grain sand, sub	30%), pale yellow (2.5YR 7/ brounded, medium loose 30%), light reddish brown (5		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0	very fine to fine grain sand		1 K 0/ <i>3)</i> ,	
		430' same as above		711	
	SM	440-470' SAND, silty, lig fine to fine grain sands, loo	ht yellowish brown (2.5YR 6 ose	6/4), very	
S.M. STOLLI					Page 5

			1-1013		
Pantex GW RFI		Pantex Plant (B	urning Grounds)		Amarillo, Tex
Project Number:	3589-102		Client:	Mason & Hang	er Corporation
Geologist:	R.Rupp / '	T.Hall	Northing: 3773218.25	Easting: 6289	76.89
Drilling Contractor:	Stewart B	rothers Drilling	Total Depth of Borehole:	895 BGS'	
Dates Drilled:	04/17/00	- 05/13/00	Depth to Water:	485.3' BTOC	05/25/00
Borehole Type:	12.75" AF	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring We	ell, 4" Stainless Ste
Ground Elevation:	3582.04'		TOC Elevation:	3584.10'	
Completion Depth (Ft.)	Lithology USCS]	Description		Sample Number
	9:: 0:: 0 1:6 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0 0:: 0: 0	470-490' SAND, slightly s grain sand, subrounded, ab	silty, reddish yellow (7.5YR undant SiO2, loose	7/5), fine	
	1.66 1.9 1 1.16 1.9 1				
	SP	490-570' SAND, brownisl grain sand, subrounded, sli	n yellow (10YR 6/6), fine to ightly graded, loose	medium	
S.M. STOLLE	ER COR	PORATION			Page 6

Pantex GW RFI			1-1013		Amarilla Tar
Project Number:	3589-102		urning Grounds) Client:	Mason & Hange	Amarillo, Texa
Geologist:	R.Rupp / '		Northing: 3773218.25	Easting: 62897	
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	895 BGS'	0.07
Dates Drilled:		- 05/13/00	Depth to Water:	485.3' BTOC 0	5/2.5/00
Borehole Type:		RCH 7 7/8" Mud Rotary	Well Type:		l, 4" Stainless Ste
Ground Elevation:	3582.04'	Cerr / //o Wide Rotary	TOC Elevation:	3584.10'	1, + 5tainess 5te
Completion (Ft.)	Lithology USCS		Description		Sample Number
	SP				
	SW	brownish yellow (10YR 6/ subangular, well graded, lo		vn to rain,	
	CL 0.0000 0.0000 0.0000 0.0000 0.	582-610' CLAY, very pale 610-650' SAND, clayey, I fine to medium grain, med	ight yellowish brown (10YR	. 6/4),	
S.M. STOLL	ER COR	PORATION			Page 7

			1-1013		
Pantex GW RFI		Pantex Plant (B	urning Grounds)		Amarillo, Texa
Project Number:	3589-102		Client:	Mason & Hang	ger Corporation
Geologist:	R.Rupp / '	T.Hall	Northing: 3773218.25	Easting: 6289	976.89
Drilling Contractor:	Stewart B	rothers Drilling	Total Depth of Borehole:	895 BGS'	
Dates Drilled:	04/17/00	- 05/13/00	Depth to Water:	485.3' BTOC	05/25/00
Borehole Type:	12.75" AF	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring W	ell, 4" Stainless Ste
Ground Elevation:	3582.04'		TOC Elevation:	3584.10'	
Depth (Ft.) Depth (Ft.)	Lithology USCS		Description		Sample Number
	SK SC SC SC SC SC SC SC SC SC SC	650-750' SAND, slightly s very fine to fine grain, med 675' same as above	silty, very pale brown (10YR dium loose	. 7/3),	

	L	1701-1013	
Pantex GW RFI		ex Plant (Burning Grounds)	Amarillo, Texa
Project Number:	3589-102	Client:	Mason & Hanger Corporation
Geologist:	R.Rupp / T.Hall	Northing: 3773218.25	Easting: 628976.89
Drilling Contractor:	Stewart Brothers Drilling	Total Depth of Borehole	: 895 BGS'
Dates Drilled:	04/17/00 - 05/13/00	Depth to Water:	485.3' BTOC 05/25/00
Borehole Type:	12.75" ARCH 7 7/8" M	Iud Rotary Well Type:	Monitoring Well, 4" Stainless Stee
Ground Elevation:	3582.04'	TOC Elevation:	3584.10'
Completion Debth (Ft.)	Lithology USCS	Description	Sample Pol Number
	6 9 0 0 6 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	AY, slightly sandy, reddish yellow (5YF , medium stiff AY, slightly silty, light reddish brown (2 lastic, medium stiff AD, clayey, pink (5YR 7/4), very fine g , slightly plastic	2.5YR
'∴·⊨—	0///0//9		

			1-1013		
Pantex GW RFI			urning Grounds)		Amarillo, Tex
Project Number:	3589-102		Client:	Mason & Hanger	-
Geologist:	R.Rupp /		Northing: 3773218.25	Easting: 628976.	89
Drilling Contractor:		Brothers Drilling	Total Depth of Borehole:	895 BGS'	
Dates Drilled:		- 05/13/00	Depth to Water:	485.3' BTOC 05/2	
Borehole Type:	12.75" A	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring Well,	4" Stainless Ste
Ground Elevation:	3582.04'	1	TOC Elevation:	3584.10'	1
Depth (Ft.)	Lithology USCS		Description	Sample	Sample Number
	0 0 0 0 0 0 0 0 0 0 0 0 0 0	medium stiff	silty, reddish brown (2.5YR bink (5YR, 7/3), very fine gra		
860-	6 / 9 / 9 /	863-895' CLAY, weak red plastic, medium stiff	d to red (10R 5/4 - 5/6), med	ium	
		890' same as above			
S.M. STOLLI	ER COF	PORATION			Page 10

				1-1013			
Pantex GW RFI			Pantex Plant (Bu	urning Grounds)		Α	marillo, Texas
Project Number:	3589-	-102		Client:	Mason & H	anger Co	orporation
Geologist:	R.Ruj	pp / T.	Hall	Northing: 3773218.25	Easting: 6	28976.89)
Drilling Contractor:	Stewa	art Bro	thers Drilling	Total Depth of Borehole:	895 BGS'		
Dates Drilled:	04/17	//00 -	05/13/00	Depth to Water:	485.3' BTO	C 05/25	/00
Borehole Type:	12.75	" ARC	CH 7 7/8" Mud Rotary	Well Type:	Monitoring	Well, 4"	Stainless Steel
Ground Elevation:	3582.	.04'		TOC Elevation:	3584.10'		
Completion	Lithology	SOSN 7 FF 8 8 4 4 5 5 7 7 (() ()	Fotal Depth of Borehole 8' Fine Grain Zone 247' BGS Red Beds 863' BGS Well Completion Details: Borehole Diameter 12 3/4' 3 5/8" steel conductor casis Borehole Diameter 7 7/8" 4-inch, Schedule 10, Type Slot Screen 5' Sump (865' - 870'); 90' S 775'); 140' Screen (595' - 7 Screen (460' - 580'); 462' C Colorado Silica Sand at sci 744'), (420' - 584'); Benton 405' - 420'); Bentonite Gri 5'X5'X8") with 4 bollards ocking cover.	Description 95' BGS ' from surface to 310' ng installed from surface to 3	310' and 10 ng (735' - y; 120' k, #8/16 590' - - 590'), e Pad	Sample	Sample Number
S.M. STOL	LER CO	ORF	PORATION				Page 11

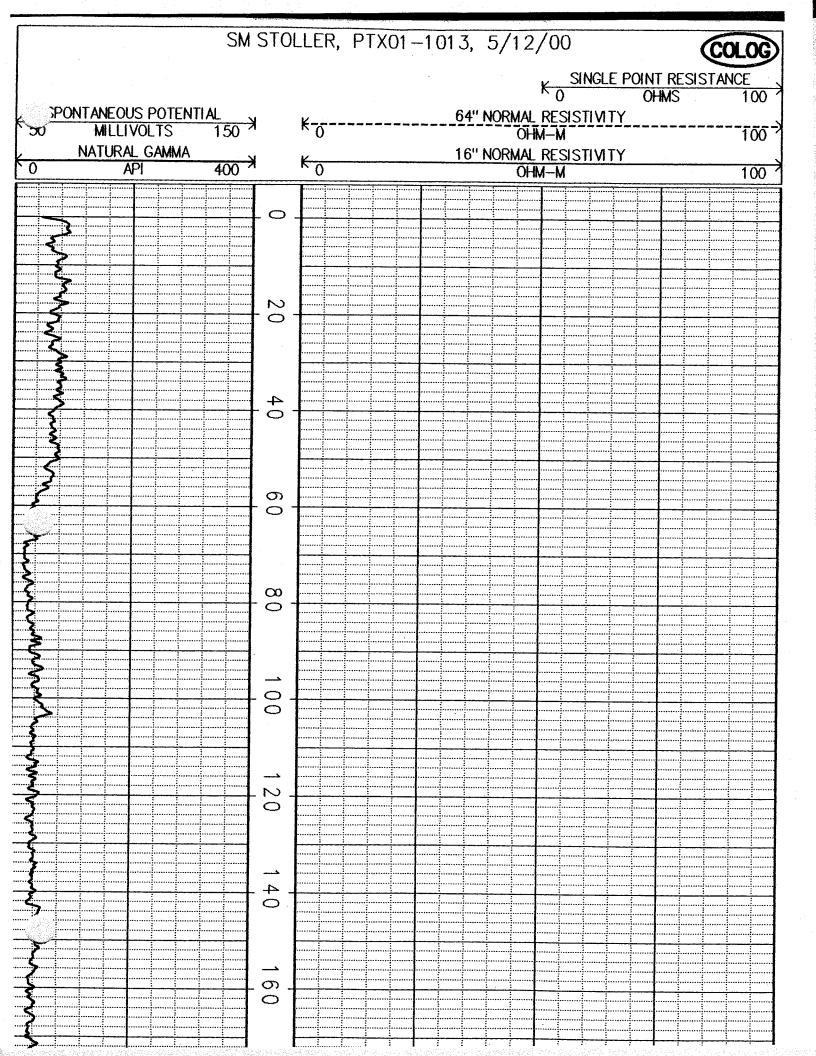
SOL. /SIZE, S/N	SANT INTERVAL	A.S.D.E.	LOGGING SPEED	MODULE TYPE, S/N	PROBE TYPE, S/N	TIME SINCE CIRC.	Rm at TEMP	FLUID TYPE	FLUID LEVEL	WI TNESSED BY	RECORDED BY	TOP LOGGED INTERVAL	BTM LOGGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	LOG TYPE	RUN NUMBER	DATE ACQUIRED	DRILL MEAS. FROM:	LOG MEAS. FROM: Ground Surface	PERMANENT DATUM: Ground Surface	1	SM ST PTX01 PANTE TX C	-101 X X	3 Y:CA		co	ELECTE		
N/A	0.1'	0.1	20 ft/min	UM-1524	RABPF, 2019	1 1/2 hours	NA	Mud	Surface	Rupp	Nelson	Surface	888'	894'	895'	Ganna		5/12/00	Ground Surface		Ground Surface	SEC TI	LOCATION: NA	STATE: TX	FIELD: PAN	WELL: PT>	COMPANY: SM	TRIC LOG		
N/A	0.1'	0.1'	20 ft/min	UM-1524	EPF, 1567					-		310'	893'			Electric		5/12/00		0.0 FT ABOVE PERM. DATUM	ELEVATION: NA	TWP RGE		COUNTY:	PANTEX	PTX01-1013	SM STOLLER	(,)	17301 Weșt Colfax, Suite 265, PHONE: (303) 279–0171	COLOG Division of Layne Christensen Company
	ムノ - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1																			I. DATUM			TO	CARSON					65, Golden (FAX: (30) Christen
																							OTHER SERVICES:						Golden Colorado 80401 FAX: (303) 278-01 35	sen Company
B)RF	HO	LEI	REC	OR	D							B							CAS	ING	RECOR	D							······
	TS					_	NOX			i		TC)								E/W			NOS		<u> </u>	Ť	0		

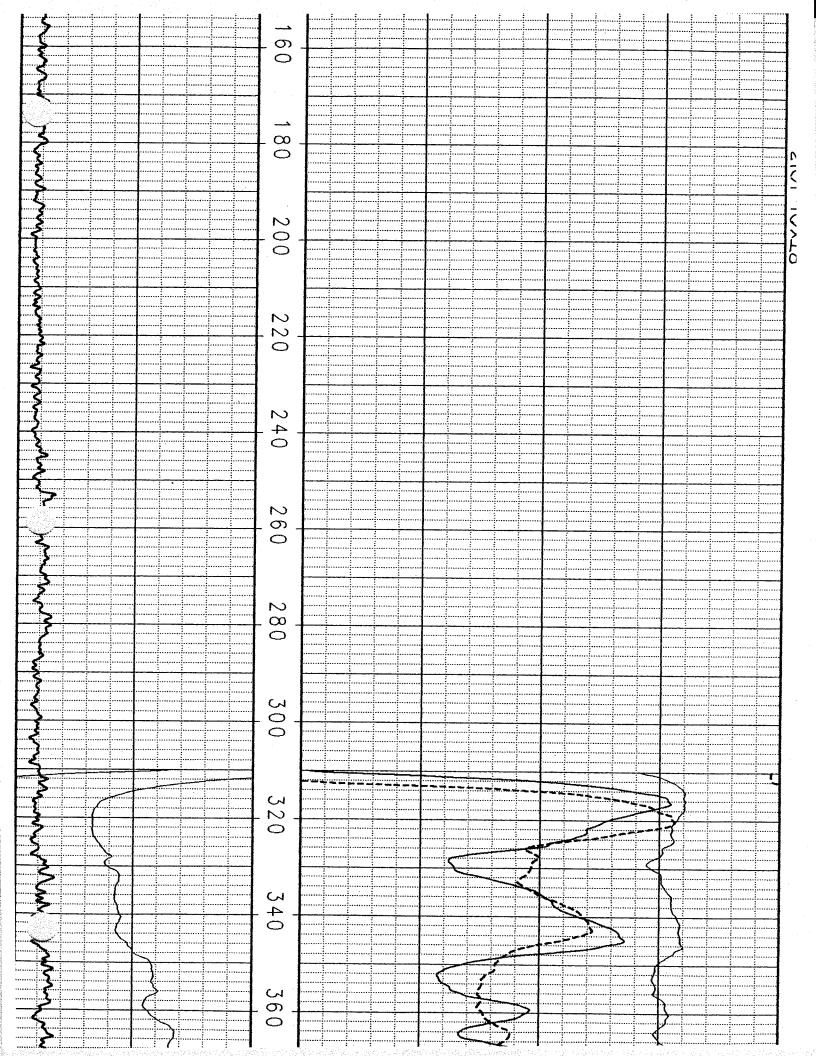
BUNCHULE NE			CASING RECURL	ļ	
BIT SIZE	FROM	TO	SIZE/WGT	FROM	ТО
10"	Surface	310'	Sump	865'	870'
8"	310'	895'	Screen/Blank	460'	865'
			Riser	Surface	460'

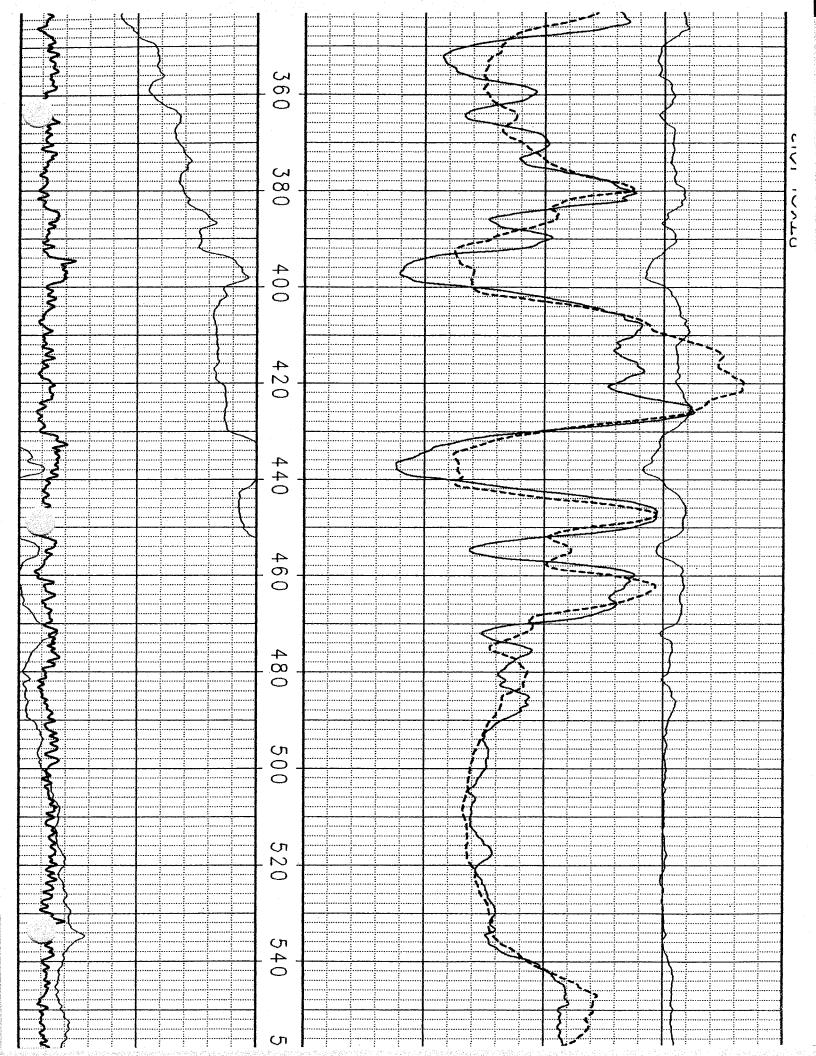
COMMENTS:

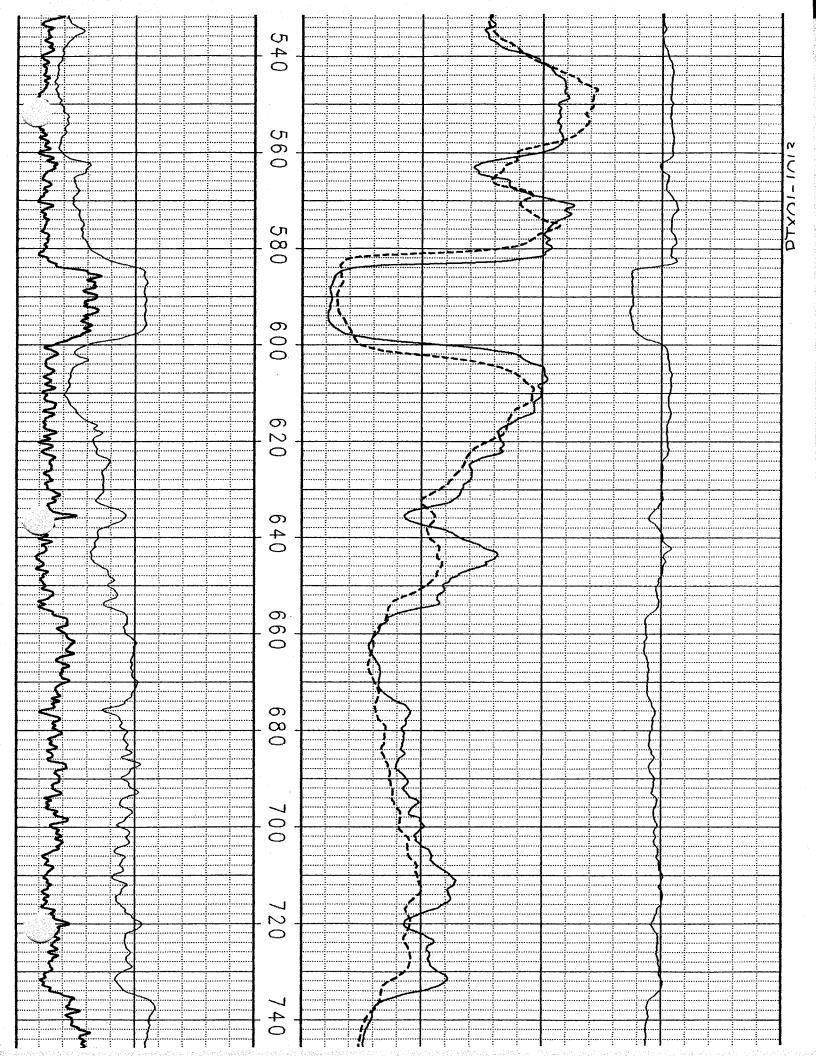
Drill Type: Arch 0-310' Mud Rotary 310-895'

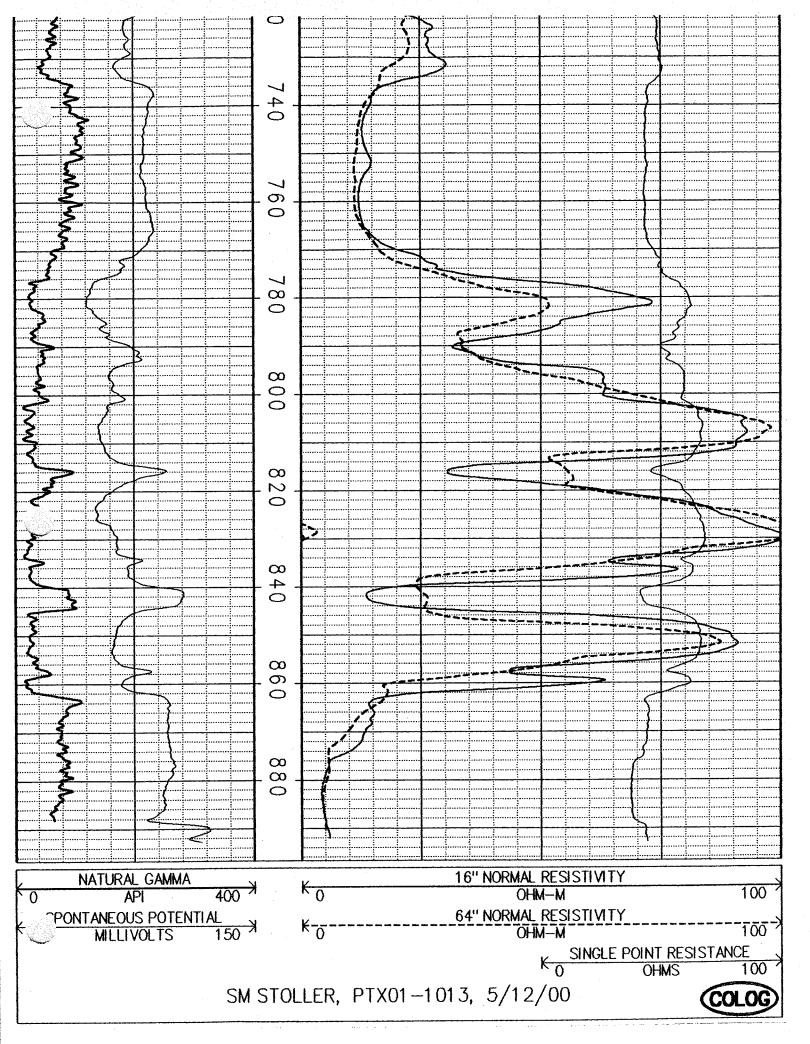
8 5/8" Conductor Casing Surface to 310'


COMMENTS:


4" Type 304 Sch 10 Stainless Steel Casing & Screen Screen Slot 0.010


Borehole Logged Open Hole 310-TD'


NA - NOT AVAILABLE, N/A - NOT APPLICABLE


DIGITAL FILES: 1013.DAT, 1013.PLP, 1013.HDP

PTX06-1033

Contractor: E²M

Contract #: 03003

OPTIX #:

Included Documents

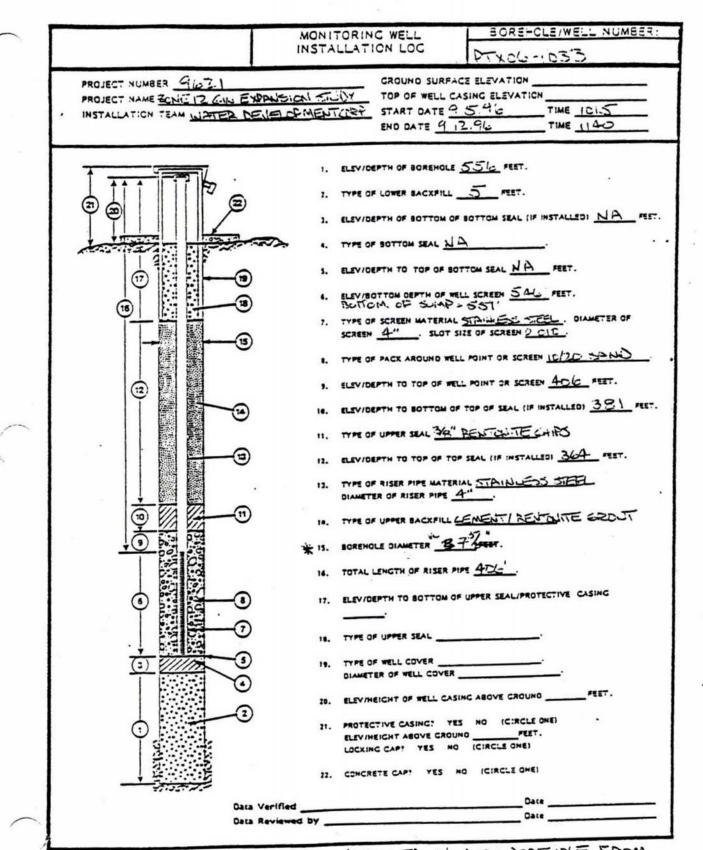
_X_Drilling Log _X_Draft ___Final

_X_Installation Log

___Lithologic Logs ___Draft ___Final

___Geophysical Logs

____Neutron


___Gamma

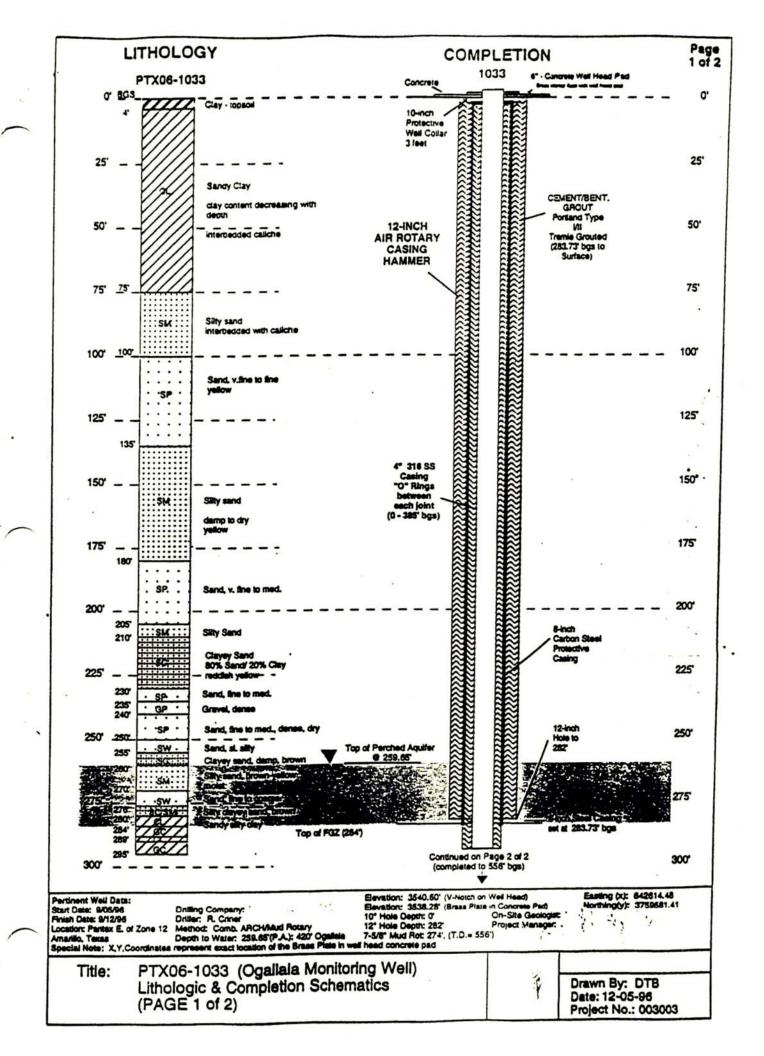
____e-log

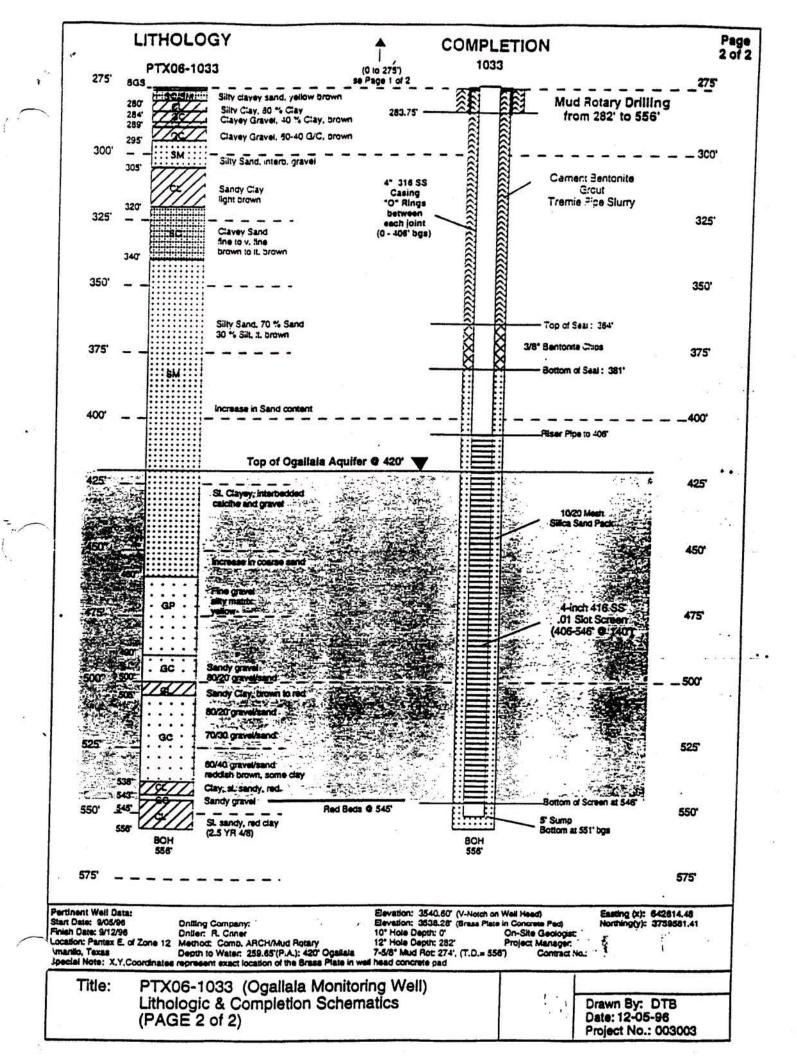
___Bond Log

____Deviation log

_X_State Well Report

* 8" PERMANENT STEEL CASING INSTALLED IN A 12" BOREHOLE FROM GROUND LEVEL TO 283.73 bg1. CASING GROUTED W/ CEMENT/BENTONITE GROUT


_	of Boring No.	Project Nur 962					ation	2/PAN		
	TXOG. 1033		-1	ia Cra	red:C	F	ALC I			2 41
	A CONTRACTOR								iplered: 9.1	
	IS CO. JATER DEVELOPM	ENI CORP.	_	moler		0.5		Titla Dep	Li. 3.74	
Drille	R. CRINER	(Firs		Fir	al: 500	
	ng Method: AIR RETARY VI							TOC		
Drillin	ng Equipment SPEEDSTAR	- WAR 20122	TD 2	32'	NUD	201	ARY T	STOTAL D	EPTH	
*	ole Bacicill or Well Completion Da WL OF PERCHED AGUIF	ER · 259.65'	ارج							
Depth (feet)	LITHOLOGIC DESC		10000	15	Blaw	Report		REMA	RKS	
T		נוביב השמבובדייון	10	_	!		1			
-				-1			i			
	TIFF, 624; DARL 45 LIOYZ 442) - AT 5' F INTERDEDUED CULH	E.		!						
-	- הפרטויא אבעבע נאין	HE LILLY : JOHR,			1					
-		1975) 1								ľ
				i						
-							i			
				1			1			F
	uzera da composición de						1			
-	- DRY SOUT TO ARDING	בינפהשיאו ; דיייבו		-	1					. 1
-	- 20% LAN, 20% SHAD. L PINKSH 6204 (7.548 -	ישי הם הבוצו האמדוגדעי דבוי, ואדבאבשבו הענה								
1	- 102 (LAY: 20% SAND, 578); INT SAND ()	51210 - 520mi (7.542								
1-							- 80			
	*									F
	- שומאו אשונטי (אד?						i			
1-				1			1			
	- 107 (1071 : 40% 3040.	DAMD : YELL SIGH DES					1			1
	- 107 (107 ; 40% 5010; (5785/8); 117881560	DOUCE		i			1			
1-				1	1		1			
										H
H	SICT SAND - GUAS SAND, ICT SUT	WER FUE TOFNE	SM							
	5127 540 - 1076 5200, 1075 540 6420400 - 60000 to MEDINA (578 7/4); INTERDEDED COL (578 7/4); INTERDEDED COL	DEUSE: DEN; P.UK	Sr	1			1			
	REMAN PERMIT SAK									
-	- אפונטיינ ואיז אין אין איז	sound sources		1						
	- DEX; DECORPOSE IN CALLOR						1			
-	SAND - HERY FINE TO FILL	In F. Dank in	15	1			1			
	SAND - WELLOW LOVE THE	Tope! www.2-00001-00	14.5							
							1			
-	- INTERSEDED FINE GRANED	במשובון אמז	55							
7	- INTERSECTED PHE TO CLOSE									
1	THE DECKED PHE TO COLSE	CONTRACT OF DARK								
-	T					1				L
				1	1 1		t			-


	Log of Boring No.	Project Nun	tiber	14	cation		
	PTX06-1033	962	.1	1.2	SUNE 1	2 / PANT	EX
	Logged by V. CRNICH Checked by:		Daie	Started: 9.	5.96	Date Complet	
	Drilling Co. WATER DEVELOPMEN	IT CORY		amete: 7-5/	E 10:5/8	Total Depuh:	556.0
_	Driller P. CRINER		ISamp				
() () () () () () () () () ()	Drilling Method: ARCH LD . 242) MUD EDT	204 6282-11	-	to water: Fi	rstit	Final:	
	Dalling Equipment SPEEDSTAR			tion: Grad:		TOC:	
	Borehole Backfill or Well Completion Data	259.65' 6	² J				
25	LITHOLOGIC DESCRIPTIO		USCS	Sample Blow Counts	Wad	REMARKS	i
- 2	ישרער איז		SP				
	SALTY SUND - 402 SUND, 1070 SLT, 1800 7.400 LOSSE TO MEDIUM DELOSE; DOMAP VELLOW (7, 542 7/6)	75 F ME 600-1120; 22065H	SM				
50	- NED. JA DENSE						
	- DAMP TO DOLY; YELLONI (10427 AMOUSTS OF GEARL (45%) - CALES OF THE PRETALLY CEM						· - - -
1							
30	- HC GRANEL ROSERNED						
tu1						2 ⁵⁴	
	Sound - WEDDI FINE TO FINE GRAINED MEDIUM YELDU (1042716); SUGATUN SINTY (25	dense; danny R)	5 4 2				
	- DEY TO DOWLD	<u> </u>					
00	- אבטוא מבאגב דם שפולבב, אורסט						
	SIGTY SAND - 90% SAND, 10% SUT VERYEN GRANNED; DENSE; DAMP; BEDDON YE	TE FILE	sin				
	בואיצי באוט. 2072 באוט בעוק אוט אין אבער אין אבער אין איז אין אין איז אין איז אין איז אין איז אין איז אין איז א גער איז	HE TO Falt	sc			10	
	- "10% sixub, 10% clay; verse, dan	~					
25	- XINDER AMOUNTS OF CLAY LENSE INTERBEDDED CLAY				1		
	SAND- VERY EINE TO MEDIUM CRAINED: DA CARSE CRAINED SOUND : SUBCOMMER: BROWNEN YELLOW (IDYE LUC) GRANEL- FINE COMMO: DELDE: SUBCOMMER:	RE AMONTS OF	SP .				-
1	VERY PINE TO MEDIJA GRAINED JA	MP SUND.	60				-
ł	DENSE , VERY PALE BLOWNIC (1) 1 - OWNIC	PENSETT SCAN	5				-
D	- שאתף דם אנייד יידעי שאיד דב אבשאיו נו האשרען יידעינוטיע וטיע דני - שאתף: יוט פראנטן אניידעין אונדי				ł		
U-	ProjectionE 12 GN EXP. STUDY engineering	-environmental	Managem	ent Inc., Gel	den. CO	P	ager of 5

Log of	Bonng No.		Project Nur	noer									
PT	106-1033		9621				1.5	DI	EI		ANTE		
Logged	buil CIZNILIT	Checked by:				red:9	_	-			omplete	the second s	29
Drilling	CO. WATER DE	JELCEMENT	COEP .	Bit	Diam	eter: i i	2 54	- 7	-5/4	Total I	Depuh:_	556	
Driller	R. CEINER			ISam	-			_					
Drilling	Methodipec HLD	292') MD 20	TARY (282-7	DIDep	h to	vater:	Fir	St: *	·		Final:		
	Equipment STEET			Elev	acion	Grad	1:			1	'OC:		
Boreho	e Backeill or Well Coo	AGUIFER = 2	59.65 6	1									
Depth (feet)		GIC DESCRIPTIC		Linalogy USCS	Sample	Illaw Courts	Revery	Mdd		RE	MARKS		
ic Ti	אבעביל ניטיבדונים אפעביל ביאבע	ידעיין ידעיין איניין איניי איני	ייב אורה נבאינבא	54				1					
	LAND STATE STATE	8- 10% - 104 - 548 51 - 10% 10% - 10% - 10% - 10% - 10% - 10% - 542	General 1	s.									
	אראיז איזאיז איזא איזאיז איזאיזא אונאעז גאיזאיגע איזאיז איזאיזאיז איזאיזאיז איזאיזאיז איזאיז איזאיז איזאיז איזאיז איזאיז איזאיז איזאיזאיז איזאיז	ישין אלאר הישבעו ישר	2011 (23 Parts) 201 (23 Parts)	SM									
5	אטושר הואד דם נכאמשבי (אטושר גע אווידד) בענאדניו	いて、 下、	100	SNI .									
	אבטייה בינאר אישר אישיים		- SUETD .	54			1	F	D'D 1	Carsin	6 AT 28	e ngi	
	יישאי, אבא ידעג ילשי ועסדינגדין: אבא		T' MEDWA	a				T	2 2	3 73	ANNENT		-
1	المعاد ونعما المعناي فنا		בשות בנים שוו	64				i					
	שלא נבאי בניה ל נואבר באיפרא נואר ביאיפרא נוגעד באיפרא נוגעד באיפרא נוגעד	אין לאיז איני איני איני אינייאי אינייייניני איניייאי איניייייניני	2.2. 0726/6),	c.									
	SUCHTLY SAN	Light densi inter	4 (104RG/L)	ic									}
	1024 2043 - 50% 5040, 1024 2043 - 50% 5040, 13200 1050 1060 00 1620 204 1000 00			n			•						
	אלאולא נושאי- לטיגנושוי א אות דם בואמע צע המשר זה נושאי געריין אות לא גאב נולבי אבנות לא גאב נולבי אבנות	icon we a simple to that has	محمد میں اور	a								-	
5 -	زرون برون مریمی ایکری ۲۵ دوست و کاستی ۱۳ می مرکز	ann Clay, Jern Clae 28, Jern Clae To Shaé 29, Jern Clae To Shaé 20, Jern Hand (101877) 75	Townse Di with And Name)	8									
	కుంగా కుంటిం శరా, కులుని, కెల కంటని , కండంగెసిగి ఓటిం	2542", JEAN FRETS EY LA (276); LLAT B	7:15 0000 1000 Denne (7.5712644)	SM									
		inte persona p											
	- 10-6-12020	متدعلقد											
5													ļ

Log of Bon	STATISTICS CONTRACTOR OF A STATISTICS		Projet No							LE	2			
	2-1033	Checked by:	1-162	_	Daia	5/2-	ed: 4	-	-		the second day is not	Complet	1.0	10 0
	V. CENICH		()		_		ter:		_			Depuh:		
	WATER DE	EUMENI	LEP		Samo				10				2.2.	
Daller R.	CANER		DN (SC) T		1.000		vater	Fir	st.*	-		Final:		
Drilling Me	thod: APCH (C-2	SZIMUSZCII	ACT (LDC	_	_		Gm			3	1	TOC:	V	
Drilling Eq		Dine Data			-					4		NR		19. 1
* WL C	E PERCHED	AQUIFER = 2	57.65191											4
Depth (feet)	LITHOLO	GIC DESCRIPT	ON	ديني برين	lor.	Sample	Blow	Reswery	Mdd		R	EMARK	s	
- 3100	۲ 20413- ۲۰% میلید دیسیدی کی مسلم دیسید ۱۹۳۳ میلیدی	אני אודי שאיניים י נו נור שטוניג נובוב יובאי איבי	שישייאי גיושל אייישיאייישייאייישיישייש גיוער אייישיישיישייש גיוער אייישיישיישיישיישיישיישיישיישיישיישיישיי	8	SM									
	- Incerne in 7		•											
1	-	•	_							r.				
	- 304.57.4 44 FWE 624.45	nen ; incorrense 42000												
	GRANED ; VE	א נובא נכאדבארי אום (גבאנ) ופדיו ביר העב פשעיי (ופ ביר הי נושיקנארם)	FAETO FINE				-				1.0			*
		PORT; INTRACO												
	BRANIS (7.54	GONEL INTERNE	אבי אד. בשא		SP	-								
	Five to five Camiled Sand Subzounded	נוצא איבט גובץ אישט ; גאיו גאפ איפטנעכט	SAD CONSE											
	- MITELYCOLOGY CSYR 8/22 31 CLAN LAYRL Samuels	שנדי נובד פפעאי אים פורג פעסב דידי גדי פעמי גדידי גדי פעלאינשפיינד ג'לפ	10 44 AE 28 4612 5412 - RADE 53 246	+										
-	- 5054 (120	IET MIRY												
	m franki smit De				ci									
1 -	M George - Byb Bu Lourse Stands Sh Up ME CLANEN M	שמעונים גרש לעשיים לע	די גישייביים; ביייצרב		60									
111	"INTERSEDCED 3	Dr (IN BED (2	SIRAND					1	1 1				Page	

	rojet Num 9621						ミ	7			
Logged by 1 CRN1CH Checked by:	-16-1	Daie	Star	ed: 4					te Com	nlered.	9.12
Drilling Co. WATER NEVELOPMENT EC	60			::e:: :		_			al Dep		
Driller R. CRINER	<u>sr</u>	Sam				~	-				20
Drilling Methodiapcit (0-222); MUD 2002	- 120 -			vater	Fir	st: +	k		Fig	al:	
	1044-11	Elev	ntion	Gm	d:				TOC	-	
Drilling Equipment SPEEDSTAR Borehole Backfill or Well Completion Data.											
* WL IN PERCHED AQUITER = 259. 65	2 मिले।										
LITHOLOGIC DESCRIPTION		Lithology	Sample	Illaw Counts	Resourcey	Mdd			REMA	RKS	
2 2 30007 LAT - 200 LAY, 20% SHAND , LINT 320		فتحد	Sa	= 0	2						
TE SED (25425/6)			-			İ					
שאואי נצמילו. יציי נומדנו, זביא באום, היאד נינס משובר, נומדים נינסיובט בואוס, נייאדי ה	127	66									
- +0% נצאדב, זביה גאום : הואר הינמאדבט היי הראשוויה בשונים יועבו אדם גאוש ואידי נונגר פושטויט נומא ארמדעט (דברענות) :	Lewiss;					1					
די בייאינייגא ו סוגעעני שנייא אייא	SED AT										
											÷.
	William Con					1					
בישור איז	T DOTA NO.	-									
(meth)											•
- CLAN- SUGARY SHEN MEDILE STITE BASE ON- 14		ü			1						
Shuton (2201/21" "O" 62012, 40% 3000; FUE 600000 CROST 4000 HED 3000; SUBMICH CLAVEN ANTRA	CD and a	SC			1						
SLIGHTLY SALAN MED TIFE - THE BACK ME	(churded a	KL							· •		
R#6(2.572.4/8)											
		_									
TOTAL DEPTH : 556						1					
	1										
							3				
17					1	1					
H .						1					
						1					
1-1											
						1					
11											
H	2					1					
11						1					
-											
-		ŀ			İ						
1											
						1					
						+					ge 5 of

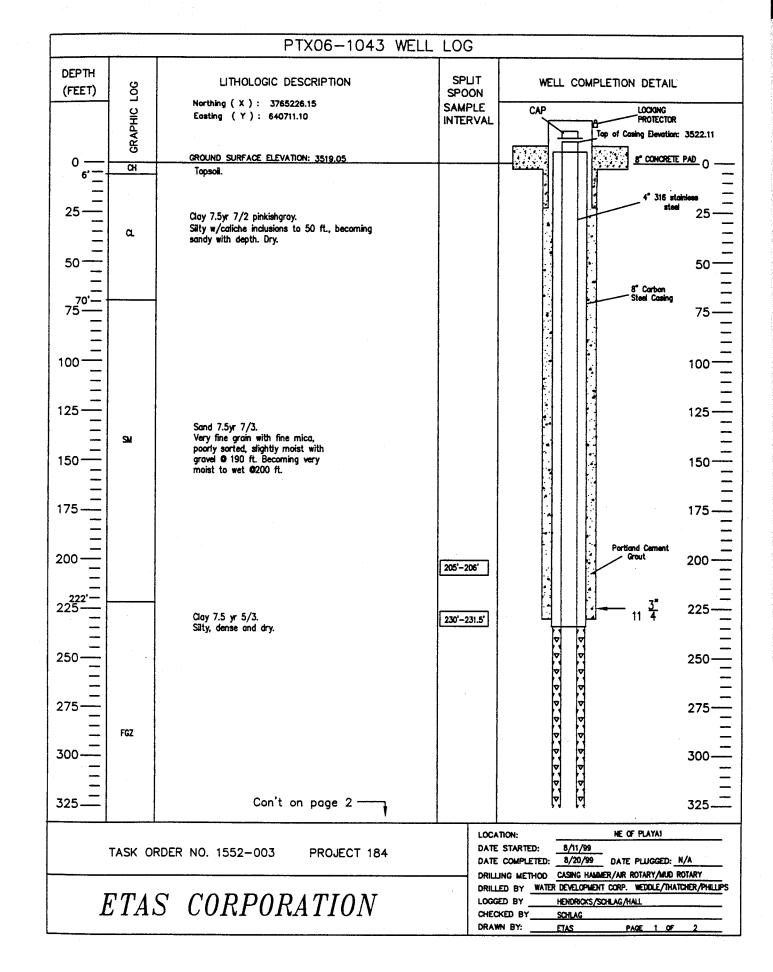
Contractor: ETAS

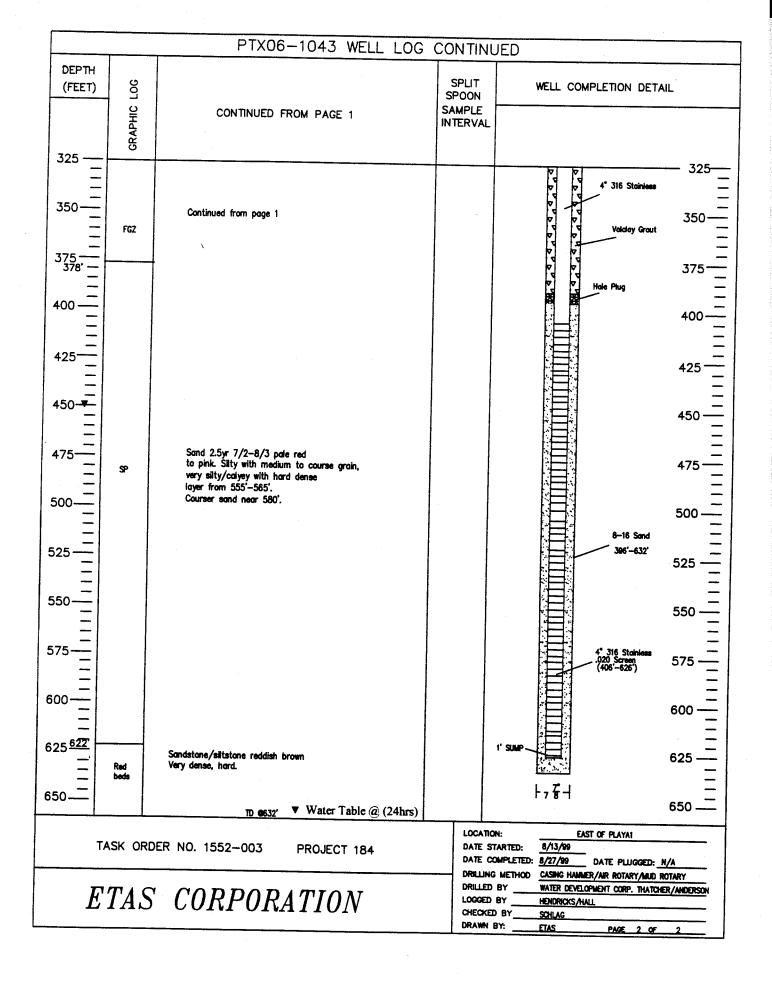
Contract #: 1552-003-184

OPTIX #:

Included Documents

___Drilling Log ___Draft ___Final


_X_Installation Log

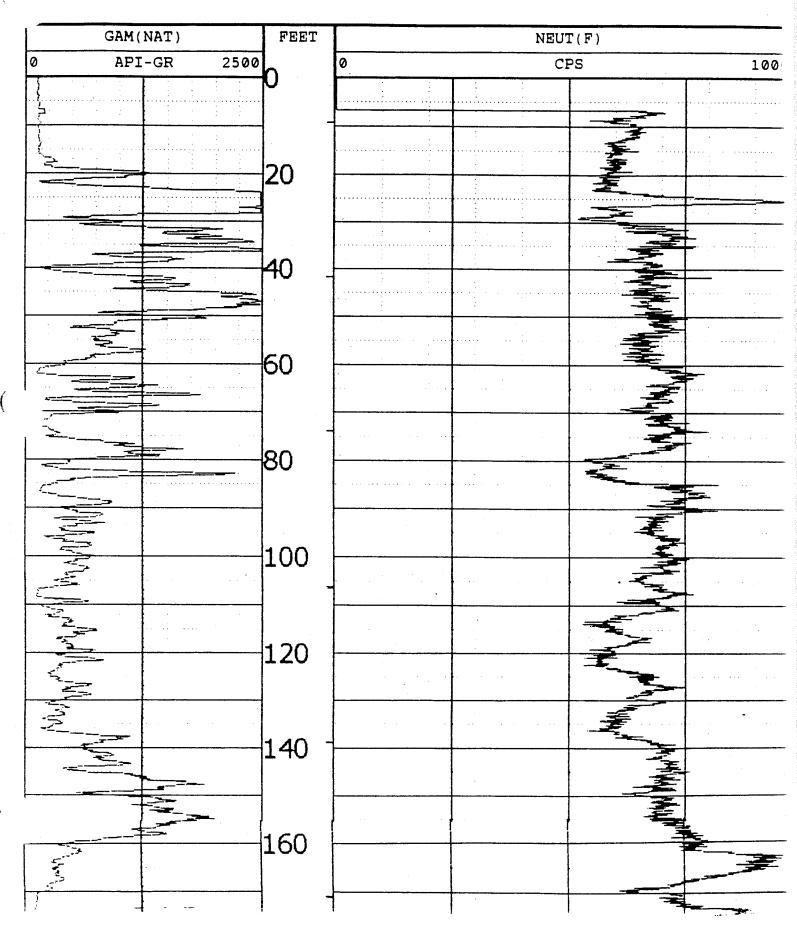

___Lithologic Logs ___Draft ___Final

_X_Geophysical Logs

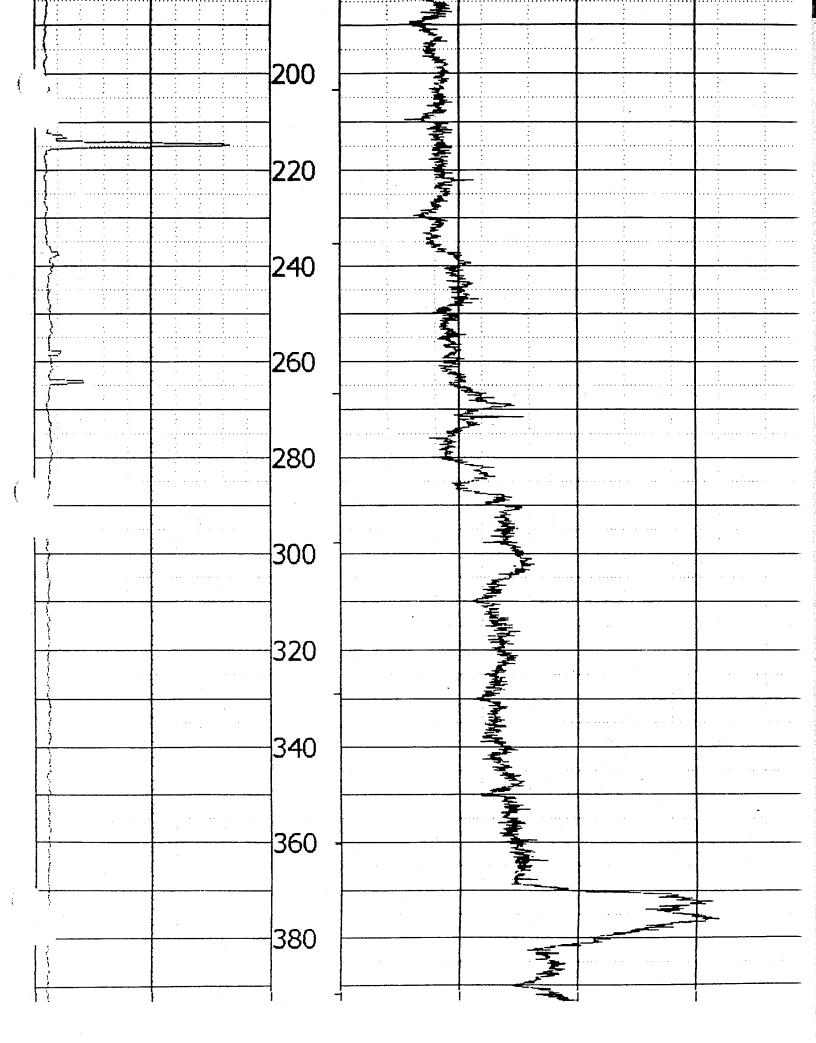
- _X_Neutron
- ____Gamma
- ____e-log
- ___Bond Log
- ____Deviation log

____State Well Report

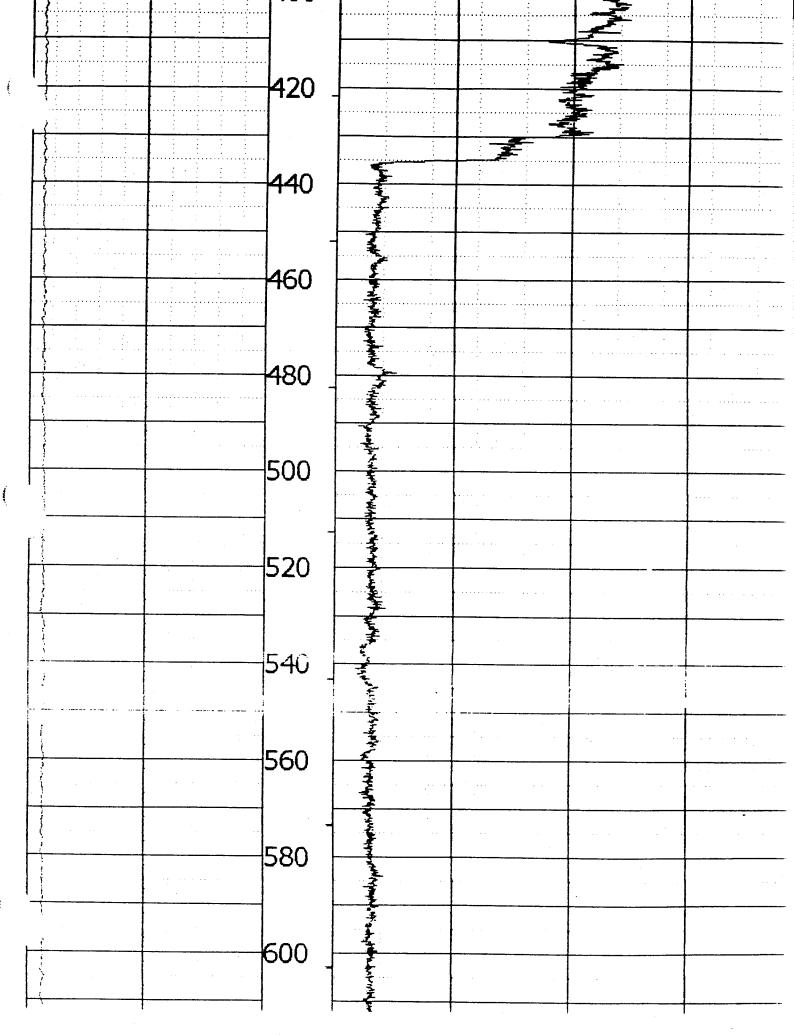
Ę


1

PTX-06-1043


	WELL	:ETAS :PTX-06-1043 :Pantex		OTHER SERVICE	ES:	
	COUNTY	: Carson		·		
	STATE	: TX	l			
	SECTION	;	TOWNSHIP	;	RANGE	• •
	DATE	: 08/31/99	PERMANENT DATUM			
	DEPTH DRILLER	; 622			KB	;
1	LOG BOTTOM	: 629.00	LOG MEASURED FROM:	T.O.C.	DF	•
	OG TOP	: -0.50	DRL MEASURED FROM:	G.L.	GL	:
	CASING DIAMETER	: 6	LOGGING UNIT	9607		
	CASING TYPE	: S.S.	FIELD OFFICE	TULSA		
	CASING THICKNESS	: .2	RECORDED BY	Federwisch		
	BIT SIZE	: 9.825	BOREHOLE FLUID	WATER	FILE	
	MAGNETIC DECL.	: 8	RM	0		: 9072A
	MATRIX DENSITY	: 2.71	RM TEMPERATURE	0		
	NEUTRON MATRIX	: sandstone	MATRIX DELTA T	54		
			•		THRESH	: 20000

ALL SERVICES PROVIDED SUBJECT TO STANDARD TERMS AND CONDITIONS


방송 관계에 관하는 것 같아. 그는 것을 하는 것을 위한 것을 했다.

and the second

은 방법에는 사망하고 있는 것이다. 이번 것은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 없다. 것이 있는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 있는 것이 있는 것이 있는

물건물 물건을 가장 그 것은 것이 같아요.

.

					•••••				 •••••••••••••••••••••••••••••••••••••••	••••
0	API-GR	2500		0		_	C	PS		100
	GAM(NAT)		FEET				NEU	T(F)		

	TOOL 9072A SERIAL NUMBE	R 306			
	DATE	TIME	SENSOR	STANDARD	RESPON
1	Jun07,99	16:21:56	GAM(NAT)	Default [APLGR]	
	Jun07,93	16:21:56	GAM(NAT)	Default [API-GR]	Default [CPS]
2	Junü7,39	16:21:56	VOLTAGE	Default (MV)	Default [CPS]
	Jun07,99	16:21:56	VOLTAGE	Default (MV 1	Default (CPS)
3	Jun07,99	16:21:56	CURRENT	Default (UA)	Default [CPS]
	Jun07,33	16:21:56	CURRENT	L 3	Default [CPS]
4	Jun07,33	16:21:56	NEUTIN		Default [CPS]
5	Jun07,99	16:21:56	NEUT(F)	10520.000 [CPS] 397.000 [CPS]	

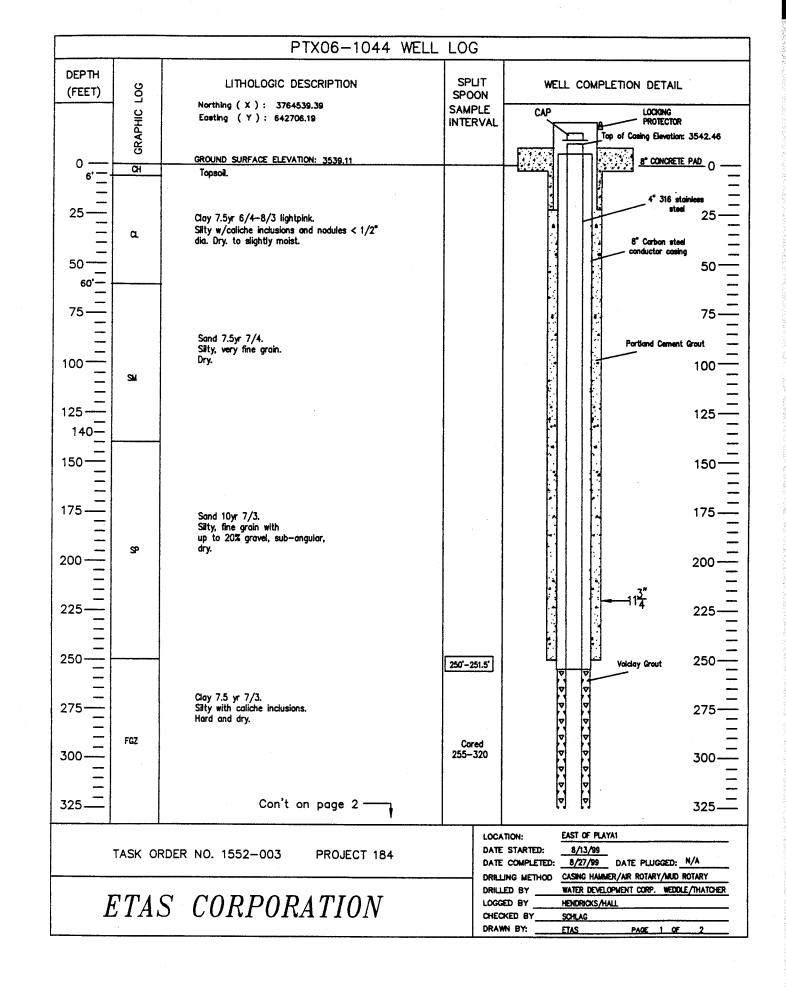
Contractor: ETAS

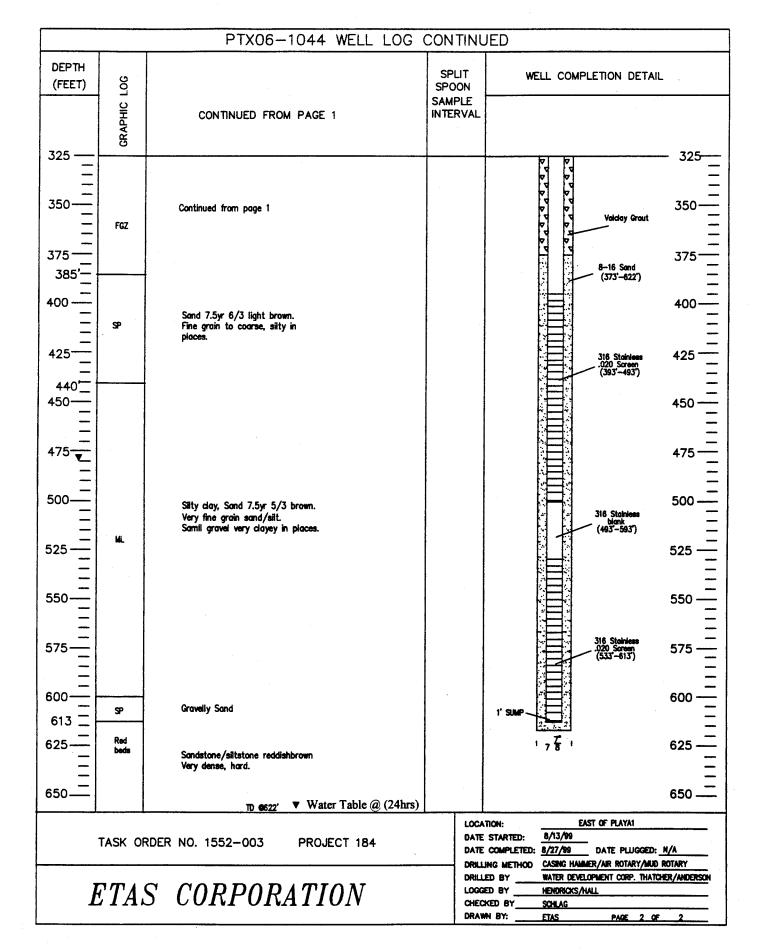
Contract #: 1552-003-184

OPTIX #:

Included Documents

___Drilling Log ___Draft ___Final

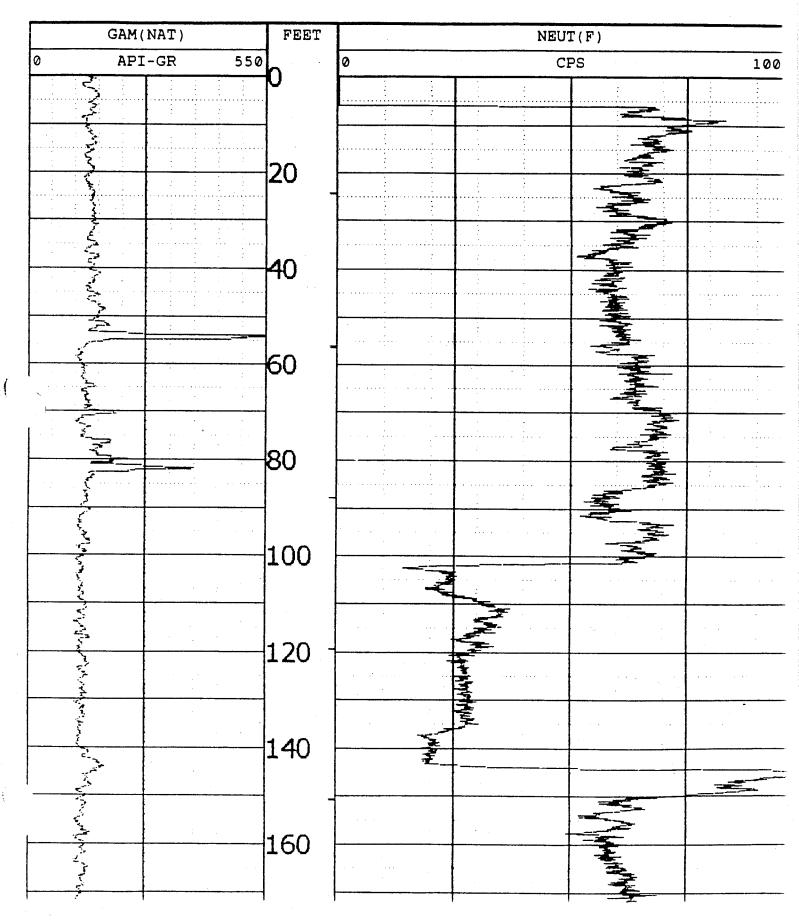

_X_Installation Log

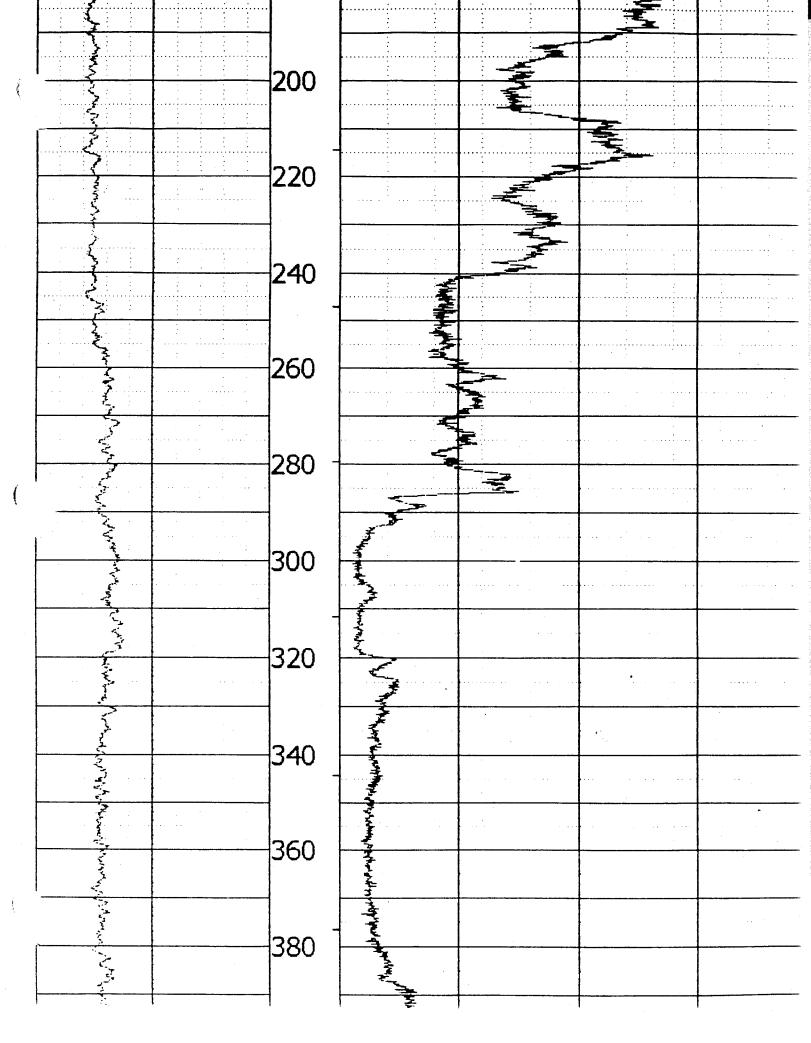

___Lithologic Logs ___Draft ___Final

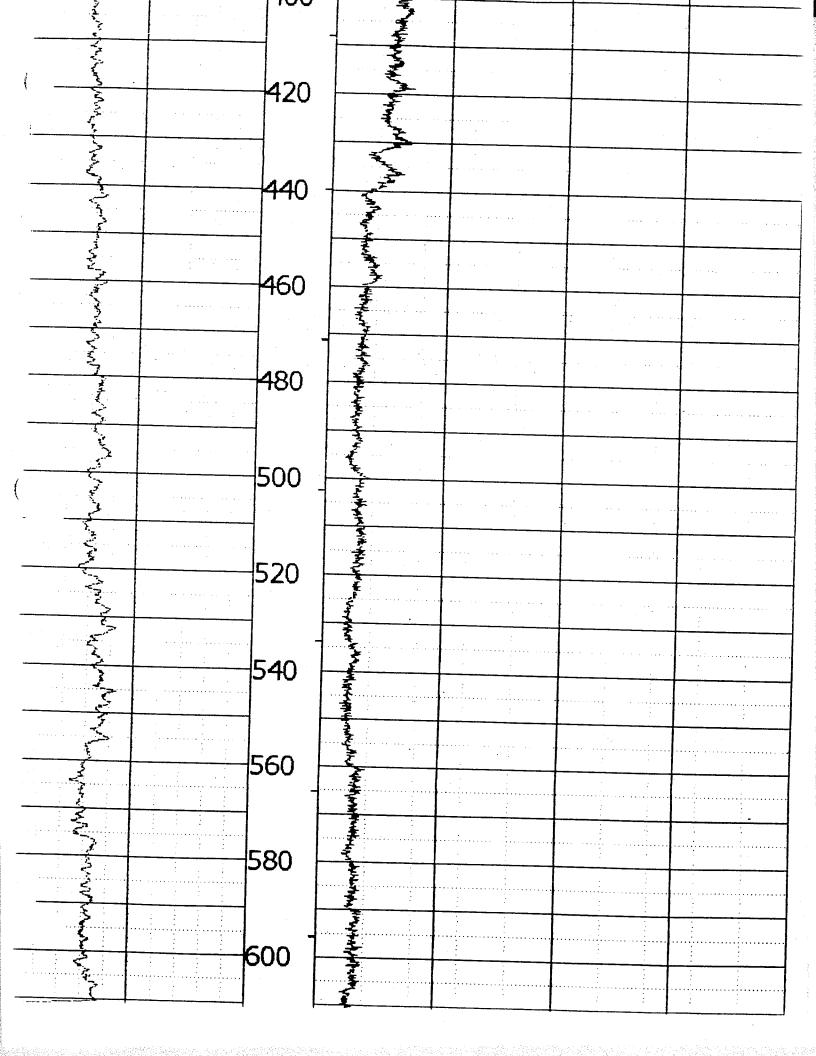
_X_Geophysical Logs

- _X_Neutron
- ____Gamma
- ____e-log
- ___Bond Log
- ____Deviation log

____State Well Report


í




WELL LOCATION/FIELD COUNTY	Pantex Carson		OTHER SERVICI	ES:	
SECTION		TOWNSHIP	•	RANGE	•
DEPTH DRILLER	614			KB DF GL	:
CASING TYPE	S.Steel	FIELD OFFICE	TULSA		
MAGNETIC DECL. MATRIX DENSITY	8 2.71	RM RM TEMPERATURE	: 0 : 0	FILE TYPE THRESH	: ORIGINAL : 9072A 1: 20000
	WELL LOCATION/FIELD COUNTY STATE SECTION DATE DEPTH DRILLER DG BOTTOM LOG TOP CASING DIAMETER CASING TYPE CASING THICKNESS BIT SIZE MAGNETIC DECL. MATRIX DENSITY	WELL:PTX-06-1044LOCATION/FIELD:PantexCOUNTY:CarsonSTATE:TXSECTION:	WELL:PTX-06-1044LOCATION/FIELD:PantexCOUNTY:CarsonSTATE:TXSECTION:TOWNSHIPDATE:08/31/99DEPTH DRILLER:614DG BOTTOM::LOG TOP:-1.20CASING DIAMETER:CASING TYPE:S.Steel:FIELD OFFICECASING THICKNESS:.2BIT SIZE:9.825BOREHOLE FLUIDMAGNETIC DECL.:8RMMATRIX DENSITY:2.71RM TEMPERATURE	WELLPTX-06-1044LOCATION/FIELDPantexCOUNTYCarsonSTATETXSECTIONTXDATE08/31/99DATE08/31/99PERMANENT DATUMDEPTH DRILLER614OG BOTTOM619.30LOG MEASURED FROM: T.O.C.LOG TOP-1.20DRL MEASURED FROM:G.L.CASING DIAMETER3LOGGING UNITCASING TYPES.SteelFIELD OFFICETULSACASING THICKNESS:.2BIT SIZE9.825BOREHOLE FLUIDWATERMAGNETIC DECL.8RM0MATRIX DENSITY2.71RM TEMPERATURE0	WELLPTX-06-1044LOCATION/FIELDPantexCOUNTYCarsonSTATETXSECTIONTXSECTIONTOWNSHIPDATE08/31/99DEPTH DRILLER614OG BOTTOM619.30LOG MEASURED FROM:T.O.C.DFLOG TOP-1.20DRL MEASURED FROM:GL.CASING DIAMETER5LOGGING UNIT9607CASING TYPES.SteelFIELD OFFICETULSACASING THICKNESS:.2RECORDED BYFederwischBIT SIZE9.825BOREHOLE FLUIDWATERMAGNETIC DECL.8RM0NEUTRON MATRIXsandstoneMATRIX DELTA T54

ALL SERVICES PROVIDED SUBJECT TO STANDARD TERMS AND CONDITIONS

, marine and a second

0	API-GR	550	0	CPS	100(
				· · · · · · · · · · · · · · · · · · ·	

ĺ

Γ

ł

	TOOL CALIBRA TOOL 9072A SERIAL NUMBE	NTION PTX-06-1044 08	8/31/99 14:24		
	DATE	TIME	SENSOR	STANDARD	RESPONS
1	Jun07,99	16:21:56	GAM(NAT)	Default (APLGR)	Default [CPS]
	Jun07,99	16:21:56	GAM(NAT)	Default [APLGR]	Default [CPS]
2	Jun07,99	16:21:56	VOLTAGE	Default (MV)	Default (CPS)
	Jun07.99	16:21:55	VQLTAGE	Default [MV]	Default [CPS]
3	Jun07.99	16:21:56	CURRENT	Default (UA	Default (CPS)
_	Jun07,33	16:21:55	CURRENT	Default (UA]	Default (CPS)
4	Jun07,99	16:21:56	NEUT(N)	10520.000 (CPS)	
5	Jun07,99	16:21:56	NEUT(F)	397.000 (CPS]	

Contractor: S.M. Stoller Corporation

Contract #: 3589 Project 102

OPTIX #:

Included Documents

___Drilling Log ___Draft ___Final

_X_Installation Log

_X_Lithologic Logs ___Draft _X_Final

____Geophysical Logs

____Neutron

___Gamma

____e-log

___Bond Log

___Deviation log

____State Well Report

Pantex GW RFI Project Number:		-102		heast of Zone 12 along FM Client:	Mason & H		marillo, Tex
Geologist:			ſ. Hall	Northing: 3754642.87	Easting: 6	-	-
Drilling Contractor			rothers Drilling	Total Depth of Borehole:	500' BGS		
Dates Drilled:			- 05/15/00	Depth to Water:	394.15' BT	OC 05/2	5/00
Borehole Type:			RCH 7 7/8" Mud Rotary	Well Type:			Stainless Ste
Ground Elevation:			icell + #0 induiteduig	TOC Elevation:	3532.80'	5	Stanicos St
	Lithology	USCS]	Description		Sample	Sample Number
		CL	plasticity, very fine subrou 5-44' CLAY, silty, sandy, reddish brown (5YR 6/4) t plasticity, very fine sand, s some manganese staining	70% clay 20% silt 10% sand o reddish yellow (5YR 6/6), stiff, damp, caliche streaks ar	low ad nodes,		
S.M. STOI		; OR	PORATION				Page 1

Project Number:	3589-102	2	Client:	Mason & Ha	nger Corporation	
Geologist:	R. Rupp/		Northing: 3754642.87	Easting: 643	· ·	
Drilling Contractor:		Brothers Drilling	Total Depth of Borehole:	500' BGS		
Dates Drilled:		- 05/15/00	Depth to Water:	394.15' BTO	BTOC 05/25/00	
Borehole Type:		ARCH 7 7/8" Mud Rotary	Well Type:		Vell, 4" Stainless St	
Ground Elevation:	3530.65'		TOC Elevation:	3532.80'	,	
Depth (Ft.)	Lithology USCS		Description		Sample Numbe	
		62-72' CALICHE CAPRO slightly silty sand with cal	OCK, pinkish white (7.5YR 8 iche nodules to 1/2" diamete	r		
- 80-		brown (7.5YR 5/4), sand i dry	% clay, 20% sand, 10% calich s very fine to fine grain, med			
90-	SP	1	llow (7.5YR 6/6), very fine to n dense, dry, with weakly ce ameter			
		fine grain	kish white (7.5YR 8/2), very	fine to		
		nodules, some CaCO3	nk (7.5YR 8/3), with dense sa	andstone		
	SP	115-125' SAND, pink (7.: subrounded, slightly grade	5YR 7/4), very fine to mediu ed, medium loose, dry	m grain,		

Project Number:	3589-102		Client:	Mason & H	langer Co	rporation
Geologist:	R. Rupp/	Г. Hall	Northing: 3754642.87	Easting: 6	-	-
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	500' BGS		
Dates Drilled:		- 05/15/00	Depth to Water:	394.15' BT	OC 05/2	5/00
Borehole Type:	12 3/4" A	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring	Well, 4"	Stainless Ste
Ground Elevation:	3530.65'		TOC Elevation:	3532.80'		
Depth (Ft.)	Lithology USCS		Description		Sample	Sample Number
	SP SP SP	125-210' SAND, light bro moderately well cemented	own (7.5 YR 6/4), sands are l in thin layers, especially fro oarse grain to pea-gravel size mented sands	m nodes		
S.M. STOLL						Page 3

Pantex GW RFI Project Number:	3589-1	02	theast of Zone 12 along FM Client:	Mason & Han	ger Corporation
Geologist:		p/T. Hall	Northing: 3754642.87	Easting: 643	
Drilling Contractor:	*	t Brothers Drilling	Total Depth of Borehole:	500' BGS	01.05
Dates Drilled:		00 - 05/15/00	Depth to Water:	394.15' BTOC	05/25/00
Borehole Type:		ARCH 7 7/8" Mud Rotary	Well Type:		ell, 4" Stainless St
Ground Elevation:	3530.6	·	TOC Elevation:	3532.80'	cii, 4 Stalliess S
	3330.0	5		3332.80	
Depth (Ft.)	Lithology	NSCS	Description		Sample Numbe
		SP			
		_{SW} coarse grain, well graded,			
-220		grain as above with very l damp	le brown (10YR 7/3), fine to little gravel, dense, dry to slig	ghtly	
		coarse grain, well graded,	y, very pale brown (10YR 7/3 dense, dry to slightly damp		
-230-		SP 225-232' SAND, slightly very fine to medium grain	silty, brownish yellow (10Y) a sands, dense, damp	R 6/5),	
			(7.5YR 5/4), stiff with trace C		
			y, very pale brown (10YR 7/4 well graded, dense, dry, grav		

Project Number:	3589-1	102	Client:	Mason & Hang	er Corporation	
Geologist:		pp/T. Hall	Northing: 3754642.87	Easting: 6437	*	
Drilling Contractor:		rt Brothers Drilling	Total Depth of Borehole:	500' BGS		
Dates Drilled:		/00 - 05/15/00	Depth to Water:	394.15' BTOC 05/25/00		
Borehole Type:		" ARCH 7 7/8" Mud Rotary			ell, 4" Stainless Ste	
Ground Elevation:	3530.6	•	TOC Elevation:	3532.80'		
Depth (Ft.)	Lithology	USCS	Description		Sample Number	
-250-		GW drive casing refusal from 245-255' SAND, light y	vellowish brown (10YR 6/4), v in size decreasing with depth,			
		CL yellowish brown (2.5YF medium plastic, stiff, da angular from above 257-265' CLAY, sandy 5/4), low plasticity, fine to moist SC 265-270' SAND, clayey (10YR 5/4), nonplastic,	lly, 70% clay, 30% pea-gravel, & 6/3) to light olive brown (2.5 imp, gravel flattened and round , 50/50 mix, yellowish brown (to coarse sand, subangular, sti y, 80% sand 20% clay, yellowi medium to fine grain, subangu	YR 5/3), led, some 10YR ff, damp sh brown	PTX06-1056-2-0 Sieve Analysis	
-270-	0 0 0 0 0 0 0 0 0 0	SW diameter, very pale brow subrounded to rounded, moist	st Ily, 90% sand 10% rounded gra vn (10YR 6/3), fine to very cos well graded, medium dense, d 7, silty, 60% sand 20% clay, 20	arse sand, amp to	PTX06-1056-2-0 Sieve Analysis PTX06-1056-2-0 HE Analysis	
	- 0 0 	ML 280-281' SILT, sandy, brown (7.5YR 5/4), non coarse, subangular, dens ML 280-281' SILT, sandy, brown (7.5YR 5/4), low 281-285' SAND, silty, 6/4), very fine to fine gr	plastic, fine to medium grain, se, damp to moist clayey, 80% silt, 15% sand, 5% plasticity, very fine sand, stiff 65% sand 35% silt, light brown ain sand, trace medium grain,	some 6 clay, 7 damp 1 (7.5YR	PTX06-1056-2-02 Permeability Anal PTX06-1056-2-02 Capillary Moistu	
-290-		SM- to fine grain sand with t	b, silt decreasing with depth; 10 silt, light brown (7.5YR 6/4), v race medium grain, subangular	ery fine , dense,	Permeability Anal PTX06-1056-2-0 Permeability Anal	
		(5YR 6/4) to pink (5YR	10% silt, 30% sand, light reddis 7/4), sand size very fine to fin ngular to subrounded, stiff, dar	e with	PTX06-1056-2-29 Permeability Anal PTX06-1056-2-0	
					PTX06-1056-2-0. Permeability Anal PTX06-1056-2-29 Capillary Moistu	

Geologist: R. Rupp/T. Hall Northing: 3754642.87 Easting: 643767.03 Drilling Contractor: Stewart Brothers Drilling Total Depth of Borehole: 500' BGS Dates Drilled: 05/09/00 - 05/15/00 Depth to Water: 394.15' BTOC 05/25/00 Borehole Type: 12 3/4" ARCH 7 7/8" Mud Rotary Well Type: Monitoring Well, 4" Stainless Stere Ground Elevation: 3530.65' TOC Elevation: 3532.80' Completion $\stackrel{(1)}{\underline{J}_1}$ $\stackrel{(2)}{\underline{S}_2}$ Description $\stackrel{(2)}{\underline{J}_1}$ $\stackrel{(2)}{\underline{J}_1}$ $\stackrel{(2)}{\underline{J}_2}$ $\stackrel{(2)}{\underline{J}_1}$ $\stackrel{(2)}{\underline{J}_2}$ $\stackrel{(2)}{\underline{J}_1}$ $\stackrel{(2)}{\underline{J}_2}$ $\stackrel{(2)}{\underline{J}_1}$ $\stackrel{(2)}{\underline{J}_2}$ $\stackrel{(2)}{\underline{J}_1}$ $\stackrel{(2)}{\underline{J}_2}$ $\stackrel{(2)}{\underline{J}_2}$ $\stackrel{(2)}{\underline{J}_1}$ $\stackrel{(2)}{\underline{J}_2}$ $\stackrel{(2)}{\underline{J}_1}$ $\stackrel{(2)}{\underline{J}_2}$ $\stackrel{(2)}{\underline{J}_2}$ $\stackrel{(2)}{\underline{J}_1}$ $\stackrel{(2)}{\underline{J}_2}$ $\stackrel{(2)}{\underline{J}_2$ $\stackrel{(2)}{\underline{J}_2$ $\stackrel{(2)}{\underline{J}_2$ $\stackrel{(2)}{\underline{J}_2$ $\stackrel{(2)}{\underline{J}_2$ (2)	Pantex GW RFI Project Number:	3589-102	(, >	heast of Zone 12 along FM Client:			Amarillo, Texa
Drilling Contractor: Stewart Brothers Drilling Total Depth of Borehole: 500 'BGS Dates Drilled: 0.509:00 - 0.5/15/00 Depth to Water: 394.15' BTOC 0.5/25/00 Borehole Type: Monitoring Well, 4" Stainless Ste Ground Elevation: 3532.80' Completion ú			- Hall				
Dates Drilled: 05/09/00 - 05/15/00 Depth to Water: 394.15' BTOC 05/25/00 Borchold Type: 12 3/4" ARCH 7 7/8" Mud Rotary Well Type: Monitoring Well, 4" Stainless Sta Ground Elevation: 3530.65" TOC Elevation: 3532.80" Completion $\frac{14}{110}$ $\frac{50}{100}$ $\frac{57}{200}$ $\frac{57}{200}$ Sample Number $\frac{14}{100}$ $\frac{50}{100}$ $\frac{57}{200}$						2707.0	5
Borehole Type: 12 3/4" ARCH 7 7/8" Mud Rotary Well Type: Monitoring Well, 4" Stainless Sta Ground Elevation: 3530.65" TOC Elevation: 3532.80" Completion The second state of the secon				·		C 05/2	25/00
Ground Elevation: 3530.65' TOC Elevation: 3532.80' Completion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-			
Completion $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $			item / //o mud Rotary			, , 1, 7	Stalliess Stor
310 301-335' SILT, sandy, light brown (7.5YR 6/4), fine to medium 310 a a b b b a b b b b b b b b b b b c b b b c c c c c c c c c c c c c c c c c c c c c c]			Sample	Sample Number
		O' O' O' 0' 0' 0'	grain, subangular sand 335-360' SAND, gravelly 6/6), fine to very coarse su	, trace clay, brownish yellow	(10YR		PTX06-1056-2-03 Permeability Analy

Pantex GW RFI			x Plant (Texas Tech, Sout	heast of Zone 12 along FM	<i>,</i>		marillo, Tex
Project Number:	3589-		7 11-11	Client:	Mason & I	-	*
Geologist: Drilling Contractor:			<u>C. Hall</u>	Northing: 3754642.87 Total Depth of Borehole:	Easting: 500' BGS	043/0/.03	
Dates Drilled:			rothers Drilling - 05/15/00	Depth to Water:	394.15' BT	FOC 05/2	5/00
Borehole Type:			RCH 7 7/8" Mud Rotary	Well Type:			Stainless Ste
Ground Elevation:	3530		KC11 / //o Will Kotaly	TOC Elevation:	3532.80'	5 WCII, 4	Stanness Ste
		.05		100 Elevation.	5552.00		
Completion Debth (Ft.)	ogy			Description		co l	Sample
oth	lolo	USCS				ldu	Number
De	Lithology	US I				Sample	
			360-385' CLAY, sandy, p	ale brown (10YR 6/3), fine g	grain		
	$\overline{}$	1	subangular, sand increasin	g with depth			
]					
		1					
370-		CL					
	\////	1					
		1					
		1					
		1					
			295 405' SAND alayou to	CLAY, sandy, reddish brow			
		1		fine grain sand, some mediu			
	- //.6 : //. 9: // 9: // : ; : // : 9	1	subangular, possibly intert	bedded sands and clays			
-390-	- // i6 : // : 9: // 9: // : 8: // : 9	1					
	- // .6						
		SC					
400-							
	-{o: <i>`/o/.</i> o <i></i>						
	 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		405-420' SAND, white (5 cemented sandstone nodul	YR 8/1), very fine grain, der es	ise,		
	-						
		SP					
	-						
S.M. STOLL	EK CO	JR	PORATION				Page 7

Project Number:	3589-	102		Client:	Mason & Ha	anger Co	rporation
Geologist:	R. Ru		. Hall	Northing: 3754642.87	Easting: 64	<u> </u>	1
Drilling Contractor:			rothers Drilling	Total Depth of Borehole:	500' BGS		
Dates Drilled:			- 05/15/00	Depth to Water:	394.15' BTC	DC 05/2	5/00
Borehole Type:			RCH 7 7/8" Mud Rotary	Well Type:			Stainless Ste
Ground Elevation:	3530.		terr / //o mud Rotary	TOC Elevation:	3532.80'	wen, i	Staniess Ste
				TOC Elevation.	5552.00		
Completion Debth (Ft.)	Lithology	USCS]	Description		Sample	Sample Number
		CL	420-430' Clay, red (2.5YF very fine grain cemented s	R 4/6), interbedded with pink andstone	ish gray		
				o CLAY, sandy, red brown to 7.5YR 6/3), very fine sandst y			
-450-		SC					
		SC		CLAY, slightly silty, 80% sa SYR 8/2) and red clay (2.5YI			
		CL- SM	460-470' CLAY, red (2.5) 8/2) silty sand, interbedded	YR5/6), with 25% pinkish wi d silty sand and clay	nite (5YR		
-470-			470-481' CLAY, red (2.5%) white sand	YR 5/6) very stiff clay, no in	terbedded		
		CL					

Geologist: R. Rupp/T. Hall Northing: 3754642.87 Easting: 643767.03 Drilling Contractor: Stewart Brothers Drilling Total Depth of Borehole: 500° BGS Dates Drilled: 05/09'00 - 05/15'00 Depth to Water: 394.15' BTOC 05/2 Borehole Type: 12 3/4" ARCH 7 7/8" Mud Rotary Well Type: Monitoring Well, 4" Ground Elevation: 3530.65' TOC Elevation: 3532.80' Completion Tit So So 481-485' SAND, silty, pinkish white (5YR 8/2), with some interbedded, red (2.5YR 5/6), stiff, clay Image: solution of the sol	Corporation
Dates Drilled: 05/09/00 - 05/15/00 Depth to Water: 394.15' BTOC 05/2: Borehole Type: 12 3/4" ARCH 7 7/8" Mud Rotary Well Type: Monitoring Well, 4" Ground Elevation: 3530.65" TOC Elevation: 3532.80" Completion Image: Second	13
Borehole Type: 12 3/4" ARCH 7 7/8" Mud Rotary Well Type: Monitoring Well, 4" Ground Elevation: 3530.65' TOC Elevation: 3532.80' Completion if if go go go So if go go go go go So if go go go go go go So sc 481-485' SAND, silty, pinkish white (5YR 8/2), with some interbedded, red (2.5YR 5/6), stiff, clay go	
Ground Elevation: 3530.65' TOC Elevation: 3532.80' Completion IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	25/00
Completion \widehat{U} <td>" Stainless Ste</td>	" Stainless Ste
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Sc interbedded, red (2.5YR 5/6), stiff, clay 485-495' CLAY, weak red (10R 5/3), mottled with pinkish white (5YR 8/2) silty sand, sand increasing with depth 490 CL 490 CL 491 CL 492 Quint (5YR 8/2) silty sand, sand increasing with depth 490 CL 491 CL 492 Quint (5YR 8/2) silty sand increasing with depth 493 CL 494 Quint (10R 6/3) slightly silty clay with pinkish white (5YR 8/2) silty sand to 40% in content 500 Total Borehole Depth 500' Fine Grain Zone 274' No Perched Aquifer Groundwater was encountered. Depth to Ogallalla Groundwater is 394.15' BTOC, as measured on 05/25/00. 510 Vell Completion Details: Borehole Diameter is 12 3/4" from surface to 281' BGS. An 8 5/8" conductor casing was cemented from surface to 281' BGS, using ARCH methods. Mud Rotary drilling was used to complete a 77/8" borehole from 281' to 500' BGS. Continuous core with 100% recovery was collected from the borehole from 281' to 301'. 260 feet of 4-inch Schedule 15, Type 316, stainless steel casing (Pantex supplied), 100 feet of 4-inch Schedule 10, Type 304, stainless steel casing and 120 feet of 4-inch, Schedule 10, Type	Sample Number
CL pinkish white (5YR 8/2) silty sand to 40% in content 500 Total Borehole Depth 500' Fine Grain Zone 274' No Perched Aquifer Groundwater was encountered. Depth to Ogallalla Groundwater is 394.15' BTOC, as measured on 05/25/00. 510 Well Completion Details: Borehole Diameter is 12 3/4" from surface to 281' BGS. An 8 5/8" conductor casing was cemented from surface to 281' BGS, using ARCH methods. Mud Rotary drilling was used to complete a 7 7/8" borehole from 281' to 500' BGS. Continuous core with 100% recovery was collected from the borehole from 281' to 301'. 260 feet of 4-inch Schedule 5, Type 316, stainless steel casing (Pantex supplied), 100 feet of 4-inch, Type	
Fine Grain Zone 274' No Perched Aquifer Groundwater was encountered. Depth to Ogallalla Groundwater is 394.15' BTOC, as measured on 05/25/00. Well Completion Details: Borehole Diameter is 12 3/4" from surface to 281' BGS. An 8 5/8" conductor casing was cemented from surface to 281' BGS, using ARCH methods. Mud Rotary drilling was used to complete a 7 7/8" borehole from 281' to 500' BGS. Continuous core with 100% recovery was collected from the borehole from 281' to 301'. 260 feet of 4-inch Schedule 5, Type 316, stainless steel casing (Pantex supplied), 100 feet of 4-inch Schedule 10, Type 304, stainless steel casing and 120 feet of 4-inch, Type	
Borehole Diameter is 12 3/4" from surface to 281' BGS. An 8 5/8" conductor casing was cemented from surface to 281' BGS, using ARCH methods. Mud Rotary drilling was used to complete a 7 7/8" borehole from 281' to 500' BGS. Continuous core with 100% recovery was collected from the borehole from 281' to 301'. 260 feet of 4-inch Schedule 5, Type 316, stainless steel casing (Pantex supplied), 100 feet of 4-inch Schedule 10, Type 304, stainless steel casing and 120 feet of 4-inch, Type	
50', staineds det liker bedrik verie doed in verie doed in verie obstructure in ver	

SOUT SIZE, S/N		LOGGING SPEED	MODULE TYPE, S/N	PROBE TYPE, S/N	TIME SINCE CIRC.	Rm at TEMP	FLUID TYPE	FLUID LEVEL	WITNESSED BY	RECORDED BY	- TOP LOCCED INTERVAL	BTM LOGGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	LOG TYPE	RUN NUMBER	DATE ACQUIRED	DRILL MEAS. FROM:	LOG MEAS. FROM: Ground Surface	PERMANENT DATUM: Ground Surface	1	PANTE TX C	-1.05 X OUNT	6 Y:C/	rson E		ELECT		
0.1' N/A	0.0'	20 ft/min	 	RABPF 2019	1 hour	NA	Mud	Surface	Rupp	Nelson	AL Surface	AL 498'	502.8'	502'	Ganna		5/15/00	Ground Surface	Sround Surface	l: Ground Surface	SEC T	LOCATION: NA	STATE: TX	FIELD: PA		COMPANY: SM	ECTRIC LOG	J 17301 We PHONE: (COLOG
0.1' N/A	0.0'	20 ft/min	UM 1524	EPF 1567					-		2811	502'			Electric		5/15/00		0.0 FT ABOVE PERM. DATUM	ELEVATION: NA	TWP RGE		COUNTY:	PANTEX	PTX06-1056	SM STOLLER	G	17301 West Calfax, Suite 265, PHONE: (303) 279-0171	Division of Layne
																			DATUM			OTHER SERVICES:	CARSON					Golden Colorado FAX: (303) 278-	COLOG Division of Layne Christensen Company
				-																		ES:						80401 01 35	any

BOREHOLE RE	CORD	·	CASING RECOR		
BIT SIZE	FROM	TO	SIZE/WGT	FROM	TO
10"	Surface	281'	Sump	470'	475
8"	281'	TO	Screen	350'	470'
			Riser	Surface	350'

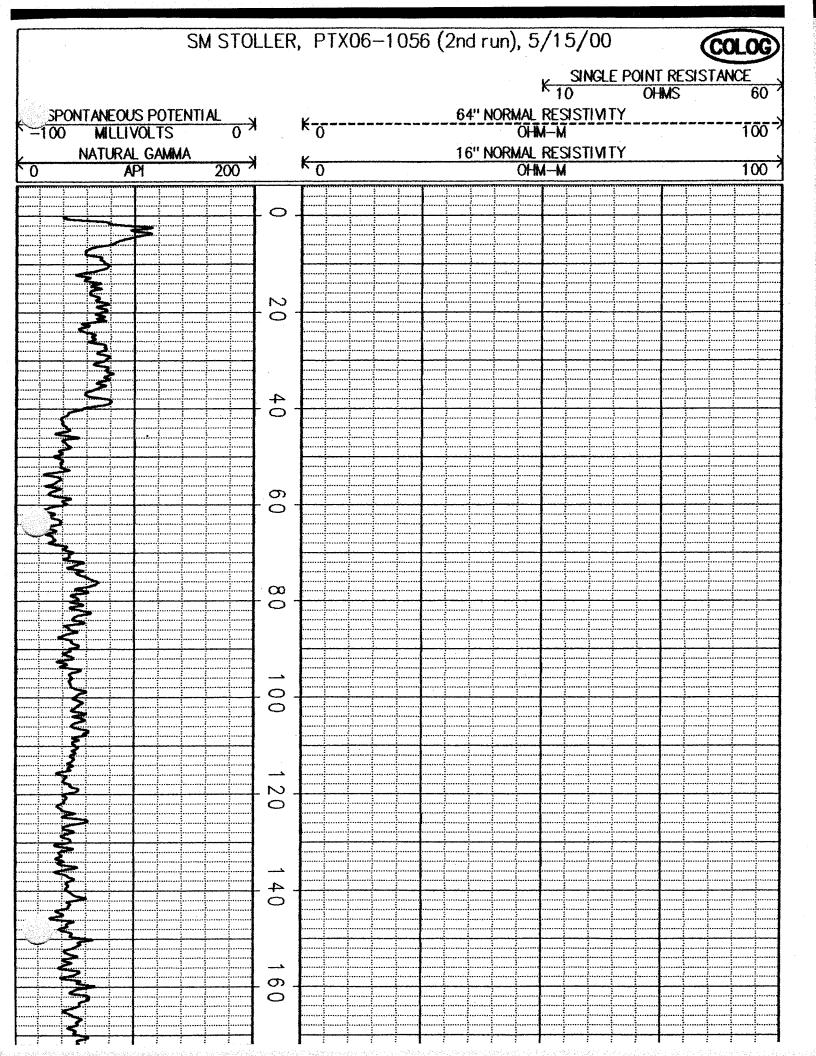
COMMENTS:

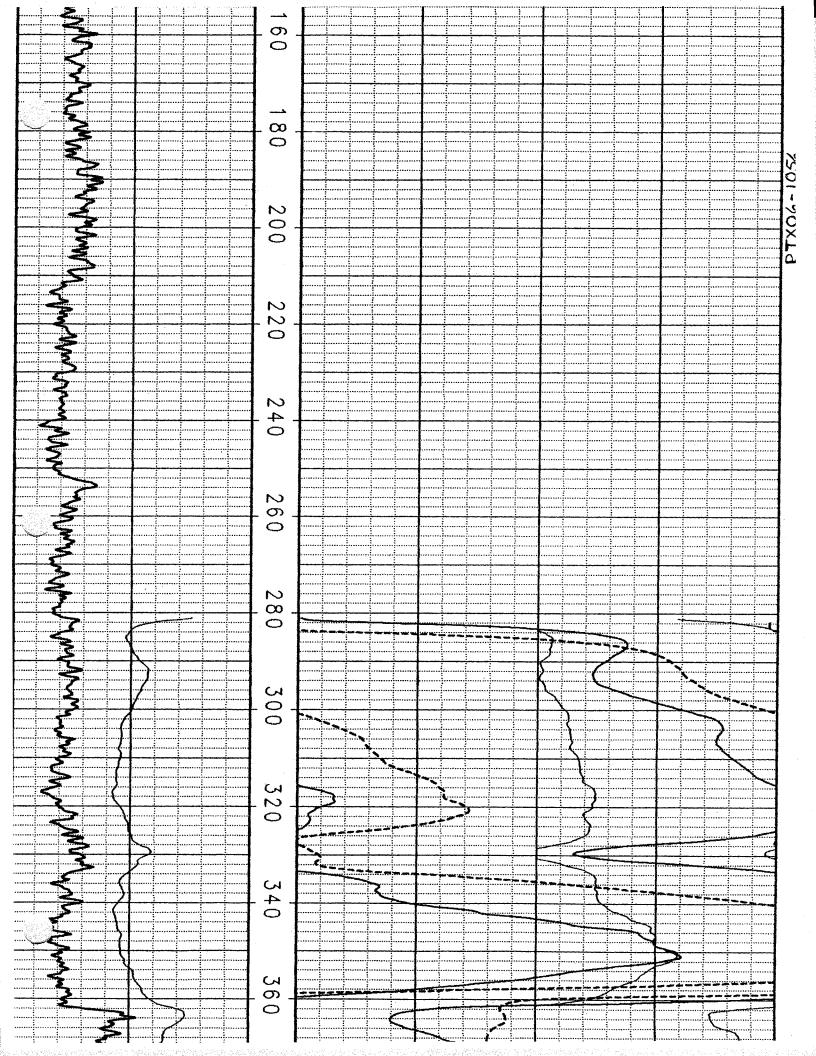
Drill Type: Arch 0–281' Mud Rotary 281–502'

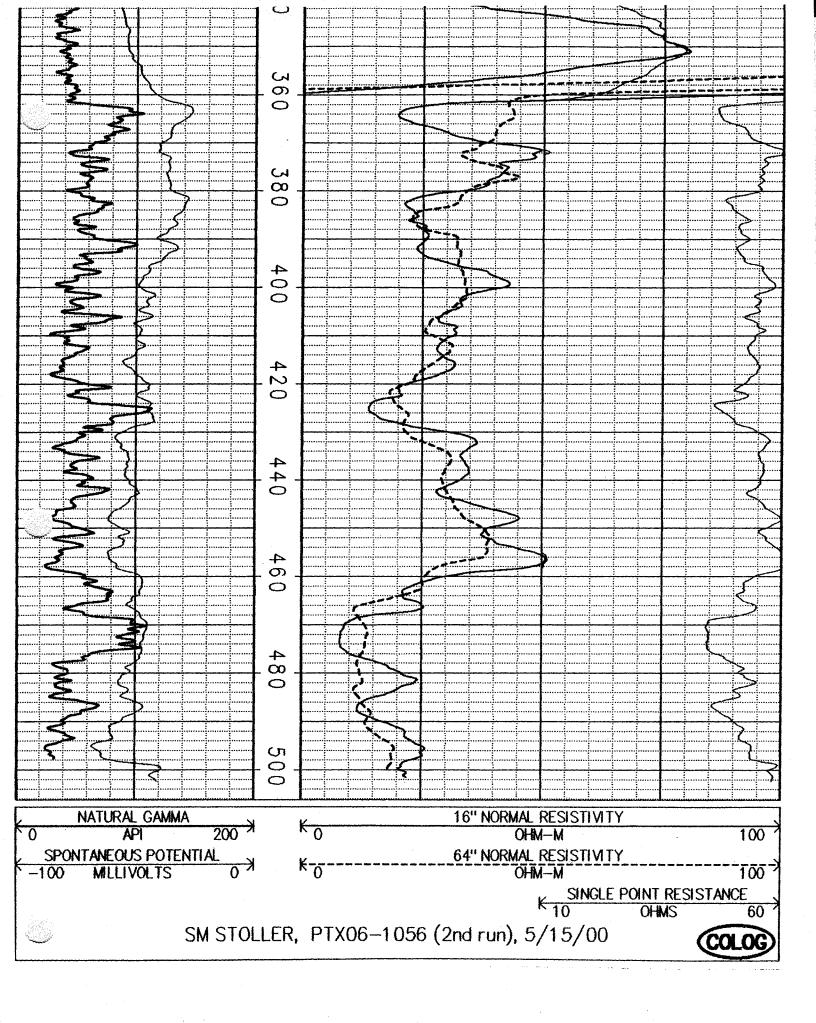
8 5/8" Conductor Casing

-ot Surface to 281'

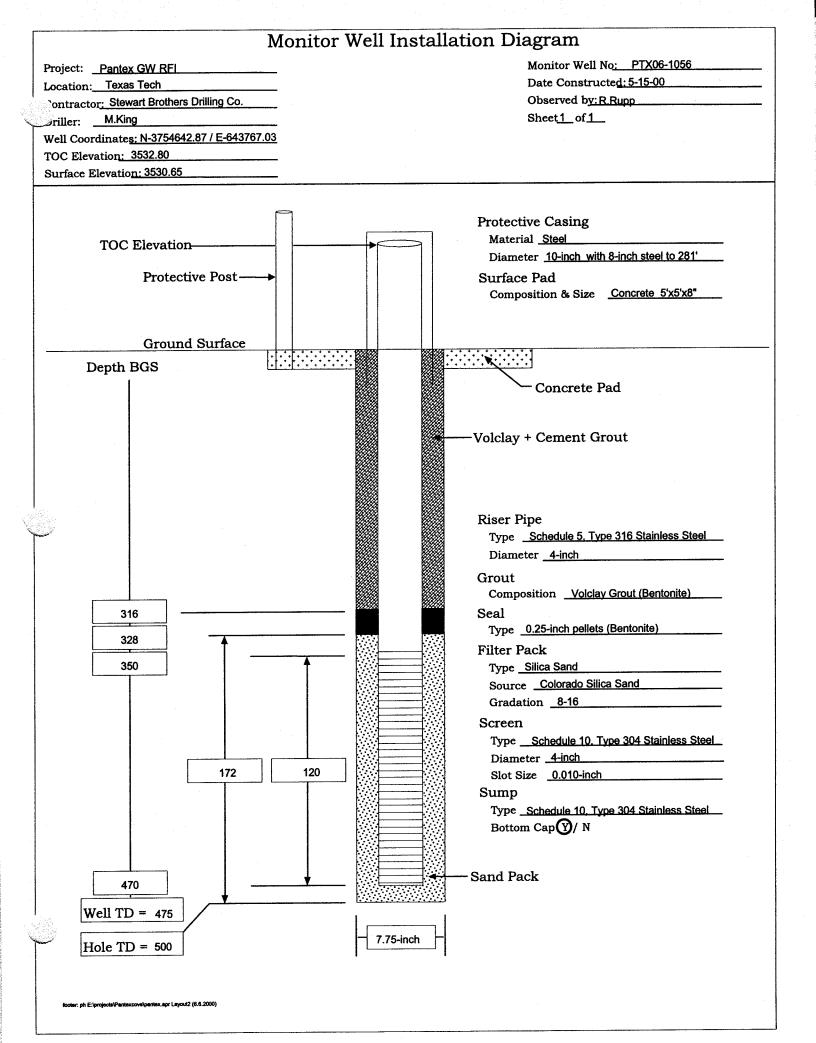
COMMENTS:


4" Type 304 Sch 10 Stainless Steel Casing & Screen 260-475' Screen Slot 0.010


4" Type 316 Sch 5 Stainless Steel Casing Surface-260', MHC Supplied


Borehole Logged Open Hole 281-TD'

NA - NOT AVAILABLE, N/A - NOT APPLICABLE


DIGITAL FILES: 1056.RB0, 1056.RB1, ELEC.PLP, ELEC.HDP

영상 영상 방송 같이 물건이 모든 것을 하는 것

Contractor: S.M. Stoller Corporation

Contract #: 3615

OPTIX #:

Included Documents

___Drilling Log ___Draft ___Final

___Installation Log

_X_Lithologic Logs _X_Draft _X_Final

____Geophysical Logs

____Neutron

___Gamma

____e-log

___Bond Log

____Deviation log

____State Well Report

PTX06-1057A

Pantex Burn Project Num	0	3615		Pantex Plant (S	Client:	Mason &		Amarillo, Texa orporation
Geologist:	001.		man	/Hall/Hull/Rupp	Northing: 3768142.23	Easting:	-	*
Drilling Con	tractor:			ristensen	Total Depth of Borehole:	798' BGS	029030.0	T
Dates Drilled				- 08/17/00	Depth to Water:	446' BGS	10/10/00	
Borehole Ty				/4"WL Core/8"Mud Rotary	· ·			4" Stainless Ste
Ground Elev		3562		1/4 WL COLE/8 Muu Kolary	TOC Elevation:	3565.48'	g wen, 2	+ Stanness Ste
Oround Elev		3302	.59			5505.48		
Completion	Depth (Ft.)	Lithology	USCS]	Description		Sample	% Recover Sample No
	;=		ML	0-1.5' TOPSOIL, dark bro	wn			
			CL	1.5-5' CLAY, with silt to 2 dry	20%, reddish brown (5YR 4/	/3), hard,		
			CL	$\overline{5-10'}$ CLAY, with silt and 4/3), hard, dry	minor caliche, reddish brow	$\overline{7}$ (5 \overline{YR}		
			CL	10-15' CLAY, with silt to brown (5YR 4/3), hard, dry	20% and caliche stringers, r	eddish		
			CL	15-20' CLAY, with silt to brown (5YR 4/4), hard, dry @ 17' 1 ft. caliche bed	40% and caliche stringers, r	eddish		
			CL	20-25' CLAY, with silt to dry to damp	$\overline{20\%}$, reddish brown $\overline{(5YR 5)}$	/4), hard,		
			CL	25-30' CLAY, with silt to dry to damp	$\overline{20\%}$, reddish brown (5YR 4	/4), hard,		
			CL	30-35' CLAY, with silt, re white (5YR 8/2), hard, dry	$\overline{\text{ddish brown}}$ (5 $\overline{\text{YR}}$ 5/4) to pi	inkish		
	× × ×		CL	35-40' CLAY, with silt an brown (5YR 5/4), hard, dry	d caliche beds/nodules, redd	ish		
			ML	40-45' SILT, with clay to 2 nodules, reddish brown (5)	20% and caliche stringers an YR 5/4), hard, damp	ıd		
			ML	45-50' SILT, with clay to 2 pinkish white (5YR 8/2), d	20%, yellowish red (5YR 4/0 ry, no hard caliche pieces	6) to		
			ML	50-55' SILT, with clay to 3 nodules, yellowish red (5Y	30% and caliche stringers an R 4/6), dry to damp	ıd		
			ML	55-60' SILT, with clay, ye @ 57' caliche bed estimate	llowish red (5YR 4/6), hard, ed 6-8-inches thick	, dry		
ал м С М С С			JD D	PORATION			I	Page 1

ber: tractor: t: pe: ation: n (1,1) pebtly (L,) n	Layn 08/10	kman ne Chi 0/00 ARCH	60-68' SILT, with clay to 3 hard, damp; caliche bed, no	TOC Elevation: Description 30%, light reddish brown (5)		630.04 10/00 Yell, 4" Stainle	ess Stee
d: pe: ation:	Layn 08/10 12"A 3562	A CAP	ristensen - 08/17/00 I/4"WL Core/8"Mud Rotary I 60-68' SILT, with clay to 3 hard, damp; caliche bed, no	Total Depth of Borehole: Depth to Water: Well Type: TOC Elevation: Description 30%, light reddish brown (57 odules to 1/2"	798' BGS 446' BGS 10/1 Monitoring W 3565.48' YR 6/4),	10/00 Vell, 4" Stainle % Ree	covery
d: pe: ation:	08/10 12"A 3562	0/00 IRCH 39' SOSN ML ML	- 08/17/00 I/4"WL Core/8"Mud Rotary I 60-68' SILT, with clay to 3 hard, damp; caliche bed, no	Depth to Water: Well Type: TOC Elevation: Description 30%, light reddish brown (57 odules to 1/2"	446' BGS 10/1 Monitoring W 3565.48' YR 6/4),	Vell, 4" Stainle	cover
ation: n Debth (Ft.)	3562	ML	60-68' SILT, with clay to 3 hard, damp; caliche bed, no	TOC Elevation: Description 30%, light reddish brown (57 odules to 1/2"	3565.48' YR 6/4),	% Red	cover
n Depth (Ft.)		ML CAP	60-68' SILT, with clay to 3 hard, damp; caliche bed, no	Description 30%, light reddish brown (5° odules to 1/2"	YR 6/4),	Sample Samp	
	Lithology	ML	60-68' SILT, with clay to 3 hard, damp; caliche bed, no	30%, light reddish brown (57 odules to 1/2"		Samp Samp	
× × ×		САР	hard, damp; caliche bed, no	odules to 1/2"			
		-					
×	· · · · · · · · · · · · · · · · · · ·						
 - 90- 		SM		caliche nodules, pink (5YR 8			
× – – – × – 100– × – – –		SP	subrounded to rounded gra dense, dry	ins, poorly graded, loose to r	medium		
		ML					
			90 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90 - 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90 0	90 00 00 00 00 95-105' SAND, light brown (7.5YR 6/4), fine to medium grain, subrounded to rounded grains, poorly graded, loose to medium dense, dry 95-105' SAND, light reddish brown (5YR 6/4), fine to medium grain, subrounded to rounded grains, poorly graded, loose to medium dense, dry 100 SP 105-120' SILT, with <10% fine sand, light reddish brown (5YR 6/4), low to nonplastic, soft to medium stiff, dry to damp	90 90 <td< td=""></td<>

Layne Chi	/Hall/Hull/Rupp	Client: Northing: 3768142.23		ger Corporation
Layne Chi	**		Easting: 6296	530.04
	ristensen	Total Depth of Borehole:	Easting: 629630.04 798' BGS	
		Depth to Water:	446' BGS 10/10/00	
	/4"WL Core/8"Mud Rotary	Well Type:		ell, 4" Stainless Ste
3562.39'		TOC Elevation:	3565.48'	
Lithology USCS		-		% Recover Sample No
SP	and fine grain with trace m graded, loose, dry @ 140' becoming silty, sil	edium grain, subangular, po	orly	
ML				
SP	to medium grain size, subr medium dense, dry, scatter cemented sandstone	ounded to rounded, poorly g ed fragments of moderately	raded,	
	SP ML SP	Image: 120-145' SAND, light yell and fine grain with trace m graded, loose, dry @ 140' becoming silty, sil SP SP Image: Im	I20-145' SAND, light yellowish brown (10YR 6/4), ve and fine grain with trace medium grain, subangular, porgraded, loose, dry @ 140' becoming silty, silt increasing with depth SP SP I45-160' SILT, sandy, 70% silt 30% sand, strong brow (7.5YR 5/6), nonplastic, fine grain sand, subrounded, set (7.5YR 5/6), nonplastic, fine grain sand, subrounded, set (7.5YR 5/6), nonplastic, fine grain sand, subrounded, set (7.5YR 5/6), nonplastic, fine grain sand, subrounded, set (7.5YR 5/6), nonplastic, fine grain sand, subrounded, set (7.5YR 5/6), nonplastic, fine grain sand, subrounded, set (7.5YR 5/6), nonplastic, fine grain sand, subrounded, set (7.5YR 5/6), nonplastic, fine grain sand, subrounded, set (7.5YR 5/6), nonplastic, fine grain sand, subrounded, set (7.5YR 5/6), nonplastic, fine grain sand, subrounded, set (7.5YR 5/6), nonplastic, fine grain sand, subrounded, set (7.5YR 5/6), nonplastic, fine grain sand, subrounded, poorly grain medium dense, dry, scattered fragments of moderately cemented sandstone @ 180' 95% very fine grain	120-145' SAND, light yellowish brown (10YR 6/4), very fine and fine grain with trace medium grain, subangular, poorly graded, loose, dry @ 140' becoming silty, silt increasing with depth SP Image: start of the

Project Number:	3615		Client:	Mason & Hanger	Corporation
Geologist:	Brinkman	/Hall/Hull/Rupp	Northing: 3768142.23	Easting: 629630.	04
Drilling Contractor:	Layne Ch	ristensen	Total Depth of Borehole:		
Dates Drilled:	08/10/00	- 08/17/00	Depth to Water:	446' BGS 10/10/00	
Borehole Type:	12"ARCH	I/4"WL Core/8"Mud Rotary	••	Monitoring Well,	4" Stainless Ste
Ground Elevation:	3562.39'		TOC Elevation:	3565.48'	
Completion [Ft.]	Lithology USCS	I	Description	Sample	% Recover Sample No
	SP ML	(10YR 6/6), nonplastic, ve stiff, damp, increasing silt	-	edium	
	SP	grain 30% medium grain, s to damp	lowish brown (10YR 6/4), 7 subrounded, poorly graded, l	oose, dry	
	9, 0, 0, 0 9, 0, 0, 0 9, 0, 0, 0 9, 0, 0, 0 9, 0, 0 9, 0, 0 9, 0 9	(10YR 7/3), very fine grain poorly graded, loose, damp		ed,	
	SP		lowish brown (10YR 6/4), m grain, subangular, poorly g		

Project	Number:	3615			Client:	Mason & Ha	nger C	orporation
Geologi			man	/Hall/Hull/Rupp	Northing: 3768142.23	Easting: 62	<u> </u>	1
	Contractor:			ristensen	Total Depth of Borehole:			
Dates D		2		- 08/17/00	Depth to Water:	446' BGS 10	/10/00	
Borehol	e Type:			/4"WL Core/8"Mud Rotary	1			4" Stainless Ste
	Elevation:	3562.			TOC Elevation:	3565.48'		
Comple	Depth (Ft.	Lithology	USCS	I	Description		Sample	% Recover Sample No
			SP					
			CL	yellowish brown (10YR 5/ medium plasticity, very fin Top FGZ at 255', 8-inch ste to 265' BGS, begin continu	dy, 60% clay 20% silt 20% 6) to strong brown (7.5YR 4 he sand, medium stiff to stiff eel conductor casing set with hous coring at 263' 6 clay 40% silt 10% sand, d	/6), , moist n cement	_	
			CL	reddish brown (2.5YR 5/4)	, medium plastic, fine grain moist, @ 263' 1.2' bentonit	sand,	_	263-268': 5.0 ft.; 1
\bigotimes	- 270-		CL				_	268-273': 5.0 ft.; 1
			CL	273-278' same as above				273-278': 5.0 ft.; 1
			ML	reddish brown (5YR 6/4), y graded sand, moist, caliche	% silt, 20% sand, 10% clay, very fine grain, subangular, j e nodules common in lower 2	poorly		278-283': 5.0 ft.; 1
			ML	283-288' same as above				283-288': 5.0 ft.; 1
			ML		silt 20% sand 10% clay, re ine grain, subangular, well s		-	288-293': 5.0 ft.; 1
			ML SP	subangular, poorly graded,	brown (7.5YR 5/6), fine gra moist; 3" sandstone at botto		-	293-298': 5.0 ft.; 1
\bowtie		00	SM	core 298-303' SAND, silty, 90%	% sand 10% silt, strong brow	/n	1	
		1 - 7 - 1 - 1 - 1 - 1		, ,,	, , ,		-1	

Project Number:	3615		Client:	Mason & Hange	r Corporation
Geologist:		/Hall/Hull/Rupp	Northing: 3768142.23	Easting: 62963	
Drilling Contractor:	Layne Ch	**	Total Depth of Borehole:	798' BGS	
Dates Drilled:	•	- 08/17/00	Depth to Water: 446' BGS 10/10/00		/00
Borehole Type:	12"ARCH	I/4"WL Core/8"Mud Rotary	*		l, 4" Stainless Ste
Ground Elevation:	3562.39'		TOC Elevation:	3565.48'	
Completion (Ft.)	Lithology USCS	I	Description	-	ວ Markoven Sample N
ř X X _	911 011 9 110 119 1 SM	(7.5YR 5/6), very fine grai	n, subrounded, well sorted, 1		298-303': 5.0 ft.; 10
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	303-307' same as above @ 306-307' no recovery			303-308': 4.0 ft.; 8
	CL SP CL	yellowish brown (10YR 4/ sorted 308-311' SAND, light bro	% clay 30% silt 10% sand, d (4), fine grain, subrounded, w (7.5YR 6/3), very fine gr	vell	308-313': 4.0 ft.; 8
	9.:: 0.:: 9 0.:: 0.:: 9 0.:: 0 0.:: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	brown, (7.5YR 6/4), stiff, r 312-313' no recovery due	% clay 20% silt 10% sand, li moist to large fragment of sandstor	///	313-318': 5.0 ft.; 1
	0.000000000000000000000000000000000000	315-323' SAND, silty, 50%	wn (7.5YR 4/4), stiff, moist % sand 40% silt 10% clay, st ine to medium grain, subrour		318-323': 5.0 ft.; 1
	00 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000000 0000000	$\overline{323-328'}$ SAND, with $\overline{409'}$	6 silt 10% clay, reddish yello subrnded, poorly graded, der		323-328': 5.0 ft.; 1
	SM	5/8), fine grained, subround	6 silt and clay, strong brown ded, sorted, dense, moist, 4 f	t. run	328-332': 4.0 ft.; 1
	SM	6/3), very fine grained with graded, dense, moist, no oc	% silt and clay, light brown (n some fine grain, subrounde dor, areas are partially lithifu % silt and clay, light brown (d, poorly	332-337': 5.0 ft.; 1
	SM		n some fine grains, subround		337-341': 3.0 ft.; 7
	SM				341-346': 0.0 ft.;
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0		and clay, light brown (7.5Y) subrounded, poorly graded,		346-352': 5.0 ft.; 1
	SM	6/4), fine grain, subrounder <2% caliche nodules to 1/8		ied, with	352-357': 5.0 ft.; 1
× ×	oo.o.o oo.o.o SM		and clay to 30%, light brown d, dense, hard, partially lithi		357-362': 5.0 ft.; 1

Project Number:		3615			Client:	Mason & Hai	nger C	orporation
Geologist:		Brink	man	/Hall/Hull/Rupp	Northing: 3768142.23	Easting: 629	9630.0	4
Drilling Contrac	tor:	Layne	Chi	ristensen	Total Depth of Borehole:	798' BGS		
Dates Drilled:		08/10/	/00	- 08/17/00	Depth to Water:	446' BGS 10/	10/00	
Borehole Type:				/4"WL Core/8"Mud Rotary	71	· · · · · · · · · · · · · · · · · · ·	Vell, 4	" Stainless Ste
Ground Elevatio	n:	3562.3	39'		TOC Elevation:	3565.48'	· · ·	
Completion	Depth (Ft.)	Lithology	USCS	Ι	Description		Sample	% Recover Sample N
	<u> </u>	9:::{::::9	SM	3-5% caliche nodules to $1/4$	4-inch		S	
	· _	911 01 0 010 0 100 0	SM	6/4), fine and very fine grad lithified, with 5% caliche n nomatoblastic appearance	and clay to 30%, light brown in, subrounded, dense, hard, odules to 1/2-inch giving a			362-367': 5.0 ft.; 10
	-370	1.16 1.19 01.1 01.1 0	SM	367-372' same as above				367-372': 5.0 ft.; 10
			SM	372-377' SAND, as above, subrounded, dense, hard, pa	, light brown (7.5YR 6/4), fi artially lithified	ne grain,		372-377': 5.0 ft.; 1
	- 380	0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	SM		20% silt, light brown (7.5YF lense, hard, partially lithified		-	377-382': 4.0 ft.; 8
	· _		SM	$\overline{382-387'}$ SAND, with $\overline{10-1}$ fine grain, subrounded, with	15% silt, light brown (7.5YF h caliche nodes	<u>R 6/4),</u>		382-387': 5.0 ft.; 1
	- 390		SM	387-392' same as above				387-392': 5.0 ft.; 1
	· _		SM	392-397' same as above			-	392-397': 5.0 ft.; 1
	-400		SM	397-402' same as above, m				397-402': 5.0 ft.; 1 402-407': 5.0 ft.; 1
	· _		SM	402-407' same as above, ir	-			PTX06-1072A-2-(Permeability
	-410		SM	407-412' no recovery, spri prevented core entry to bar	ng malfunction in core shoe rel			407-412': 0.0 ft.;
	· _		SM	well lithified	ith increasing caliche nodule	es, fairly		412-417': 5.0 ft.; 1
	· _		SM	417-422' same as above				417-422': 5.0 ft.; 1

Project Number:	3615		Client:	Mason & Hang	er Corporation
Geologist:	Brinkman	/Hall/Hull/Rupp	Northing: 3768142.23	Easting: 62963	30.04
Drilling Contractor:	Layne Ch	ristensen	Total Depth of Borehole: 798' BGS		
Dates Drilled:	08/10/00	- 08/17/00	Depth to Water: 446' BGS 10/10/00		/00
Borehole Type:	12"ARCH	I/4"WL Core/8"Mud Rotary	Well Type:	Monitoring We	ll, 4" Stainless Ste
Ground Elevation:	3562.39'	-	TOC Elevation:	3565.48'	
	~				
Depth (Ft.) Depth (Ft.)	Lithology USCS		Description		% Recover Sample N Sample N
	00 SM				
	- 00 00 00 00 00 00 00 00 00 00 00 00 00	422-427' same as above			422-427': 5.0 ft.; 1
-430-		subrounded, poorly graded	prown (5YR 5/4), very fine g	rain,	427-432': 4.0 ft.; 8
	- 0, 0, 0, 0 - 0, 0, 0 - 0, 0, 0 - 0, 0, 0 - 0, 0		% sand 10% silt, yellowish ro n, subrounded, dense, moist,		432-437': 5.0 ft.; 1
-440-	- 0	437-442' same as above @ 440-442' much looser, 4			437-442': 4.0 ft.; 8
	0 0 0 0 SM	443.5-447' SAND, 10% si grain, subangular to subrou	It, light gray (5YR 7/1), very unded, poorly graded, moist	v fine	442-447': 5.0 ft.; 1
-450-	- 0 0 0 SM 0	447-448.5' no recovery 448.5-451.5' SAND, 10% fine grain, subangular to su	silt, strong brown (7.5YR $\overline{5}$ /	6), very	447-452': 3.0 ft.; 6
	- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	452-457' SAND, 15% silt, grain, subangular to subrou lithified, some caliche zone			452-457': 5.0 ft.; 1
-460-	O O O O O SM O O O O O O O O O O O O O O O O O O O	457.2-462' no recovery		/	457-462': 0.2 ft.;
	SM	462.5-467' no recovery			462-467': 0.5 ft.; 1
-470-	9, 9, 9, 9, 9 9, 9, 9, 9 9, 10, 9, 9 9, 10, 9, 9 9, 10, 9, 10, 9 9, 10, 9, 10, 9 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10		strong brown (7.5YR 5/6), y graded, moist, variably lithif caliche stringers		467-472': 3.0 ft.; (
	- 00 00 00 00 SM	472-477' no recovery			472-477': 0.0 ft.;
		477-482' SAND, 10-15%	silt, strong brown (7.5YR 5/ lense,	6), very	477-482': 5.0 ft.; 1

Project Number:	3615		Client:	Mason & Hang	er Corporation
Geologist:	Brinkman	/Hall/Hull/Rupp	Northing: 3768142.23	Easting: 6296	*
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	798' BGS	
Dates Drilled:	,	- 08/17/00	Depth to Water:	446' BGS 10/10)/00
Borehole Type:		I/4"WL Core/8"Mud Rotary	1	Monitoring We	ll, 4" Stainless Ste
Ground Elevation:	3562.39'	<u> </u>	TOC Elevation:	3565.48'	,
Completion Ξ	ogy]	Description		ه الم Recover
Completion [[H.]	Lithology USCS				Sample N
	99 SM	@ 479' caliche bed, 6" this	ck, partially lithified, hard		PTX06-1057A-2-0
	9.1.61.9		, becoming much more clay	ey,	Permeability
		(7.5YR 5/6), dense, lithifie		(7)	482-487': 5.0 ft.; 1
	CL	6/3), low plasticity, shears	Y, with sand to 20%, pale of		PTX06-1057A-2-0
	-	487-492' CLAY and CAL	$\overline{\text{ICHE, pale olive } (5 \text{ Y} 6/3) } \overline{\text{to}}$		Permeability
490	ML	caliche, shears, hard, dense			487-492': 5.0 ft.; 1
			pentonite as above, bentonite che may be a soft limestone	may be	
	ML	sheared canche zones, can	che may de a sont minestone		492-497': 3.0 ft.; 6
	9.1.0.19	497-502' no recovery			
	2.26 2.29 2 9.2 2.2 9 SM				497-502': 0.0 ft.;
	5 M				477-502 : 0.0 11.,
	9.1 0.1 9	502-504.5' SAND, 20% si	It, reddish gray (5YR 5/2), v	fine	
	SM		orly graded, loose, moist, les		502-507': 5.0 ft.; 1
		dry, strong FeO vertical sta	light gray (7.5YR N7/), hard	d, dense,	
	<u> </u>	505-507' SAND, silty, 90%	% sand 10% silt, reddish yel	low //	
510			subrnded, med sorted, loose,		507-512': 5.0 ft.; 1
	Sr	grain, loose; with limeston	wn (7.5YR $6/4$), fine to med	lium	
			wn (7.5YR $6/4$), fine to med	lium grain /	
	SP	sands, subrounded, loose			512-517': 4.3 ft.; 8
			rown $(7.5 \text{YR } 4/6)$, fine to me	edium	
		grain sands, subrounded, sl 516.25-517'	ngniny ucise, no recovery		517 500 500
520		517-522' SAND, strong br	rown $(7.5YR 5/6)$, fine to me		517-522': 5.0 ft.; 1
			graded, medium dense, slight	tly damp	
		to damp @ 517.5-517.75' mottling	of limestone	,/	522-527': 5.0 ft.; 1
		a 519-519.5' less resistan	t, medium dense, slightly da	ump /	
			wn $(7.5$ YR $6/4$), fine to med	lium grain	
530	SP	with 10% coarse grain, gra	$\frac{ded, medium dense, damp}{rown (7.5YR 5/6), 80\% fine}$	grain	527-532': 4.5 ft.; 9
			unded, poorly graded, mediu		
		saturated, core is within the	e saturated zone of Ogallala	Aquifer	
	SP		rown (7.5YR 4/6), 80% fine l, poorly graded, dense, satu		532-537': 4.8 ft.; 9
	- SP	537-542' SAND, as above	, 0.2' recovery		537-542': 0.2 ft.;
		•			

Project Number:	nds Soil Gas 3615	Pantex Plant (S	Client:	Mason & Hanger	Amarillo, Texa Corporation
Geologist:	Brinkman	/Hall/Hull/Rupp	Northing: 3768142.23	Easting: 629630.	
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	798' BGS	
Dates Drilled:	<i>.</i>	- 08/17/00	Depth to Water:	446' BGS 10/10/00	
Borehole Type:		I/4"WL Core/8"Mud Rotary	Well Type:	Monitoring Well,	
Ground Elevation:	3562.39'		TOC Elevation: 3565.48'		
Completion Debth (Ft.)	Lithology USCS		Description	Sample	% Recover
	SP				
	99 99	very fine and fine grain, su very dense, saturated	% silt, brown (7.5YR 5/4), ne brounded, poorly graded, de		PTX06-1057A-2-0 Permeability 542-547': 4.8 ft.; 9
- 550-	SM	547-551' SAND, silty, as a			547-552': 4.7 ft.; 9
		551-553' CLAY, sandy, ye plastic, very fine sand, stiff 553-557' no recovery	ellowish red (5YR 4/6), med f to hard, damp to moist	ium	552-557': 1.1 ft.; 2
- 560-	99 99 99 99 99 99 8 8 8 8		% sand 20% silt, strong brow ne grain, subrounded, mediu		557-562': 3.0 ft.; 6
	00 	562-565' SAND, silty, as a	above		562-567': 5.0 ft.; 1
- 570-	SM	6/3) with light gray (7.5YR	2 7/2), fine grain, subangular calcic matrix, dense to very	, medium	567-572': 5.0 ft.; 1
	- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		90% sand, 10+% silt, brown , subrounded, medium dense		572-577': 5.0 ft.; 1
	SM	577-580' same as above, w 580-602' SAND, vellowisl	vell indurated		577-582': 3.0 ft.; 6
		subrounded, poorly graded (a) 580-582' no recovery (a) 582-587' 2.8 ft. recover	, loose, saturated	,	582-587': 2.8 ft.; 5
			y ove, with scattered subround	ed, calcic	PTX06-1057A-2-0 Permeability
	SP	nodes, up to 1/4-inch diam	eter		587-592': 3.4 ft.; 6
		@ 592-597' SAND, as abo to loose sand washing out	ove, 3.3' recovery, poor recov	very due	592-597': 3.3 ft.; 6
	-	@ 597-602' SAND, as abo dense, scattered caliche not	ove, but more calcic, mediun des, trace silt, 4.6' recovery	n dense to	
	<u> </u>				597-602': 4.6 ft.; 9

Project Number:	3615		Client:	Mason & Hanger	Corporation
Geologist:	Brinkmar	n/Hall/Hull/Rupp	Northing: 3768142.23	Easting: 629630.	04
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	798' BGS	
Dates Drilled:		- 08/17/00	Depth to Water:	446' BGS 10/10/00	
Borehole Type:		H/4"WL Core/8"Mud Rotary		Monitoring Well,	4" Stainless Ste
Ground Elevation:	3562.39'	1	TOC Elevation:	3565.48'	1
Depth (Ft.)	Lithology USCS		Description	Sample	% Recover Sample No
	O O	602-617' SAND, silty, 70% brown (10YR 5/4), fine gra saturated @ 602-607' 4.8' recovery	% sand about 30% silt, yello ain, poorly graded, medium ove, 4.4' recovery		602-607': 4.8 ft.; 90 607-612': 4.4 ft.; 83
		@ 612-617' SAND, as abo	ove, becoming loose, 4.9' rec	covery	612-617': 4.9 ft.; 9
-620-	SP	possibly due to decreasing			617-622': 0.6 ft.; 1
	SP	sand, driller reports no sign	ehole is taking water, possib nificant change in penetratio	n	622-627': 0.0 ft.;
-630-	GM	fluvial sediment, 1 ft. recov	y, with well cemented sand, very	coarse	627-632': 1.0 ft.; 2
	Gw				632-637': 0.0 ft.;
-640-	Gw				637-642': 0.0 ft.;
	GW				642-647': 0.0 ft.;
-650	Gw				647-652': 0.0 ft.;
	• • • • • • • • • • • • • • • • • • •	brown (5YR 6/3), dense, 1 end	vith 1" diameter gravel, light ft. recovery appears to be fr	om shoe	652-657': 1.0 ft.; 2
	SP	657-662' SANDSTONE, v pale brown (10YR 8/3), lit	with cobbles to 4" in diamete hified, 1 ft. recovery	er, very	657-662': 1.0 ft.; 2

Project Number	r:	3615			Client:	Mason & Han	ger Corporation
Geologist:		Brink	man	/Hall/Hull/Rupp	Northing: 3768142.23	Easting: 629	630.04
Drilling Contra	ctor:	Layne	e Ch	ristensen	Total Depth of Borehole:	798' BGS	
Dates Drilled:				- 08/17/00	Depth to Water:	446' BGS 10/2	
Borehole Type:		12"AI	RCH	I/4"WL Core/8"Mud Rotary	21	Monitoring W	ell, 4" Stainless Ste
Ground Elevati	on:	3562.	39'		TOC Elevation:	3565.48'	
Completion	Depth (Ft.)	Lithology	USCS	I	Description		% Recover Sample No
			SP CL CL SP SP	medium grain, slightly loos 663-664' CLAY, light gray damp, covered with fine to 664-667' CLAY, yellowish slightly moist 667-669' SANDSTONE, y	y (10YR 7/1), plastic, dense,	slightly , dense, e to very	662-667': 5.0 ft.; 10 667-672': 1.5 ft.; 3
			SP SP	669-672' no core recovere 672-673.5' SANDSTONE 5/6), fine to medium grain, @ 673-673.5' sandstone is	d, with some clay, yellowish	red (5YR /	672-677': 1.4 ft.; 2
	-680-	· · · · · · · · · · · · · · · · · · ·		673.5-682' no recovery			677-682': 0.0 ft.;
			SP	medium grain, medium der mottling in center of core, @ 687' hard, very well cer	mented at contact	', Mn03	682-687': 1.5 ft.; 3
	 - 690 		CL	medium plastic, stiff to ver 689-714' CLAY, gray to d plasticity, hard, moist, com limonite staining in fractur @ 693-695' and 697-698' b sandy portions are light oli	ark gray (7.5YR N5/-N4/), I umonly broken every 0.2-0.4 es becoming sandy clay to claye ve brown (2.5Y 5/6) color d	high ft. with ey sand,	687-692': 5.4 ft.; 10 PTX06-1057A-2-0 Permeability 692-697': 5.4 ft.; 10
	 		CL	limonite staining, very fine @ 699' calcic layer, 0.2 ft.	thick, microcrystalline, ligh	t gray	697-702': 3.2 ft.; 6
					ey sand, grayish brown (10) lium dense, moist, limonitic, idurated at 707'		702-707': 5.0 ft.; 1
	 710 			 @ 707-712' clay becoming muddy, limonite throughou @ 712-714' as above, yelle 		and	707-712': 5.2 ft.; 1
			SP	loose sand?	e clast 0.2' at 714' then no re	-	712-717': 1.9 ft.; 3
			SC		vellowish brown (10YR 5/6) als, core loss related to fine l		717-722': 1.8 ft.; 3

Project Number		3615			Client:	Mason & Ha	nger (orporation
Geologist:	•		man	/Hall/Hull/Rupp	Northing: 3768142.23	Easting: 62	-	<u>.</u>
Drilling Contrac	ctor.			ristensen	Total Depth of Borehole:	798' BGS	2020.0	1
Dates Drilled:				- 08/17/00	Depth to Water:	446' BGS 10	/10/00	
Borehole Type:				/4"WL Core/8"Mud Rotary	Well Type:	Monitoring Well, 4" Stainles		" Stainless Stee
Ground Elevation	on.	3562.			TOC Elevation:	3565.48'		
Completion	Depth (Ft.)	Lithology	USCS	Ι	Description		Sample	% Recovery Sample No
			SC SC	grain sand, subrounded, loc	tter of the run from about ellowish brown (10 YR 5/4), ose, saturated; 1 ft. recovery ey, 70% sand 25% silt 5% c	722-727'	_	722-727': 1.0 ft.; 20'
	- 730	0	SC	graded, medium dense, moi			_	727-732': 5.3 ft.; 100 732-737': 2.3 ft.; 46
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SC	732-737 SAND, as above,	decreasing silt/clay, saturat	ed		PTX06-1057A-2-0' Permeability
	- – —740—	00 000 000 000 000 000 000 000 000 000 000 000 000	SM	yellowish brown (10YR 4/4	k brown (7.5YR 4/4) to dark 4), nonplastic, very fine grai 11 grain, poorly graded, me	n 80%,		737-742': 5.4 ft.; 10
		0 /. 0 /. 0 /. 0 /. 0 /. 0 /. 0 /. 0 /.	SC	(10YR 5/6), very fine sand, well indurated, moist to sat	urated	ıghout,		742-747': 5.0 ft.; 10
	 - 750		CL	747-752' CLAY, sandy as mottling, becoming reddish	above, with angular pebbles brown (5YR 4/4) at 750'	, less		747-752': 4.0 ft.; 8
			CL		ebbly, red (2.5YR 4/8), hard ,754', and 757', calcic hairli		_	752-757': 5.3 ft.; 10
	 - 760			759-765.5' CLAYSTONE, 5/6), continued calcic infill	grading to strong brown (7)	5YR	_	757-762': 5.0 ft.; 10
			CL MUD	765.5-767.5' CLAY/MUD	STONE, pale yellow (2.5Y	7/2)	_	762-767': 5.0 ft.; 10
	 - 770		STN CL	767.5-772' CLAY, red (2.5 hard, dry to moist, pale yell trace fine and very fine same			_	767-772': 5.2 ft.; 10
			CL		\overline{R} $\overline{4/6}$, \overline{clay} , highly plastic, , some calcic deposits along		_	772-777': 5.0 ft.; 10
			CL	777-782' CLAY, red (2.5Y significant mottling or calci	$\overline{R 4/6}$, highly plastic, as ab ic deposits, hard, damp	ove, no	-	777-782': 5.0 ft.; 10
	лттт		חר	PORATION				Page 13

Pantex Burnin	g Grour	nds Soil (Gas	Pantex Plant (Se	outh of Playa 3)			Amarillo, Texas
Project Number	-	3615			Client:	Mason &		Corporation
Geologist:		Brink	man	/Hall/Hull/Rupp	Northing: 3768142.23	Easting:	629630.0)4
Drilling Contrac	ctor:	Layne	e Chi	ristensen	Total Depth of Borehole:	798' BGS	5	
Dates Drilled:		08/10	/00	- 08/17/00	Depth to Water:	446' BGS	5 10/10/00	
Borehole Type:		12"A	RCH	I/4"WL Core/8"Mud Rotary	Well Type:	Monitori	ng Well, 4	4" Stainless Stee
Ground Elevation	on:	3562.	39'		TOC Elevation:	3565.48'		
Completion	Depth (Ft.)	Lithology	USCS	I	Description		Sample	% Recovery Sample No
	De	Lit	S CL	782' Total Depth Cored			Sa	
				782-798' CLAY, as above, reaming	, drilled with tricone bit whi	le		
	— 790— - — - —		CL					
				Total Depth of Borehole 79	98' BGS			
-				Cored Interval: 265-782' B Fine Grain Zone 255' BGS Redbeds 752' BGS	GS			
-	 - 810—			Well Completion Details: Borehole Diameter: 12" surface to 265' 7 7/8" 265-798' 8 5/8" steel conductor casir	ng set with cement from sur	face to		
-				265' Total Depth of Well 758' B				
-	 - 820 				reen (423-753'), 425' casing			
-	 - 830			Concrete pad (5'x5'x8') wit Protective casing, 10-inch				
-								
-								
S.M. STO	DLLF	ER CO) DR	PORATION				Page 14

PTX06-1057A

VISUAL CLASSIFICATION OF SOILS

RING NUM	BER: 0	VO6	1057A	COORDINATES	E: BUCNIC,		DATE: 8		
LEVATION:		100-	10511	GWL: Depth	Date/Time			ARTED: 8/10	ina
NGINEER/GI	OLOGIS	T: Ste	Rik	Depth	Date/Time			MPLETED:	70-
			- Marina					OF22	
		10		60					
SAMPLE SAMPLE	BLOWS ON	RECOVERY ()	z.		PY	USCS SYMBOL	иногосу	REMARK	s
			1.5-5'-6 hurd, Dily 5-10- Clay dry. 15-20 Clay a hore 15-20 Clay a hore 20-25-Clay hore 25-20-Clay	-/ sit, Miaur G dry. dry. dry. dry. fritr. 10 402, oblich Pry. 1' culiche b v/sitr x0 2090, S rd. reddish brow -/ witr. 70 20 % SYM	the dry to day	ч, с с с с с	-	1.4 ppm 1.4 pm 0.8 ppm 0.3 ppm 0.0 ppm	SFatic charge 3
			19415 35-40 Clay - 55-60 Silt 1 55-60 Silt No hord 55-60 S	r w/clay To 20 %.	elicle beds/Notubes. Eyr 5/4 w/culicle Damp, hurd. Syr 1/6 no Syr 8/2 'Syr 1/6 w/culicle. Licle bede 57'	CL ML ML		D.O.M. D.O. APM D.O. APM D.O. AM D.O. AM	a B Baran S
	ngw/14" - D.63 R. T				.`.	•			an ann an

....

	N				ATION OF SC						
JECT NU	MBER:	3615		PROJECT NAM	E: BUGNIAS	6100	10	50	il GAS		
NG NUM	BER: PT	1406 -1	057A	COORDINATES	S:		DA	TE:	2/10/00		
ELEVATION:	1			GWL: Depth	Date/Time		DA	TE ST	ARTED: 8/10	100	
ENGINEER/G	EOLOGIS	ST: S. 6	rinknon	Depth	Date/Time		DA	TE CO	MPLETED:		
	THODS:	Air	W/ Tri	- cone bit	14*		PA	GE: 2	OF 22		
DEPTH () SAMPLE MPE & NO.	BLOWS ON SAMPLER()	RECOVERY		DESCRIPTION	I			THOLOGY	REMARK PID ,	S	
(0) F	a s						3	2	,		
- Grab	1			y To 30 To, Calid ITE reddal trans, Ro		m	L		O.D.gp.		
TO	68'	1		- Cap Roch s							
			white, 54	15 \$8/1 1. 8/2	had, dry						
-			The Prove of							· ·	
						•					
2			en' stil	lincuprock,						i .	
			00 0	• • • • • • • • • • • • • • • • • • •						•••	
			5' SM - W[culic	-(5YE813] pinic he nods -	silfrand				90 6 1845		- Otta
99-			fint se	Same and	DOVE						
95		The second second	95-105	SAND, light	benus (75YR b)		4				
-102			media	ad grains, por			10				
-					1- 000						
-1/0-			105-120 (2103) (54R 6) medium	SILT, with s , light reddish 14), Low to Now, - otifl, dry	brown plasse, sopt to to dang	n	1L				
-											
_							1				
- 120											
\sim	_	1					-	•			1
1											
			•								
							•		•	4	-

		ABER:			PROJECT NAM		46000				-
INC	G NUM	BER:PT	X06-	1057A	COORDINATES	S:			8-10		4
EVA	TION:				GWL: Depth	Date/Tin	10	DATE	STARTE	0:08-10-00	
		OLOGIS	_		Depth	Date/Tin	ne .		COMPLE		
	NG MET	THODS:	ARC	# Schra	mma/ODEX 11	5/8" hay	ine	PAGE	3 OF	22	
()	SAMPLE TYPE & NO.	BLOWS ON SAMPLERV()	RECOVERY		DESCRIPTION	21 21 			F	REMARKS	
		5 2		Go yr 4 with the pronty 5	5 SAND, 1: 14), very fine he midsingen add, dry, to becoming site	and fanie z 2, subsequels	51	0			
5-152				145-160 STrong br finis com	SILT, Sand www. (7.5 yr 5/4 Do and subserved	y, 70° sur,), nonplace 2, sytide	302 sa R tic, p, M	L	150	'e 2145	「「「「「「「「」」」」
101112		2		poorly	D SAND, 1. +), 90 °2 fam absorvabled to. graded, med scattered from	winded, ium dem	eg 5	۶. ۲	-		
				moder	gram aze.	Jak Danda	ny fin	green		@ 2300	
		14 9							131		

• *

IN	G NUM	BER: PT	206-10	57 A COORDINATES	:	DA	TE: 8	-11-00	
EVA	TION:			GWL: Depth	Date/Time			ARTED: 8-10-0	Ø
		OLOGIS			Date/Time			MPLETED:	-
	NG ME	THODS:	ARC++;	Layne, Dean Walton, Sel	hramm/odex	PA	GE:4	OF 22	
()	SAMPLE TYPE & NO.	BLOWS ON SAMPLERV()	RECOVERY ()	DESCRIPTION		USCS SYMBOL	ИНОГОСУ	REMARKS	
				160-200 Sand su a descrytim .		SP		200'@ 2-100	8-11
				200-220 SILT, St 40 a Sand, increasing Burnisty ellow 60 yr Very fine band, 207 stifl, damp.	andy 60 " sitt att with depth : 6/6), nonplaster 4 to medium	ML		2/0'8 0055	
20				220-230 SAND, 1 (10yR6/4)70% Finegram Subrowded, pourly gr ORyto daug. 230-235 SAND, SILTY,	202 mediu gran what, wase,	SP		220'@0142	
35 _				Very pale burnelioy re 7/3) ver pran, subronded provery gu 235-255 <u>SAND</u> , ligh (10 yr 6/4), medium to with some fire gran	Jene grow, some	SP			
(3:			e •	2				

•

JI	ECT NUM	ABER:	3615		PROJECT NAM	E: Pantex Burnin	_		the second second second second second second second second second second second second second second second s
RIN		BER: PTS	106-109	57 A	COORDINATES	:		DATE: 8	$1-11-00 - \frac{8}{13}/100$
ELEVA	ATION:				GWL: Depth	Date/Time	1	DATE ST	ARTED: 8-10-00
ENGIN	NEER/GE	OLOGIS	T: R.7	RUPP	Depth	Date/Time			MPLETED:
DRILL	ING MET	HODS:	ARCH,	LAYNE, D	ean watton, Se	hrammyodex		PAGE: 5	of 22
DEPTH ()	SAMPLE TYPE & NO.	BLOWS ON, SAMPLEPV(:-)	RECOVERY ()	1	DESCRIPTION		USCS SYMBOL	КООТОНЦП	REMARKS
-250-			•	235-25 Suba Ioroi	5 continuel gulor, por	ly graded ,	sP		
255	-			stiff ,	moist but	fiat water.	1.00		265'80430
- 270				TP	52C 255 3 12 Benkenit		Cu		
- 289-	-	1.,			cley, 10% sand, 2.5YR 514, nea moist, subony. greater.	clay, Adjsilt, 502. atk readish brown 1. plost., Ingr sord, , well sortd. posily			
				273-27 278-28 BOTo silt Moist, s	, light reddish l and v. fngr, sub	20% sand, 10% cla brown SYR 6/4, ang, med sold,		-	DID Mgg6.0
290				Poorly 91 2'. 283-281	aded. Coliche ra	doles common in la			0.0 ppm
():								
							•		

• •

	CT NUN	ABEH:	3615		PROJECT NAME:	BGSG			
IN	G NUME	BER: PT.	x06-10	57A	COORDINATES:				3/13/00
ELEVA	TION:				GWL: Depth	Date/Time	1	DATE ST	ARTED: 8/10/00
ENGIN	EER/GE	OLOGIS	T: C. A	011	Depth	Date/Time	1	DATE CO	MPLETED:
DRILLI	NG MET	HODS:	ODEX	CORE . LA	YNE		1	PAGE:6	OF 22
DEPTH	SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY ()		DESCRIPTION		USCS SYMBOL	LTHOLOGY	REMARKS
				7.5 YR 6/ stilt, son coliche. 293-294 294.4-21 fngr, su moist. 50 298-303 1070 silt, 9 hoist. 303-305 306-204 308-311 V. fngr, s 308-311 Soldshore. 313-315 313-315	AB Sand, strong & bang!., well strong & bang!., well strong orderone 3"@ battom sity Sand, strong Ota sand, with gr well SAA barecovery Silly cley - dKyello , sad 1020, silt 3020 , sold such std, low , clay, 7.578.414 brown, Sand, win gr, well rated, Clay, 7.578.414 brown, Sand, sola 507.5300 , 1020	by, 7070 si 14, well srtd, some Srown 7.54R 56 poorly grooked. ofcore brown 7.54R 56 rocked, well sited, with brown, 104R clay 607. to 2 607. to 3 4 5111. petrogment of subrdd, light brow moist, stift clay, 407. si 14.			0.0 ppm 0.0 ppm 0.0 ppm 0.0 ppm

JE	ECT NUI	MBER:	361		PROJECT NAME					יי ר
-				1057A	COORDINATES:			DATE:	8/13/00	1
ELEVA					GWL: Depth	Date/Time	1	DATE ST	ARTED: 8/10/00	1
ENGIN	EER/GE	OLOGIS	ST: C.	Hull	Depth	Date/Time	1	DATE CO	MPLETED:	1
	NG ME	THODS:	ODEX	Core -	LAYNE		F	PAGE: 7	OF22]
DEPTH	SAMPLE TYPE & NO.	BLOWS ON SAMPLERV()	RECOVERY ()		DESCRIPTION		USCS SYMBOL	NOLOGY	Cove Scan REMARKS PID	
315		2			3 silty sand, 5 , strong bru, 7.5 bend, poorly sold Hull Relewed by			100	0.0pp	
	we		100%	323 -327 Fine gran Gradel m	A Sand, w/40%.s it. 757R 6/6.s.s air, dense- No	17 # 10 20 clay 10 10 mbet, pourly 0 dor-	Sm		0.0117	
1 0 1		r in	1912	a mout ge	D Soul w/40%	s. Is a chy made 2: sored	Sm		00 <i>89</i> 4	
35-		_ <u>×</u> _		ASYRE, MONT, W	- Sand w/40 is s viel w/ since grains 3 s-branded, Pr ense up odor - 1	ordy bracked, arous are partial			0.0 11-7	
-340-			1 missing	- 337-34 Fingrow 75 11 65 Look.	L. 10 - Send w/407.1 2 w/ Fine Grains w 2 s-branded, Par	it & day Vary to Ergor Grands 4 Grad - MONST	5 <i>m</i> .		o o ppm	2
345			0%		5 - No Recov					

VIE	CT NU	MBER: 7	2/15		PROJECT NAME	E: RUCNING &	Coun	2 5	oil bas	
				1057A	COORDINATES		D	ATE: S	114/00	
ELEVA					GWL: Depth	Date/Time		ATE ST		
ENGIN	EER/GE	OLOGIS	T:C.R	man	Depth	Date/Time	D	ATE CO	MPLETED:	
		THODS:					P	AGE: 8	OF 22	
DEPTH	SAMPLE TYPE & NO.	BLOWS ON SAMPLERV()	RECOVERY		DESCRIPTION	2	USCS SYMBOL	птногосу	REMARKS Pid Stan	
			1907.	no Sand, 40 and pire Grab subrounded,	\$46-350 is Fro y Sit ally at party Guden dense w/ lithin	, Vary Fine Grainal 2.5456/4 al Areas.	SM		0.0 gpm	
				352-306 day 30. denk \$ h	en 6' TO be some - Sand - perme - 40% 7.54h 6, und - partially b che Modales TO	for w/s. 17 & . 14 sub conduct	SM		0.0 ppn	
-38	- Sicha b		100%	to 30% dance, how	1 Sund Fine 7,54R 6/4 s d, partially lun	6. w/s. 15 t day ab roment bifiel alcolida	SM		0.5187	2007
365			100%.	Fine \$ vary dank, hore, Nodules	portally inhit	Tacky 703090 VR 6/4 Subrounded Liet, w/calicle 13 a normapplesic	1. 1.1.1		0.0 ppm	
200		-	100%	*1947-371 367-371	- Sane as ab	sse.	sm		0.0 19	
			1007.	Partially	76 Lirhiffict SAA 7.5YA 6/Y	rd-Finebr.	Sm		0.0.ppm	
N										1

IEC	TNUN	BER:	3615		PROJECT NAM	E: BICNIAY	· Koy	d s	Soil bas]
DURING	NUME	BER: A	×06-	1057A	COORDINATES			DATE:	8/14/60	
ELEVATI					GWL: Depth	Date/Time	1	DATE ST	TARTED:]
ENGINE	ER/GE	OLOGI	ST: S.B	intimm	Depth	Date/Time	1	DATE CO	OMPLETED:	1
	G MET	HODS:	Cirel	514			1	PAGE: 9	0F22]
DEPTH	TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY ()	-	DESCRIPTION		USCS SYMBOL	ИТНОГОСУ	REMARKS	
-			100%	Prev. B.	ye -				0.0 ppn	. .
			-	4	pirecovery				1	
-			106%	378-38 10-20% hurd, deg	silr 7.5 yr 6/2 silr 7.5 yr 6/2 x portially La	sub road	SM	6	0.0 ppn	
			100%	382-386 7.5yr 6/4 -AL	Sand Finite sub ronded w prev. Nont.	50 10-15% Juli Capiche Modula	sn	9	0. D ppm	
			100%	387 - 30	71 - SAMĘ	Fair (and	sm	A 1976-7 1	O.D ppn	
			100%	392 - 3	96 SAME		Sm		0.0997	2 - - - - - - - - - -
		1	105 ;	397 - 40 Man	e Lidinica	less Fines	sw		0.01pn	
					107 SAA - diche noquies	increasing	560		0.0ppn	
405-									n *	

• •

ROJECT NU		3615		PROJECT NAM			DATE	8/1.1
JORING NUM	IBER: PT	x06-	657A	COORDINATES			DATE:	8/14/00
ELEVATION:			1	GWL: Depth	Date/Time		DATE ST	
ENGINEER/G		ST: C	Hull	Depth	Date/Time			MPLETED:
DRILLING ME	THODS:	OD	EX Core 1	Leyne			PAGE:/0	OF 22
DEPTH () SAMPLE TYPE & NO.	BLOWS ON SAMPLERV()	RECOVERY		DESCRIPTION		USCS SYMBOL	ПТНОГОСУ	REMARKS
-105- 					, spring melhuncha ore en hy tobarrel			
				SAA white it is a start of the second		SW		0.0 ppm
				2Z SAA		30		0.0 ppm
 			422-4	t7 saa		50		0.0ррм
				THE MAL ME	a large and	-	NE SHARE AND AND AND AND AND AND AND AND AND AND	
 		* 212 * 2	428-432 SYR 544 Poorty gre	Sand, redd 2 Sand, redd , v. fngr, sobr ded, lose, mois 9 No recovery	ish brown ounded, wellsite	SW SP		0.0ppm
-435-			432-43 7.57R5 57.47, for	7 Filtysand, No. v. Engr, cu only well lifth:	10tos i H, 90% sand brounded, neoist fieg	- sw		0.0 ppm
ÈS:				- 40				¥

• •

ENGIN	FFR/GF	OLOGIS	ST: C.	Holl Depth Date/Time		DATE CO	MPLETED:
				(Core Leyne		PAGE: ()	OF 22
DEPTH	SAMPLE TYPE & NO.	BLOWS ON SAMPLERV()	RECOVERY ()	DESCRIPTION	USCS SYMBOL	ИТНОГОСУ	REMARKS
435-				437-442 Topz' SAA, 440-442 Somesond but much booser 491.2 Norecovery			0.0ppm
445				442-443.5 Caliche, hard, dry, shift 443.5-447 Sand, 10% silt, light			0.0 ppm
1 I I				gray SYR 7/1, sand is v. fngr, subong to subrounded, wellsrid, poorly groded, moist 447 Mud pump down			O. Oppa
~_				447-448, 5 No recovery			0.0pm
				447-448, 5 No recovery 448,5-451,5 Sand, 1070 Si41, 7.5YR 96 stra brown v. In 35, Subary to subordd 4 \$\$\$.5-452 No recovery			0.0ppn 0.0ppn
455		2.6.8.7	ESR: MAR	452-457 Send 15% Sitt 2.5YB 5 stron			Q opposite a
120	19 19 19 19 19 49			brown, v. togr, subang to subrdy well stad, moist fairly well lithified, some caliche zonas 457 - 457. Z SAA, but loose			0.0ppm
460				467.2 - 462 No recovery. 462.5 - 462.5 5AA 462.5 - 467 No recovery			aoppru
			-	5'missing -			
465-				C. Hull offsire @ 1800 - Spinkrown.			
			60i.	467-471 - Sund, 15 in silt 748 5/6 Vary Fineyr, Sabrander, post, Graded, Moiss - Variably Lithifiel From Moderarely ro NON. some celicle strongers	SU	/ .	0.01pm

:

BORING N		x06-1	osta	GWL: Depth	Date/Time		DATE: &	ABTED
		ST.C	Scuteman	Depth	Date/Time			OMPLETED:
	METHODS		and the second second second second	Deptil	Date/ Inne			OF 22
DHILLING	THODS.	Core	<u> </u>					
SAMPLE	BLOWS ON SAMPLERV()	RECOVERY ()		DESCRIPTION		USCS SYMBOL	NOLOGY	REMARKS
XX			prev.	Paye -				
5	æprev.	page	egi Lo	correction	shipr)			
		1007-	47 477 - 481 Very Fine 6 Partialy Lor Party Grad	A -SANP - W c. W/ calicle b h. Hurd, dense	1/10-15%. illy ad @ 479'6"14 7.54R 5/6.	ssn		0.0 ppm
-18-					Sound us about by on SUP > CL c. tothefiel w/ Sund To 20 "			O.OPP-
			CY6/2 0.4	star, shears	Low Plasticity ide, Batter - clay C Bentanit? Sy 8/1, olive TO		1	0.0pm
495		607.	492 - 496 Barronire p Caliche Ma	19 - As abore harbe shered =	Calich & berg	Dire ML		0.019-
500			496.9.4 Ent 497-50	97 No rocove D BRINKAN S DZ No recov	HIET HIET Dery	÷		
ES:								
					1.7 -	1		

.

.

1

	WIDEN.	3615		PROJECT NAM	E: BGSG				
JORING NUM	BER: PT.	206-10	57 A	COORDINATES	:		DATE:	8/15/60	
ELEVATION:				GWL: Depth	Date/Time		DATE ST		
ENGINEER/G	EOLOGIS	ST: C	HUI	Depth	Date/Time			MPLETED:	
DRILLING ME	THODS:	CODE	L CORE /	LAYNE		F	PAGE: 13	OF 22	
DEPTH () SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY ()	-	DESCRIPTION		USCS SYMBOL	ИТНОГОСУ	REMARKS	
300 		recov.	207. sill, poor graphing 507. 5-50 hard, der 505 507 yelber 7 700500, Har 507-510 to five 0 507-508 to med. gi 1005c 509-512 to med. gi 1005c 517-522 517-522 518-51-522 1005c 518-51-522 518-51-522 1005c 518-51-522 518-51-522 1005c 518-51-522 518-51-522 1005c 518-51-522 518-51-522 1005c 518-51-522 518-51-522 1005c 518-51-522 1005c 518-51-522 1005c 518-51-522 1005c 518-51-522 1005c 518-51-522 1005c 518-51-522 1005c 518-5-55 518-5-522 1005c 518-5-522 1005c 518-5-522 1005c 518-5-522 1005c 518-5-522 1005c 518-5-522 1005c 518-5-522 1005c 518-5-522 1005 518-5-55	v. Ingr, subrd to J moviet., not as li SE Limey clay, // NE, dry, clong F Sand, 1070 sill, SYR 96, v. Engr, Frans Sands. 10 Fight brown (1. Noin Sands. 10 Fight brown (1. Nain Sands. 10 Light brown (1. Securi Sands. 10 Light brown (1. Sun Sands. 10 Light brown (1. Sun Sands. 10 Light brown (1. Sun Sands. 10 Sun Sands. 10 Light brown (1. Sun Sands. 10 Sun Sa	gray 7.5YR NT/ EO vert. stain. 902 sand, reddish subrad, medsrkd, <u>YEGHIV.Fine</u> 052, NOISE SVE614] Fine nst. MOHINOS/Clay ET.5YE614] Fine toose brown C. SPEAL Sub-vounded nCT.5YE614] Fine sub-vounded nCT.5YE614] Fine toose brown C. SPEAL Sub-vounded nCT.5YE614] Fine cose addish ET.5YE614] Fine sub-vounded Sub-vounded nCT.5YE614] Fine sub-vounded Sub-vounded nCT.5YE614] Fine cos	51 -		0.0ppm	

-

.

JECT NU		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			E: PANTE BURN	inggr	ounds 5	ioil GAS
AING NUM	BER: PT:	X06-1	057A	COORDINATES				8/15/00
EVATION:				GWL: Depth	Date/Time			ARTED: 08/10/00
GINEER/G	EOLOGIS	T: 2.	RUPP	Depth	Date/Time			MPLETED:
	THODS:	CORE					PAGE:	OF 22
0 () SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY ()		DESCRIPTION	-	USCS SYMBOL	P/D	REMARKS DEPITH TIME
1115	527-532. 532-537	45' 2000007 4.8'	CORE IS WI	thun the sat	brun (7.5 yr 5/ e gram, subrown unated wrated wrated zone of rown (7.5 yr 4/6) ine, subrown truted			532'e 2015 537'e 2042
	537-542	0.2'	537-517	SAND AS A60			o.oppm	542'@ 2120
- 	542-547 ATER 9/8/10 547-552	445,5	Brown (15) frage To	, , , , , , , , , , , , , , , , , , , ,	prover eraled		os ppm	542'e 2154 552'e 2237
	3 2-ST	+2+	551-553 (544 +1/4) 514++ har	Clay SAMAY, midimpleti is idays to m ecovery LI' from recovered co	yellowatical 5, voyfinder 552553 (fost in io sondy close		0.0000	557 'e 2324
- 551	- 542'	3.0'	557-562 String Bri grain on Saterita	wowder, me	Source 2000	sier Sn	1 0.0ppr	562°C2345
(-	6			e R		

. .

ROJE	CT NU	MBER:	3615		PROJECT NAM	8:				
			TX06-10		COORDINATES	:	1	DATE: 8	116/00	
ELEVAT					GWL: Depth	Date/Time			ARTED: 8	10/00
ENGINE	ER/G	EOLOGI	ST: R.F	RUPP	Depth	Date/Time	(DATE CO	MPLETED	:
DRILLIN	IG ME	THODS	888	Core Dr	al		F	PAGE: 15	OF 22	-
C)	SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY (FT)		DESCRIPTION		USCS SYMBOL	PID PID		ARKS Time
	562-	567	50'	545-592 finition	Sandstim 11 Sandstim 11 Sandstim 11 With sitry cet	shot grad 25 yr 7/2 medium to well in marrier To scitmated	sm sm Sm	aggen	567C 4	35
	547-	572	5.0'	Color pred	mone the light	born (754R6	(3)		572 C 1	
575	572-	511				80-91t Soul 5/4) fine to L, medion Dury	SM		577'e o	
5		582	3.0'	lost conc	20 Abre, well 580-582			o.ogm	58220	
582 -	82	587	2.8'	580 - 60. fine cm	in subrond	o, port goald	SP	0.0ppm	587e.0	245
585	87	592	3.4'	587-59	2 fand as a	borne with	esp	0. dipon	592 e a	320
510-			- 1	scatter up to	14° diamite	borne with des, subsornale		a.		

· ·

ROJECT NUM			PROJECT NAME: Parter	Burningrounds Soil Gos
ORING NUME	BER: PT.	x06-11		DATE: 8/16/00
ELEVATION:			GWL: Depth Date/Tim	
ENGINEER/GE	OLOGIS	IT: K.	Depth Date/Tim	
DRILLING MET	HODS:	BBS	D Core Drill	PAGE: 16 OF 22
C () SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY (PT)	DESCRIPTION	DEPTH TIME
_	597	3.3'	592-597 Sand as above Recovery is por due to loose so wholing out	-R SP 0.0ppm 597 @0350
995 	02	46'	597-602 Sound as above but more colice, medium dense to a scottered coliche nodes, tran sit	dense SP 0, opp 602 0 0420
-	607	4 8'	602- Sand yellowit born (10) silty, 70 " sand = 30" sitt, fin autorounded poorly good of, miden	12 5/4) 0.0pp 607@ 0450 Sun SM
607-	612	11 A.	a an an tao amin' an ann an	Sm 0.0ppn 612@ 0520
	17	4.9'	612-417 Sitty Sandas about becoming loose	SM 0.0 617 @ 0543
	622	0.6'	617-622 Very poor permit possibly due to during bitt and send work out. ?? Rune metund is so about love, setwo feel	1 SM 0.0 422 20605

••

ROJECT NUME	BER: 3615		PROJECT NAM	E: Burning Gr	round	s Soil	GAS	
	R: PTX06-1		COORDINATES				7/16/00	>
EVATION:			GWL: Depth	Date/Time	D	ATE ST	ARTED: §	10/00
GINEER/GEC	LOGIST: R.	Rupp	Depth	Date/Time	D	ATE CO	MPLETED):
ILLING METH		80 Core	Drill	- 1-1	P	AGE: 1	OF 22	-
() SAMPLE TYPE & NO.	BLOWS ON SAMPLER() RECOVERY (F7;)	S. e.s.	DESCRIPTION		USCS SYMBOL	Pro Ber		ARKS
-	27 0.0'	622-6: TAKING I Duille T Duille T	27 NO TRECON NATER, POSSIG Reports No Signi Materia	Erry , hole is by comescal	? -		427'æ	-Time 0634
1	(32 ho	627-6 GRAVE Sand	32 Com f	lumi (sedim	GM		632'e	6700
-632-0	637 Nove.	ar 15 144		Anteni Mara	Martinia	-16.0	*6 37'	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
-	,4Z NOVE		-					
5 642 0	647 No rec				e.	2	0950 647'	0816 00
26476	52 Norec.	-		• •				
is:								

	ECT NU	MBER:	3615		PROJECT NAM	E: Burning Gr	in the second second second second second second second second second second second second second second second	Sa:10	(D)		-
				-1057A	COORDINATES		-uvers	DATE: G	as crant	ex)*	-
	ATION:	-	-		GWL: Depth	Date/Time			ARTED:08	4.45	-
ENGIN	NEER/G	EØLOG	ISP. T.	Hall	Depth	Date/Time		Statement of the Owner, which the Owner,	The second second	000	-
DRILL	ING ME	THODS	BBB	O core	1 Dopan	Dater Time			MPLETED:		4
	T			N COVE	<u>Ng</u> .			PAGE: /8	0F 22		
DEPTH ()	SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY ()	2	DESCRIPTION		USCS SYMBOL	PTO PTOLOGY	REMA	RKS	-14-2
		:52					1			· .:	1
65	652	657	oue foot vecovery	652' - 6 appearst (Scy light Sandy clo	57' one foot o be from sh reddish bro sy, dense, w/	vecovery- oe end Wh [546/3] I'diam gravel		o.qpr	-		
	6402	657 657	662 1'rec Novec		ecovery lithetie A B/2Jw/ Cobble tithitized ost.c				·* 3		24
665	6 662	667	5'rec	662-63 V fine to M 663-64'	Very pale brow rud grain song light gray [10y Line to med gra dense shi do	Nn (1048713) 56. 1005e	¢H.	0.0ppr	÷	•	ta te se
	047 G	11 2	1.5 Page	667 - 6	Gine to med gra dense sli, do Vellowish br ski & denn 6 69 Yellowish partially)ssl. n e ~130% med se	red SYR567	50	0-0191		5	
-615-4	בה	677	1. que	072-673.5 150me clar	5 Yellowish red y dense to mudgrain w15 10073-673.5	[5× F5/6] 356. hitrified - Send	s			a ji	*
680	m	82	Novec	-							
k .:		•									

BORING ELEVATI ENGINEI DRILLING HLdg	G METHOD	PTX06-	1057A Hall 80 Core	COORDINATES: GWL: Depth Depth	E: Burning Frour Date/Time Date/Time		DATE: 08 DATE ST. DATE CO	
	ION: ERVQEOLO G METHOL NO SHORE	GIBT: TH	4911	Depth		F	DATE CO	MPLETED:
DEPTH DEPTH	SAMPLE SAMPLE BLOWS ON BLOWS ON	s: BB-			Date/Time	F		
DEPTH DEPTH	SAMPLE SAMPLE BLOWS ON BLOWS ON	s: BB-		rig			PAGE:19	OF 22
				<u> </u>		2	1	
C				DESCRIPTION		USCS SYMBO	PZO LINOLOGY	REMARKS Deoth Time
	282 68	1 1,5'rec	614] Sand From 680 WI Mhos	+ to 687 hr	to med grain eccenter of core	BK	9.01Am	
	687 692	ē 5.4'	687-689 252 Send, deng to min 689-14	Mudismiphota)	SHAN SHE			692'@ 2015
695	192-69	7 6.4	haven a wer ?? in funti Burning	5/- N41) hegi 155, commune 14 fot with porly abyto 2 and 697-69	& serly potin	/ch	0.0	697°C 2100
	17- 70%	3.2 '		Jage elecient	the o. 2' lin.		0.00	202@2140
- 7	702-787	5.0'	can og		lapp Sond	SCL	0.0	707 @.2230
-105	207- 7/2	5,2'	107-	til @ 707 @ 700' 1/2 Cloy bern "work) and mu	Tayle court	ch	0.0	712 e 23 ro
TES:	·		0			48		•

JORING NUMBER: $Pixlow-10574$ COORDINATES: DATE: $g-16-$ ELEVATION: GWL: Depth Date/Time DATE STARTED: ENGINEER/GEOLOGIST: g . Cupp Depth Date/Time DATE COMPLETE ENGINEER/GEOLOGIST: g . Cupp Depth Date/Time DATE COMPLETE DRILLING METHODS: $BS & Core Cinc Cinc Cinc Cinc Cinc Cinc Cinc Cinc$					BGSC	PROJECT NAME:	615	361	MBER:	ECT NU	ROJE
ELEVATION: GWL: Depth Date/Time DATE STARTED: ENGINEER/GEOLOGIST: Q. (2.pp) Depth Detet Time DATE COMPLETE DRILLING METHODS: TS & D Cost (2.pp) Depth DeteTime DATE COMPLETE DRILLING METHODS: TS & D Cost (2.pp) DESCRIPTION 000000000000000000000000000000000000	00/8/17	8-16-1	DATE:		_						
ENGINEER/GEOLOGIST: R. 2. (2. pp) Depth Date/Time DATE COMPLETE DRILLING METHODS: TS & 20 Cost (in	8-10-00	TARTED: 8	DATE ST	1	Date/Time	GWL: Depth					12 (1 () () () () () () () () ()
DRILLING METHODS: TSB & Const (ing PAGE: 20 OF 23 Handler Handler Handler Handler Handler Handler Handler Handler Handler Handler Handler<					Date/Time	Depth	R. Rupp	IST: R.	EOLOGI	EER/GE	ENGIN
Hend Hend	2	20 OF 22	PAGE: 2	1							
712 - 717 1.9' 712-714 day as obre but gellowing horn 712 - 717 1.9' 714 day as obre but gellowing horn 714 - Sand, see hold cleat 550 0.0 717 C 717 - 722 1.8' 717-722 See horn yellowide 2? 717 - 722 1.8' 717-722 See horn wellow for and the form 717 - 722 1.8' 717-722 See horn wellow for and the form 717 - 722 1.8' 717-722 See horn wellow for and the form 717 - 722 727 10' 722-727 only clogy deal second of the form 717 - 727 732 5.3' 727 - Sand, sith, along form for 717 - 737 727 2.3' 737 See hor along the form of the form 737 742 5.4' 737 See hor along the form of the form 737 742 5.4' 737 See hor along the form of the form 737 742 5.4' 737 See hor along the form of the form 737 742 5.4' 737 See hor along the form of the form 737 742 5.4' 737 See hor along the form of the form 737 742 5.4' 737 See hor along the form of the form 737 742 5.4' 737 See hor along the form of the form 737 742 5.4' 737 See hor along the form of the form 737 742 5.4' 737 See hor along the form of the form 737 742 5.4' 737 See hor along the form of the form 737 742 5.4' 737 See hor along the form of the form 737 742 5.4' 737 See hor along the form of the form 737 742 6.4' 737 See hor along the form of the form 737 742 6.4' 737 See hor along the form of the form of the form 737 742 6.4' 737 See hor along the form of the form of the form 737 742 6.4' 737 See hor along the form of the form of the form 737 742 6.4' 737 See hor along the form of the form of the form 737 742 6.4' 737 See hor along the form of the form of the form 737 742 6.4' 737 742 5.4' 737 See hor along the form of the f				1							
717-722 18' 197722 Sundation yillmiddown 50 50 0.0 722 € 717-722 18' (10 ype 5/k) fine seed one and palor 50 0.0 722 € 727 727 727 10' 117.6 727.7 10' 122.727 0.0 727 € 727 727 727 10' 722.727 0.0 120' 0.0 727 € 726 727 727 10' 722.727 0.0 0.0 727 € 726 727 727 727 0.0 120' 0.0 727 € 727 732 5.3' 727- Sand, sill, cleary bound was a second of the sec	MARKS	Dith	A.C.	<u> </u>				RECOVERY	BLOWS ON SAMPLERV()	SAMPLE TYPE & NO.	STOCK D
111 102 10 (10 10 5%) firster free relation of 10 102 111 10 102 10 (10 10 5%) firster for all the for 10 the 111 10 102 10 10 100 100 100 the 111 10 102 100 100 100 100 100 100 100 111 10 102 100 100 100 100 100 100 111 10 102 100 100 100 100 100 111 10 102 100 100 100 100 100 111 10 102 100 100 100 100 100 111 10 100 100 100 100 100 111 10 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 111 100 100 100 100 100 111 100 100 100 100 100 111 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 100 111 100 100 100 100 100 111 100 100 100 100 100 111 100 100 100 100 100 111 100 100 100 100 100 111 100 100 100 100 100 111 100 100 100 100 100 111 100 100 100 100 100 100 100 111 100 100 100 100 100 100 100 100 100	2329	717 E	0.0	tion St	tory - 10000	f cloy as above to Sandy sention 74 then no sec	9' 112-71 714-' 0.2' 6	1.9'	717	712 -	111
727 727 727 40' 717.6 - 721.4 722-727 10' 722-727 only clarge fund uner Q 125 10' 727-727 014 clarge fund uner Q 100 100 100 100 100 100 100 100 100 100	2400	722 E	010	SP	lteto	(6) fine loss ru	110yp	1.8'	722	7/7-	1111
727-732 5.3' 727- Sand, sith, clegy yoused 7.0 732@ 252 sit, 500 cley clerk addin lawow Myc (Wyre 4/6) Very fingenic, nonphotic (Wyre 4/6) Very fingenic, nonphotic porely scaled, multime dame, moint porely scaled, multime dame, moint 132 737 2.3' 732-737 Sand as above but decurry 0.0 737@ 132 737 2.3' 732-737 Sand as above but decurry 0.0 737@ 137- Sand, att, doublem (7.5% 44) 137- Sand, att, doublem (7.5% 44) 142 @	20032	727 C		Sc		and I	717.6 722-2 4/1000	10'	727	722	
-737 742 5.4' 737- Sound on above but decump 0.0 1372 -737 742 5.4' 737- Sound , sith doublemm (7.5% 444) -737 742 5.4' 70 Doub yulling burne (10 ye 441) Wagton D.0 7420 -40	6130	732@	c.10	2	an marca	c. I ett. al	. 0.10	5,3'	732	727-	-
-737 742 5.4' 737- Soud, sith doublem (7.5% 444) 70 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420 90 - 10 Doub yulinih bur (107 411) Very 200 7420	0210	737 e	0-0	7	re but decus	m sind as abo		2.3'	737	732	-
	0251	742e	po	Ŀ.	ane meding	figure 202 The	monolan	5.4'	742	737	3
13 :					:					2	LS

. -

2

POJECT NUMBER: 3615	PROJECT NAME: BASA	
BORING NUMBER: PTROK -1057 A		DATE: 8.17.00
ELEVATION:	GWL: Depth Date/Time	DATE STARTED: 8.10.00
ENGINEER/GEOLOGIST: R. Rup	Depth Date/Time	DATE COMPLETED:
DRILLING METHODS: BB 80 0		PAGE: 21 OF 22
RECOVERY ()		REMARKS
742- 747 5.0' yell 5700 - 745	-747 clay sondy To Sundchorr Shown (104 5/6) Very finisch There worthing throughout, well C huntal I wout to solute	X 0.0 747 e 0330
SP Dec	bles, angula and less willing. my reddent burn (Byz 4/4)@750'	L 000 752 @ 0416
-752 757 513 Red 1007	- 759 Clayotone, pebbly, hand (25 y R 4/8) white and yellow thing @ 753, 754, 757, colin my hairine : 757- 757	0.0 757@ 0515
- 757 762 5.0 (7.	- grading to strong brown SYR 5/6) continued colice iling of fractions. 5.5 about 2000 pale yellow	0.0 762 20600
-762 767 50 (2.	54 7/2) clay mudutone. 5 - C/Ay, Ked (2.54R 4/2)	0.0 767@ 0659
	to moist, pale yellow nutting to moist, pale yellow nutting inequilar frontenes, time wither top of Burnian watermaster Im.	0.0 772 @ 0809
TES:		

..

		MBER:		and the second s	PROJECT NAM		76				
BORIN	G NUM	BER: P	txlu6 -	1857A	COORDINATE	S:				17.00	
ELEVA	TION:				GWL: Depth	Date	/Time			ARTER	
ENGIN	EER/GE	OLOGIS	ST:T7	ALL	Depth	Date	/Time			MPLETED	
				to cove	Rig			F	PAGE: 2	20F 22	
									1.	•	
HL DEPTH	SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY (PT.)		DESCRIPTION	۱ • • •		USCS SYMBOL	AN ASA	REM	ARKS
			- 10	77-277	T'CL MALE	2.542416]			777	5102
			5	Clay-hi	oul. some ca . havd - unit	ale yello	w moth his	1			
	772	117	•	fractures	· hard - unit	isdamp					
715			· ·	·	• • •						•
			•	· ·			•				
	•						.47	К			*
	177	782	5'	31-16	12' cl red	L2.5 YR	401.	- -			
se		104		Clay - hi	ighly plestic - Joving traces of Apposite Dense	Sameas	moling	027		782	1000
				or calle	deposits Deve	es damp		1			
			••••						:		٠
	. •		. •		· ·		- ¹ 1	•	· · .		
185		6.2			3						
			=	· · ·.		a 1.		1			
		· · .	•								
										1.5	¹
	7		- <u>-</u>	•.						- ¹ -	
					•	÷					•
	4			·				•		•	
		*.						1			•
	•				1 x • •						• · · ·
		4	*		· .						
							•	1		54.	
		, j		-							
				-	a 6						
			Ļ				19	L			
ES	TOC	782'		•					*		
۹.		1.1				•	•	*			
) R•01 2	•								•	
	×	·		1					-		

PTX06-1058

Contractor: S.M. Stoller Corporation

Contract #: 3615

OPTIX #:

Included Documents

___Drilling Log ___Draft ___Final

___Installation Log

_X_Lithologic Logs _X_Draft _X_Final

____Geophysical Logs

____Neutron

___Gamma

____e-log

___Bond Log

____Deviation log

____State Well Report

_	
P	5
CON	VIS

. . .

VISUAL CLASSIFICATION OF SOILS

	GNUM	BERPTY	06 - 10	PROJECT NAME:		DATE	Q/1-1-	-
_		DENI	-04			DATE:	8/12/00	-
ELEVA				GWL: Depth			ARTED: 8/12/00	-
		OLOGIS		Depth	the second second second second second second second second second second second second second second second s		MPLETED: 8/12/00	4
	NG ME	THODS:	Air	Rotary w/ 14" Gricon	ne l	PAGE: /	OFER	
DEPTH	SAMPLE TYPE & NO.	BLOWS ON SAMPLER(.)	RECOVERY ()	DESCRIPTION	NSCS SYMBOL	ланогосу	REMARKS	
				0-5' DK brwn silly clay Sand, 5 YR 9/3, h Minor coliche. 0-10' Sandy silt, 25% s 5YR 5/6, hard, d hine gr, rounded. 10-15' Sondy silt; 25-30% sa red 5YR 5/6, hord, di rounded, minor colich 15-20' Sandy silt-25-30% sa 5YR 5/6, hard, minor finegr, subangl. 20-25' <u>silty sond</u> , 30% silt, 7.5YR 5/6, hard, minor finegr, subangl. ned-wells. 25-30' <u>sand</u> , brownsh yellow bard, damp, sond is finegr 35-40' <u>sitty sond</u> , 25% silt, yellow bard, damp, sand is finegr 10-45 Silty sond, 15% silt, redds book, damp, sand is finegr subard, is finegr sub poorly sitt, 15% sand, yellow hard, damp, sand is finegr 55-60 silly clay, 20% silt, brown, hard, damp	, 2076 silt, winor CL ard, dry Bond, Grai, ML ry, Sond is and, yellowish ML ry, sond is timesr he. and, yellowish red, ML moisture, sond is strong brown moisture, sond is strong brown strong sond is strong brown strong sond is strong brown strong sond is strong brown strong sond is strong brown strong sond is strong brown strong sond is strong brown strong sond is strong sond			

and the second

ELEVATION:			GWL: Depth Date/Time			ARTED: 8/12/00
ENGINEER/G				_		MPLETED: 8/12/0
DRILLING ME	THODS:	Air R	tory w14"tricone	PA	GE: 2	OF 2/0
DEPTH () SAMPLE TYPE&NO.	BLOWS ON SAMPLER()	RECOVERY ()	DESCRIPTION	USCS SYMBOL	UTHOLOGY	REMARKS
			60-65' Silty sand, silt 10%, red 254R 4/8, hard, damp, sand is and thigr, subang, med sitd. 65.70' Stand, red 2.54R 4/8, hard, days. Sand is thigr, subang, well std. 70-75' Sand, red, 2.54R 9/8, med-hard, S damp, sand is need for gr, subang, well sitd. 75-80' Silty sand, red, 2.54R 5/8, med- hand, damp sand is to gr, subang med sitd. 80-85 Sand, reddish yellow 54R 6/6, (0050, for to medgr, subang to subrd med sidd, numerous caliche medides	5 M d d d d d d d d d d d d d d d d d d	58	->Schramm ~Vodef

-						ATION OF 5				_
			361		PROJECT NAM		urning 6			
-		BER: P/X	Ob -105	8	COORDINATES				08/13/0	
LEVAT					GWL: Depth	Date/Time			ARTED: 08	12 00
				RUPP/THQ	Depth	Date/Time			OMPLETED:	
RILLIN	IG MET	HODS:	ARCH	winder	!		_	PAGE: 3	OF / 7	
()	SAMPLE TYPE & NO.	BLOWS ON SAMPLEP()	RECOVERY ()	57	DESCRIPTION	I	USCS SYMBOL	LTHOLOGY	REMA	RKS
30-1				120-13. 30 2 Sin mon plan Dubwind denal,	5 Sand, sik T, Reddikrye toc, very fin Del, poorly 9 day To dang.	to for grand in	5 - 51	n		-1
				135-147 fireto no sutagula lotze, c	Sand, light edian grain, in partionled	tomm (7.5%) trace very for ponly geeden	2 (4) Si, 2, 5	ρ		
47-	5			How clay	Clay, arthy, 3000 sitt 30 nid (5yr 40) his	Sandy "Sand my plastics, fr in att f, damp	to main	4	• 1	
	11itspe		1.75'	153 - (3) Very Silt to fire g 155 Clay cby. Den	m) very plac by y sand. 80% sil light brown(1.5 se and sli. blaim e clay as abo	0wn[1092713] 16 - 20%v.fin 19R04]:51i.3an	e sn	n	· .	•
170-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	-			175' 34m	ne Clay us abo	we. 51. damp				18
5 1.	,Oup	e - Sc	bram	n njode	t from 85'	down	Solitsp 1.75' V	con#1	153-1551	

Set and

- A	2/11	PRO JECT NAME: A 4 7		6 0	(1
NG NUMBER:	3613 TYOL-1	PROJECT NAME: Antex Burnin 558 COORDINATES:			3-13-00	
ELEVATION:	1100 1	GWL: Depth Date/Time			ARTED: 8-12-00	
ENGINEER/GEOLOG	IST A T				MPLETED:	
DRILLING METHODS		ar F (hall Dopat Dady time		AGE: 4		
	- pincon		1			1
DEPTH () TYPE & NO. BLOWS ON SAMPLERV(.)	RECOVERY ()	DESCRIPTION	USCS SYMBOL	LTHOLOGY	REMARKS	
-197 -200 -200 -200 -200 -200 -200 -200 -20	hri-con	Cristianial clay. minist, plugging Return Chay: Shary, New Sish bram (5 ye 5/4) medianzoro high plasoriet very 8 t. minist a regular fire grain gone 197-200 Sand, clayer 200' (CL) same as above 200' (Sp) very pale brown (10YE7/-0) White siand, Shi. damp to damp, loose 220' same as above 220' same as above 230' same (Sp) V. fine sand - dry to V. Shi. damp & loose 230' same (Sp) V. fine sand - dry to V. Shi. damp & loose 240'(SP) very pale brown (10 Me 7/4) V. fine san V. Shi. damp & loose 240'(SP) very pale brown (10 Me 7/4) V. fine san 240' (SP) very pale brown (10 Me 7/4) V. fine san 240' (SP) very pale brown (10 Me 7/4) V. fine san V. Shi. damp & loose			1430 081400	

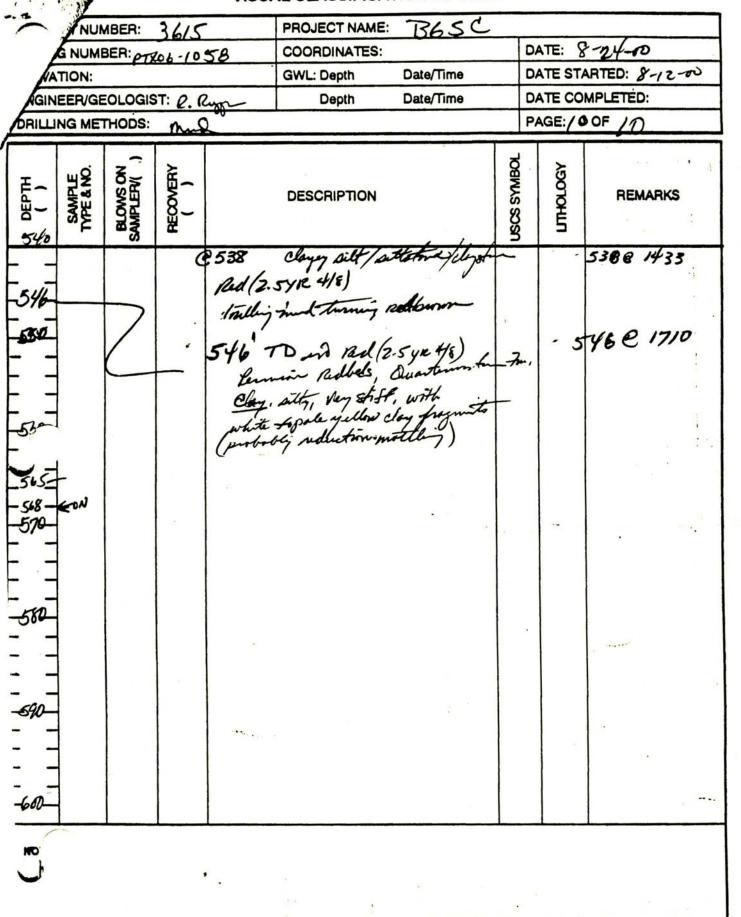
NG NUMB LEVATION: ENGINEER/GEO RILLING MET	ER: PTXD6-	1058	COORDINATES:			ATE: 1	140D		1
NGINEER/GE									4
			GWL: Depth	Date/Time			RTED: 08	1200	1
RILLING METH	PLOGIST: 1	Hall	Depth	Date/Time			MPLETED:		1
	HODS: Hiv E	stary n	1 Odet		P	AGE:5	OF 10		1
DEPTH () SAMPLE TYPE & NO.	BLOWS ON SAMPLEP(.) RECOVERY	i.	DESCRIPTION		USCS SYMBOL	NOLOGY	REMA	RKS	
8/14/40	1058-2-0252 matine pro- andine pro-	260-255 Jeneles 260-255 Jeneles 260-265 Jist oft 260-265 Jist oft 260-265 Jeneles 260-265 Jeneles 265-275 Jeneles 200-29 200-29 200-200 200-	Sand, gunded, J Sand, gunded, J and, gunded, J and, gunded, J and, light yellow medening grani, so damp. Sand, Sub- Sand, gunded, J Sand, and and Sand, and and tome pergrand, J Sand, sub- mate with days Sand, clay 18 Sand, source of Sand, and Sand Sand Sand Sand Sand Sand Sand Sand Sand Sand Sand	D, androngula loon dry dem (10/R b/4) wayle, gude Esty , 20 ° alt. (5) vay fin to to and the twe alt to well gude to prove to yull and to fatter by to door to fatter to yull and to yull of yull by only porly mint to he gude burned sing and and sol yull and to the fatter to he alto to fatter to he gude to yull of the sol much for to mint to he gude to the fatter to the fatter to yull and good good sole burne (10 yr 7)	SP SP SM SW SW SW SW SW SW SW SW SW SW SW SW SW				

- interest

VISUAL CLASSIFICATION OF SOILS

T NUMBER: 27 NUMBER: PT ON: ER/GEOLOGIS G METHODS: NO SMOTH	X06-10	58 COORDINATES: GWL: Depth Depth	Date/Time Date/Time	DATE: DATE ST DATE C	NUS SOIL 61 8-23-00 TARTED: 8/11 OMPLETED: 0F/0	
ON: ER/GEOLOGIS G METHODS:	MILD R	GWL: Depth Depth	Date/Time Date/Time	DATE S	TARTED: 8/1	2/10
ER/GEOLOGIS G METHODS:	MUD RI	PP Depth	Date/Time	DATE C	OMPLETED:	2/10
	MUD RI	Depth TARY	T			
~		TARY	T	PAGE:	6 OF / 0	
~						
TYPE & NO. BLOWS ON SAMPLEP()					
and the second sec		DESCRIPTION		LTTHOLOGY	REMARK	S
	22	THET HUND ROTATING @ 2 Stars ARE going & stat nul (bentonite) is bein things settle in bottom	ng hand - straight was no of discharge pipe	te		4
		SID' SANd, yellowich b any functo fin grain, a alla,	ubrowed, poor		- 1	-
		·	•			
			Li se si sesti se	and the me	+ instalent	Gane Angel
		no grain, subrand	led, porty good	y) Sip	340'C 185	8
		indicated by 210 370'-390' decum	370' es g E gamma.	-2		
		e 3 9 4 4 4	C 310' SAND, yellowich b sery finate fin grain, a serele, 0 340' Sand, yellow find grain, subrond 3 48' Berning Ch indicated by Ellow	2 310' SAND, yellowich burrow (1042 5/6) supported for grain, automore (1042 5/6) guild, 340' Sand, yellowith burrow (1042 5/6) find grain, subtonuel burrow (1042 5/6) find grain, subtonuel borrow (1042 5/6) find grain (1042 5/6) find grain (1042 5/6) subtonuel borrow (1042 5/6) find grain (1042 5/6)	C 310' SAnd, yellowich burne (104R 516) pergenate for grain, and some (104R 516) guille, C 340' Sand, gellowich burne (104R 514) frie grain, subsembed, poorly good I sit 348' Berning Clagry with incurs clay + 370' es indicated by clog & gamera. 370' - 390' decearing clay/sit CL	© 310' Sand, yellower burn (1042 5/4) sen frast per grain, autorined, port 50 guille, 0 340' Sand, yellower burn (1042 5/4) frie grain, suburn burn (1042 5/4) frie grain, suburn bud, port genel of 50 340'@ 185 340'@ 185 340'@ 185 340'@ 185 340'@ 185 1848' Beering Clegry with incident by Clegry with incident by Clegry with indicated by Clegry with 370'- 390' decurring clog/site CL

• •


1

	- Z									6	
	- JE	CT NUN	ABER: 2	615		PROJECT NAM	E: Burning Grou	nds :	Sail Ga	s (Thin	kex)
	IN		BER: PT	X06-1	58	COORDINATES	S:			82300	
1	ELEVA		1			GWL: Depth	Date/Time		DATE ST	ARTED: (081200
Γ	ENGIN	EERIGE	OLOGI8	f: Hall		Depth	Date/Time			OMPLETE	
Γ	DRILLI	NG MET	HODS:	MudF	Potary/10	igne			PAGE: (OF /1)
	DЕРТН ()	SAMPLE TYPE & NO.	BLOWS ON SAMPLEPV()	RECOVERY ()		DESCRIPTION		USCS SYMBOL	LITHOLOGY	RE	MARKS
	34 5	7?. •		a per	365-39 (SP) ver Pearly e grains. fucted.	ry pale brow livaded sands. Cutching Sa hard to fell	ds - n [loveski] fine to med mpksin Sgal. exact interval 20' gainet sub, sury, pos		66		082400
	410				the de	Dulles Ry ulling think of for an tite of gravel - p for being p	turned at I'm	6.21		0400	CB 2400

VISUAL CLASSIFICATION OF SOILS PROJECT NAME: Burning Grounds Soil Gus (Panter) ECT NUMBER: 3615 DATE: 08 400 8-24-00 RING NUMBER: PTX06-10 58 COORDINATES: DATE STARTED: 081200 ELEVATION: GWL: Depth Date/Time ENGINEER/GEOLOGIST: THAI R. RAND Date/Time DATE COMPLETED: Depth DRILLING METHODS: Awad Rotan PAGE:8 OF 10 laine **ICCS SYMBOL THOLOGY** BLOWS ON SAMPLER/ INPE& NO RECOVERY REMARKS DESCRIPTION @ 420' Sand. light brown (2542 6/4) fine to very find grow, subwinded, SP poorly surled - 90 % clear que grains no trace of aut or cley - mud fluir 430@0700 viccosty is low. 420-455 per geographinal log to is sand / sandofor sequence. 15 6 1050 SP 55 460-480 per Googhand by . Her 465-485 Sand, lithin multicoloul 465 @ 1107 Sn clean gtz. yellow, brown, angula fine to very come grin, angula to subrounded, grande, well guided 470 9+2 90°0, 5 Barofic, 540 other Ray Frag langen and fragments significantly (like crushed ex with tree reddies 8475 RX fragm GWG

1

	CT NUME		3115		PROJECT NAME	BB654				
					COORDINATES			DATE:	8-24-00	-
ELEVA	G NUMBE	P [X	16-10	30	GWL: Depth	Date/Time		DATE ST	And the second se	
	EER/GEO	OGIS	T. 0 0		Depth	Date/Time			ARTED: 8-12-0	-
	NG METH				Depar	Dater Inno			OF ()	-
	NGMEIN	ODS:	mi	w				AGE: 7	0-70	
PTH S ()	SAMPLE TYPE & NO.	BLOWS ON SAMPLEPV()	RECOVERY ()		DESCRIPTION		USCS SYMBOL	лэотоншт	REMARKS	
485 -490 				510' cha dulling 525 525 Com 52 Com 52 Com 52 Com 52 Com 52 Com 50 C Com 50 Com 50 COm Com COm COm COm COm COm COm COm COm COm CO	Joanty or median por fluit. any fun to fin possible spor as above cossible this cossible this cossible this cossible this con white with gelows a chale office fl ad succorde to to pale yell	turn yellowith ren find sally beho, deo	al ord	•	485'@ 1145 535 @ 1315	
Nr	:			est.	they clay - that	gone - stort	fut	Think		
-			•				1			

Pantex Burning Group	3615		Client:	Mason & II	Amarillo, Tex
Project Number:		Dupp/T Hall			nger Corporation
Geologist:		Rupp/T. Hall	Northing: 3759747.11	Easting: 624	1074.00
Drilling Contractor:	Layne Chi		Total Depth of Borehole:	546' BGS	0/10/00
Dates Drilled:		- 08/24/00	Depth to Water:	392.9' BGS 1	
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		Vell, 4" Stainless Ste
Ground Elevation:	3565.15'		TOC Elevation:	3567.25'	
Completion Debth (Ft.)	Lithology USCS]	Description		Sample Number
	CL	4/3), hard, dry, minor calic 5-20' SILT, sandy, 25-30%	t, minor sand, reddish brown che % sand, yellowish red (5YR5 ar sand, hard, dry to damp, n	/6), fine	-
	ML	caliche			
	SP	grain, subangular, medium moisture, more caliche	silt, strong brown (7.5YR 5/ to well sorted sand, dense, r rellow (10YR 6/6), fine grain ose, minor moisture	ninor	-
	0::00000000000000000000000000000000000	30-45' SAND, silty, 20-25 grain, subrounded, medium @ 40-45' 15% silt, reddish	5% silt, yellowish red (5YR 5 n sorted, dense, damp, some h yellow (7.5YR 6/6), coarse	caliche	
	ML		sand, yellowish red (5YR 5/0/6), fine grain, subangular, m		
	CL		silt, brown (7.5YR 5/4), hard		
	SM	grain, subangular, medium	1		
	SP	with depth, fine to medium	t 4/8) to reddish yellow (5YF n grain, subangular to subrou nse to loose with depth, dam	nded,	
		@ 80-85' numerous calich			
	CAP RX ML	medium grain, subangular caliche nodules are large, v 90-120' SILT, clayey, san light reddish brown (5YR	reddish yellow (5YR 6/6), f to subrounded, medium sort white, very hard dy, 50% silt, 30% clay, 20% 6/4), medium plastic, very fi h, subrounded grains, very st	ed, loose, sand, ne to fine	

Pantex Burning Groun		r antex r la	Int (Zone 8)	Mason & II.	Amarillo, Tex
Project Number:	3615	Dumm/T Hall	Client:		inger Corporation
Geologist:		Rupp/T. Hall	Northing: 3759747.11	Easting: 62	4894.00
Drilling Contractor:	Layne Chi		Total Depth of Borehole:	546' BGS	10/10/00
Dates Drilled:		- 08/24/00	Depth to Water:	392.9' BGS	
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		Well, 4" Stainless Ste
Ground Elevation:	3565.15'		TOC Elevation:	3567.25'	
Depth (Ft.)	Lithology USCS		Description		Sample Sample Number
	ML	5/6), non-plastic, very fine graded, loose, dry to damp 135-147' SAND, light bro	% sand 30% silt, reddish yell to fine subrounded grains, p wm (7.5YR 6/4), fine to med a, subangular/subrounded, po	oorly	
	CL CL CL	yellowish red (5YR 4/6), 1 sand, medium stiff, damp 153-155' SILT, sandy, 80 (10YR 7/3), very fine to fi	% silt, 20% sand, very pale b ne grain sand sandy, light brown (7.5YR 6	ngular rown	PTX06-1058-2-01 Gradation PTX06-1058-2-01 VOC PTX06-1058-2-01 Permeability
	CL	high plasticity, very stiff, 1	ldish brown (5YR 5/4), medi moist light brown (7YR 6/4), dense		
	WARD THE OF A SU	1 1 2 1 1 1 1 1 1 1 1 1 1	10^{11} 0^{10} 1^{11} 0^{17} , 1^{11}	, aminp	1 1

Project Number: Geologist: Drilling Contractor: Dates Drilled: Borehole Type: Ground Elevation: Completion	Layne Chi 08/12/00	Rupp/T. Hall	Client: Northing: 3759747.11	Mason & Hanger (.
Drilling Contractor: Dates Drilled: Borehole Type: Ground Elevation:	Layne Chi 08/12/00	**	Northing: 3759747 11	L'action 624004	~ ~
Dates Drilled: Borehole Type: Ground Elevation:	08/12/00		-	Easting: 624894.	00
Borehole Type: Ground Elevation:			Total Depth of Borehole:	546' BGS	
Ground Elevation:		- 08/24/00	Depth to Water:	392.9' BGS 10/10/	
		H 7 7/8" Mud Rotary	Well Type:	Monitoring Well,	4" Stainless Ste
Completion $\left \begin{array}{c} \widehat{\mathbf{H}} \\ \widehat{\mathbf{H}} \end{array} \right $	3565.15'		TOC Elevation:	3567.25'	
Completion Debth (Ft.)	Lithology USCS		Description	Sample	Sample Number
	o o o o o o o o o o o o o o	brown (10YR 6/4), very f	le brown (10YR 7/4) to light fine to medium grain, coarser angular, graded, loose, dry to nodes to 1/2" diameter	with	PTX06-1058-2-02 VOC
	9 9 9 9 9 9 9 9 9 9 9 9 9 9	very fine to med grain, su 260-265' SAND, gravelly (10YR 6/4), very fine to d medium dense, dry to dar 265-275' GRAVEL, sand 5/6), very fine to coarse g diameter, rounded, broker 275-277' SAND, trace per fine to medium grain, sub 277-280' SAND, clayey, 4/4), fine to medium grain 280-290' SAND, silty, lig to med grain, subrnded, n 290-295' SAND, light ye subrounded, poorly grade	eagravel, brownish yellow (10 bangular, poorly graded, moist gravelly, dark yellowish brow n, medium dense, moist ght yellowish brown (10YR 6 hed dense, dry, more silt with cllowish brown (10YR 6/4), fi rd, medium dense, dry to dam ery pale brown (10YR 7/3), vo	ose, dry own l graded, l flattened m (10YR up to 1" VYR 6/6), t vn (10YR /4), fine depth ne grain, p	 PTX06-1058-2-02 Gradation PTX06-1058-2-02 Gradation

Pantex Burning Groun	ds Soil (Gas		unt (Zone 8)		Ar	narillo, Texa
Project Number:	3615			Client:	Mason & Ha		
Geologist:		ıll/R	. Rupp/T. Hall	Northing: 3759747.11	Easting: 62		•
Drilling Contractor:			ristensen	Total Depth of Borehole:	546' BGS		
Dates Drilled:			- 08/24/00	Depth to Water:	392.9' BGS	10/10/00	
Borehole Type:	12" A	RCI	H 7 7/8" Mud Rotary	Well Type:	Monitoring	Well, 4" S	Stainless Ste
Ground Elevation:	3565.		5	TOC Elevation:	3567.25'	,	
Completion (Ft.)	Lithology	USCS]	Description		Sample	Sample Number
		SP	very fine to fine grain, sub Two attemts to collect spli than 200 blows of the ham recovery Conductor casing set with	t-spoon samples made at 295 imer each attempt resulted in cement at 295' in very hard s	5', more no		
		ML	grain, trace coarse, poorly	brown (10YR 8/4), fine to m graded	edium		
		SM	372-414' SAND, silty with Water Level @ 392.9' BG	-			
S.M. STOLLE		OR	PORATION				Page 4

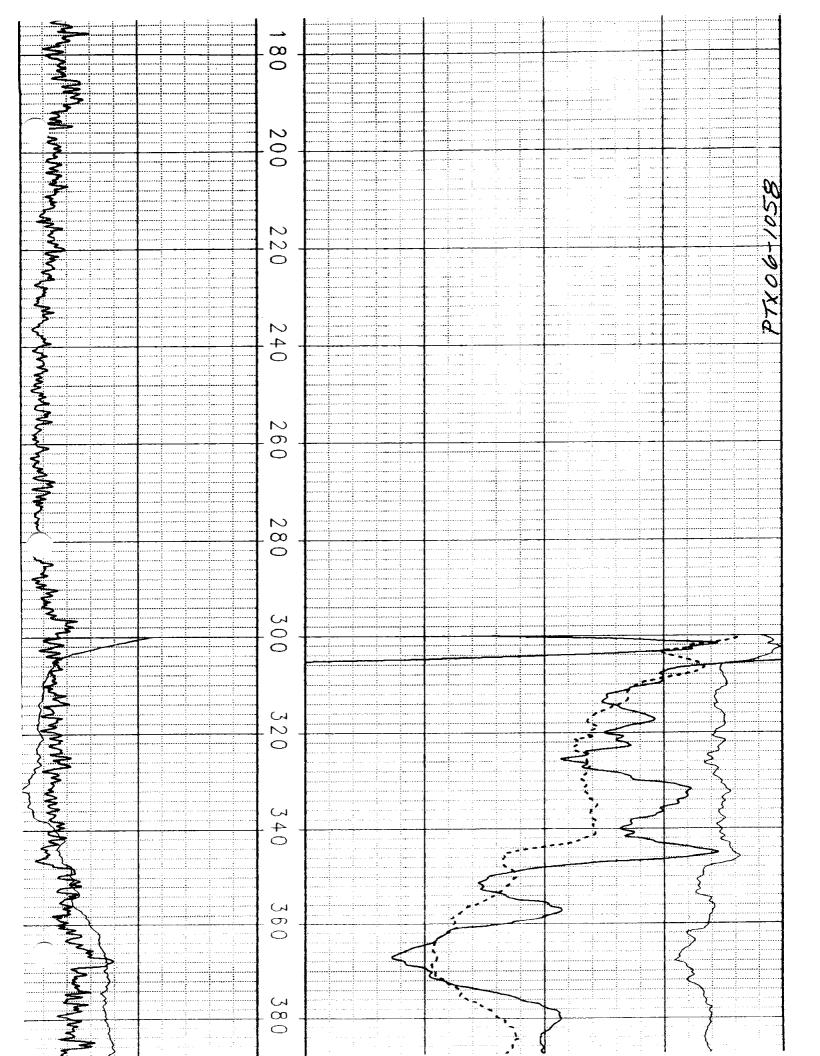
Project Number:			CI: (N ^ TT	<u> </u>
	3615	D /T 11	Client:		nger Corporation
Geologist:		Rupp/T. Hall	Northing: 3759747.11	Easting: 62	4894.00
Drilling Contractor:	Layne Chi		Total Depth of Borehole:	546' BGS	10/10/02
Dates Drilled:		- 08/24/00	Depth to Water:	392.9' BGS	
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		Well, 4" Stainless S
Ground Elevation:	3565.15'		TOC Elevation:	3567.25'	
Completion (Ft.) Depth Depth	Lithology USCS		Description		Sample Numbe
	SP	grain, subrounded, poorly trace of silt or clay @ 415' drilling fluid turned	own (7.5YR 6/4), fine to very graded, 90% clear quartz gra ed whitish; driller reported fo aliche or sandstone horizon	iins, no	
	C C C C C C C C C C C C C C C C C C C	lithic, multi-colored (clear coarse grain, angular to su 5% mafic, 5% other rock f fragments are significantly 480-500' SHALE, clayey, material gone	L, trace reddish shale fragme quartz, yellow, brown), fine brounded, well graded, 90% fragments, with depth the roc a larger and more angular silty, sandy, yellow brown, s about doubled, lag-time equ	to very quartz, k coarse	

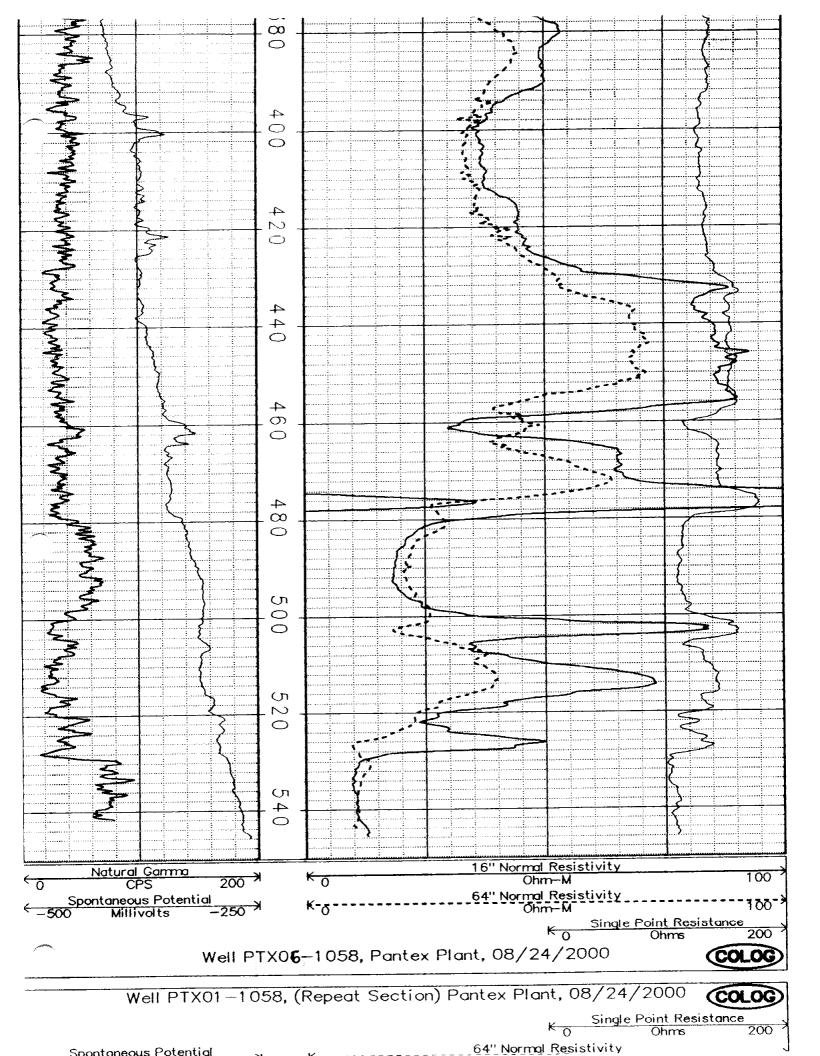
Pantex Burning Grou	nds Soil Gas	Pantex Pl	ant (Zone 8)		Α	marillo, Texas
Project Number:	3615		Client:	Mason &	Hanger Co	rporation
Geologist:	C. Hull/	R. Rupp/T. Hall	Northing: 3759747.11	Easting:	624894.00	1
Drilling Contractor:	Layne C	hristensen	Total Depth of Borehole:	546' BGS	5	
Dates Drilled:	08/12/00) - 08/24/00	Depth to Water:	392.9' BC	GS 10/10/00)
Borehole Type:	12" AR	CH 7 7/8" Mud Rotary	Well Type:	Monitori	ng Well, 4"	Stainless Steel
••		•			<u> </u>	
Ground Elevation:	3565.15	 500-505' SANDSTONE, 505-510' SILTSTONE, s fine grain, possible gypsu 510-520' SAND, gravelly fragments similar to sequ material may have originaterial may have originaterial 520-525' MUDSTONE, scattered muscovite, drill 525-528' SANDSTONE, 	y, coarse to very coarse lithic ence from 430-458' (the grave ated from above) clayey, white, yellow, red-bro	el own,	Sample	Sample Number
-530	c	pale yellow clay fragmen		n white to		
-550 -560 -570 		Well Completion Details: Borehole Diameter: 14" from surface to 85' 12" 85-295' 7 7/8" 295-546' 8 5/8" steel conductor cas 295' Total Depth of Well 533' 4-inch, Type 316, stainles	ing set with cement from surf BGS ss steel casing and 10-slot scre screen (378-528'), 380' casing do Silica Sand (366-546') 361') with 4 bollards	een		
S.M. STOLLI	ER CO	RPORATION				Page 6

ELECTRIC LOG NY: SM STOLLER PTX06-1058 Pontex Pontex TX COUNTY: COUNTY: Corson N: TX COUNTY: N: TX COUNTY: Corson N: TX Son Ft. Corson Mintney 16,64,SPR,SP Corson Corson Id 16,64 SPR,SP Corson Corson Id Son Ft. Corson Corson Id Son Ft.	SOURCE SIZE, 1	SAMPI F INTERVAL	A.S.D.E.	LOGGING SPEED	MODULE TYPE, S/N	PROBE TYPE, S/N	TIME SINCE CIRC.	Rm at TEMP	FLUID TYPE	FLUID LEVEL	WITNESSED BY	RECORDED BY	TOP LOGGED INTERVAL	BTM LOGGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	LOG TYPE	RUN NUMBER	DATE ACQUIRED	DRILL MEAS. FROM: G	LOG MEAS. FROM: G	PERMANENT DATUM: G	SM ST(: PTX06 Pantex TX C	-105	8	son VEL:	COM	GAMMA-	UNTOP	► <i>R</i>
SERVICES:		0.3		20		EPF		N/A	Mud	90 Ft.	Ralph Rupp	MLWhitney	4.25 FT.	546 Ft. 546		546 Ft.	16		/24/00 08/24/	G.L.		G.L. ELEVATION:	LOCATION: OTHER SERVICE	COUNTY: 0	Pantex		COMPANY: SM STOLLER		17301 West Colfax, Suite 265, Golden Colorado 80401 PHONE: (303) 279-0171 FAX: (303) 278-0135	COLOG Division of Layne Christensen, Co.

BOREHOLE RE	CORD		CASING RECOR	RD		
BIT SIZE	FROM	TO	SIZE/WGT	FROM	TO	
9.5"	Surface	300 Ft.	8" Steel	Surface	300 Ft.	
7 7/8"	300 Ft.	TD	· · · · · · · · · · · · · · · · · · ·			
COMMENTS:			COMMENTS:			
]						

DIGITAL FILES: 1058.FIN; 1058.RPT; 1058.HDP


Well PTX01-1058, Pantex Plant, 08/24/2000



200

K Single Point Resistance

	Well P1	X0 6	-1058, Pantex Plant, 08/24/2000
			K <u>Single Point Resistance</u> K <u>O</u> Ohms 200
Spontaneou -500 Milliv	is Potential volts —250 X		64'' Normal Resistivity Ohm-M
	Gamma ^{>} S 200		16" Normal ResistivityK0Ohm-M100
	· · · · · · · · · · · · · · · · · · ·		
		20	
X			
	· · · · · · · · · · · · · · · · · · ·	4	
3		Ó	
		0 10	
Why			
Ś		0	
		10	
N			
\mathbf{z}		00	
E.			
No.]	
2		20	
×.			
3			
3	· · · · · · · · · · · · · · · · · · ·	4	
		40	
E -			
Ę			
E		60	
3			
2			

Contractor: S.M. Stoller Corporation

Contract #: 3615

OPTIX #:

Included Documents

___Drilling Log ___Draft ___Final

___Installation Log

_X_Lithologic Logs _X_Draft _X_Final

____Geophysical Logs

____Neutron

___Gamma

____e-log

___Bond Log

____Deviation log

____State Well Report

Pantex Burning Groun Project Number:	3615	i untex i unit (vi	Vest Side Playa 2) Client:	Mason & U	Amarillo, Tex anger Corporation
Geologist:		n/T. Hall/R. Rupp	Northing: 3760459.31	Easting: 62	• •
Drilling Contractor:	Layne Ch	**	Total Depth of Borehole:	550' BGS	20127.70
Dates Drilled:	2	- 09/10/00	Depth to Water:	397.5' BGS 10/10/00	
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		Well, 4" Stainless Ste
Ground Elevation:	3543.96'		TOC Elevation:	3546.56'	wen, 4 Stanness Ste
			TOC Elevation.	5540.50	
Completion [F.]	Lithology USCS]	Description		Sample Sample Number
	ML	nodules, pale red (10R 6/2 Drilling open-hole with Tr	white CO3 laminae and nod		
	ML ML ML	30-40' SILT, clayey, clay (5YR 4/4), medium dry str interior laminations	about 35%, <5% CO3, reddi rength, dry, flat fragments sh	ow	
	ML	50-60' SILT, sandy, 40% 5 8/4), very loose, dry	fine grain sand, trace clay, pi	ink (5YR	
	ML	<pre><5mm, pink (5YR 8/4), dr @ 62' thin caliche layer, s</pre>	hort interval of white chips		
	ML	Geophysical log indicates			
	ML	(5YR 4/6), fine and mediu dry, @ 85' becomes more of Change to ODEX bit with	drive casing	raded,	
	SP		and silt, fine grained with 59 pink (5YR 7/3), subrounded, /clayey		

Pantex Burning Group		Pantex Plant (W	• /	Magan P-II	Amarillo, Tex
Project Number:	3615	-/T 11-11/D D	Client:		ager Corporation
Geologist:		n/T. Hall/R. Rupp	Northing: 3760459.31	Easting: 628	129.98
Drilling Contractor:	Layne Chi		Total Depth of Borehole:	550' BGS	0/10/00
Dates Drilled:		- 09/10/00	Depth to Water:	397.5' BGS 10	
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		Vell, 4" Stainless Ste
Ground Elevation:	3543.96'		TOC Elevation:	3546.56'	
Completion Debth (Ft.)	Lithology USCS		Description		Sample Number
	ML	(5YR 5/6), subrounded, da	and fine sand to 20%, yellow mp round to the above described		
	STN	silt/clay, 40% caliche grou	ALICHE, 60% mudstone gro nd to white/pink dust, yellov		
	ML	fairly soft, difficult to drill	beds of silt and clay, very ha	/	
	ML	120-130' SILT, with 40% subrounded, poorly graded @ 125' more caliche beds.	fine sand, reddish yellow (5 l, dry /nodules	YR 6/6),	
	ML		fine sand, reddish yellow (5 l, compact, clay content incre ng up ODEX bit		
	ML	140-150' SILT, clayey to 6/6), low plasticity, compa	CLAY, silty, reddish yellow .ct, dry to damp	(5YR	
	SM	150-160' SAND, silty, lig grain, dry	ht reddish brown (5YR 6/4),	fine	PTX06-1059-2-0 VOC
	00 000 0000 00000 00000 00000 00000 00000 00000 00000 00000 000000 00000 00	160-170' SAND, silty, tra brown (5YR 6/4), fine grai	ce gravels <10mm, light redo in, well sorted, damp	 lish	
	00 000 000 000 000 000 000 000 000 000	6/4), fine grain, well sorted		×	
	SP	grain, poorly graded, loose			
	SP	190-200' SAND, with silt, poorly graded, loose, damp	, yellowish red (5YR 5/6), fii o	ne grain,	
S.M. STOLLI					

Pantex Burning Grou			/est Side Playa 2)	Magan 6- II-	Amarillo, Texa
Project Number:	3615		Client:	Mason & Hange	
Geologist:		n/T. Hall/R. Rupp	Northing: 3760459.31	Easting: 62812	9.98
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	550' BGS	0.000
Dates Drilled:		- 09/10/00	Depth to Water:	397.5' BGS 10/1	
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		l, 4" Stainless Stee
Ground Elevation:	3543.96'	1	TOC Elevation:	3546.56'	1
Depth (Ft.)	Lithology USCS]	Description	-	Sample Number
-210-	00 000 000 000 000 000 000 000 000 000		th gravel up to 3/4" and CO3 ery pale orange (10YR 8/2), o		PTX06-1059-2-02 VOC
-220	SP	7/4), very fine to medium	% peagravel, very pale brown grain, poorly graded, loose, c	dry	
			% gravel to 1/2", light yellow coarse grain, subangular to	rish	
-230-		(10YR 5/3), angular, loose			
-250-	- 00 00 00 00 00 00 00 00 00 00 00 00 00	240-250' SAND, silty, 50- very fine to fine grain sand	-50 on content, yellow (10Y) ls, loose, dry	R 5/8),	
-260-	SP	40% coarse grain sand, so dry	y, 60% gravel to 1-inch diam me fine to medium grain san silty, with gravel to 1-inch di 4), subrounded, loose, dry	d, loose,	PTX06-1059-2-02 VOC
-270-	SP	6/3), poorly graded, fine to	ne small gravel, pale brown (o medium grain, loose, moist		
-280-	00 000 000 000 000 000 000 000 000 000	8/3), no gravel 272-280' SAND, with silt, rock flour, loose, dry	-50 sand silt, very pale brown, , pinkish white (7.5YR 8/2),	ground to	PTX06-1059-2-02 VOC
-290-	CL		% sand and some small grave tic, very stiff, slightly damp	el, brown	PTX06-1059-2-023 HE
	SP	290-315' SAND, very pale grain, rounded, poorly grad	e brown (10YR 7/4), very fir ded	ne to fine	
S M STOLI		PORATION			Page 3

Pantex Burning Grou Project Number:	3615		Vest Side Playa 2) Client:	Mason & Ua	Amarillo, Tex nger Corporation
2		hin/T Hall/D Dunn	Northing: 3760459.31	Easting: 62	* *
Geologist: Drilling Contractor:		hin/T. Hall/R. Rupp Christensen	Total Depth of Borehole:	550' BGS	0127.70
Dates Drilled:		0 - 09/10/00	Depth to Water:	397.5' BGS 1	0/10/00
Borehole Type:		CH 7 7/8" Mud Rotary	Well Type:		Vell, 4" Stainless Ste
Ground Elevation:	3543.96		TOC Elevation:	3546.56'	ven, 4 Stanness Ste
			TOC Elevation.	5540.50	
Completion Debtly (Ft.)	Lithology	nscs	Description		Sample Number
-310-	s		gray (7.5YR 7/2), very fine g d, medium dense, mostly Si02		
		315-340' SAND, light bro grain, rounded	own (7.5YR 6/3), fine to med	ium	
-330			vn (7.5YR 6/3), cuttings reco	overy in	
X X		sieve not enough for samp	le collection		
	s	340-365' SAND, some cla subrounded, contains quar	ay, light brown (10YR 6/3), f tz and mafic materials	ine grain,	
	0000000 000000000000000000000000000000	365-390' SAND to CLAY 6/3), some fine grain sand	7, clay at 80%, light brown (7	2.5YR	
- 380-		(a) 380' sand becomes more	e well graded, with grain size grain, subrounded, some maf		
- 390	s	subangular to subrounded		se grain,	
	4::::::::	Water Level @ 397.5' BG	S on 10/10/00		

Pantex Burning Groun Project Number:	3615	rantex riant (V	Vest Side Playa 2)	Mager 0 II	Amarillo, Tex
2			Client:	Mason & Hang	
Geologist:		n/T. Hall/R. Rupp	Northing:3760459.31Total Depth of Borehole:	Easting: 6281 550' BGS	27.70
Drilling Contractor: Dates Drilled:	Layne Chi	- 09/10/00	Depth to Water:	397.5' BGS 10	/10/00
			· · ·		
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		ell, 4" Stainless Ste
Ground Elevation:	3543.96'		TOC Elevation:	3546.56'	
Completion Depth (Ft.)	Lithology USCS		Description		Sample Number
	SP	@ 405-415' fine grain sa	nds		
	SP	grain with up to 10% med	own (7.5YR 6/3), very fine to lium grain sand, subangular to ant in SiO2 with only trace m y poor)	
	SP	440-490' SAND, fine gra	in, cuttings recovery poor		
	SP	490-500' SAND, light ye grain, 10% very fine grain trace mafics	Ilowish brown (10yr 6/4), 909 n, subrounded, quartzose sand	% fine with	
S.M. STOLLI		PORATION			Page 5

Pantex Burning Grou Project Number:	3615	Bentex Plant (W	Client:	Macon & II.	ngar Comparation	
Geologist:		nin/T Hall/D Dunn	Northing: 3760459.31		anger Corporation	
Drilling Contractor:		nin/T. Hall/R. Rupp Shristensen	Total Depth of Borehole:	Easting: 62 550' BGS	.0127.70	
Dates Drilled:) - 09/10/00	Depth to Water:		10/10/00	
			1			
Borehole Type: Ground Elevation:		CH 7 7/8" Mud Rotary	Well Type:		Well, 4" Stainless Ste	
Ground Elevation:	3543.96		TOC Elevation:	3546.56'		
Completion Debth (Ft.)	Lithology		Description		Sample Number	
	S S S	 yellowish brown quartz w multi-colored mix, angula table 510-525' SAND, red, coa sandstone with brown muc remetation mit down min 	o very coarse, 90% clear and ith 10% mafics making a r to subangular, drill pipe cha rse pieces of well cemented, dstone, probable Dockum fo e still chattering but not as ro	fine grain	_	
-530- -540- -550-	SI	 ^{JD} sand (possibly from above @ 530' penetration rate piesting 530-532' SHALE, clayey F 538-540' SANDSTONE, cuttings, fine grain, soft, p drilling fluid brown 540-550' SHALE, clayey 	cking up	colors in htly, (2.5YR		
		fine, rounded, sand grains, siltstone, penetration rate of @ 546' Redbeds, as above (2.5YR 7/4) clay reduction @ 547' mottling drops ou making a gradual change t @ 550' TD, drill penetrate probably a soft reduction z Total Depth of Borehole 5 Fine Grain Zone 279' BGS	e, with grayish white to pale in mottling t, some yellows coming in, n to red color ed 1 ft. very quickly just befor zone	y yellow 1ud		
S.M. STOLL		12" surface to 280' 7 7/8" 280-550'				

				0 1007			
Pantex Burning Grou	ınds Soil (Gas	Pantex Plant (W	Vest Side Playa 2)		А	marillo, Texas
Project Number:	3615			Client:	Mason & H		
Geologist:		itphi	n/T. Hall/R. Rupp	Northing: 3760459.31	Easting: 6		*
Drilling Contractor:		_	ristensen	Total Depth of Borehole:	550' BGS		
Dates Drilled:	-		- 09/10/00	Depth to Water:	397.5' BGS	\$ 10/10/00)
Borehole Type:			H 7 7/8" Mud Rotary	Well Type:			Stainless Steel
Ground Elevation:	3543		11 / //o Wild Rolary	TOC Elevation:	3546.56'	, wen, 4	Stanness Steer
		.90		TOC Elevation.	3340.30		
Completion (1) 		nSCS	8 5/8" steel conductor cas Total Depth of Well 543' 1 4-inch, Type 316 stainless	Description ing set with cement 0-280' BGS steel casing and 10-slot scre creen (378-538'), 380' casing lo Silica Sand (370-550') 65') ith 4 bollards	en	Sample	Sample Number
690-	_						
- 090	-						
]						
S.M. STOLL	ER CO	OR	PORATION				Page 7

PTX06-1059

LOINO	MBER:	6615	PROJECT NAM	IE:		
NG NUM		and the second second second second second second second second second second second second second second second	0.54 COORDINATES	3 :	DATE:	8/29/00
ELEVATION:			GWL: Depth	Date/Time	DATE ST	ARTED: 8 /29/00
ENGINEERIG	EOLOGIS	T: H.S.	tohin Depth	Date/Time	DATE CO	MPLETED: 9-10-00
RILLING ME		Aux	Rotary 11/4 trice	ano,	PAGE: /	OF 10
DEPTH- (FY) SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY	DESCRIPTION	LINE SYNER	ЛТНОГОСК	REMARKS
10 Srab			SILT with clay, tro Michian day strongth Red (10 RG2) - 10 Northey. SILT, with clay, med. day, moderate 13 1550 white (03 1. Madula		5:Hst	
-20-Grab	a á Áirte	0.900	SHET Claysy, medium dry 255,603 Muss (57R46), Elat fo Intrior lonimation	de y triengthy Porote Brown Lognarts show 1045. Clay 25%		
40 5103		6	Silt, kose, 25% cla chips plannup hel (5 y R ile), chy	e) 1941) (XGU4	NL. Att	HI Sitt perternes dist Blow up hole
50 Gias		0 0 60 Fo		wind, Fyland 1000 N ments: 65 MM	L- 1 L	Chy bulls in chy

		+ anot	VISUAL CLASSIFICATION OPESO			
OJECT NU	MBER: 2	3615	PROJECT NAME:			
RING NUN	BER: PT	X Ob-	COORDINATES:		DATE:	8/29/00
ELEVATION:			GWL: Depth Date/Time			ARTED: 5/24/00
ENGINEER/G	EOLOGIS	ST: 4 5	-thin Depth Date/Time			MPLETED: 9-10-00
					PAGE: 2	OF /0
DEPTH (74) SAMPLE TYPE & NO.	BLOWS ON SAMPLEPV()	RECOVERY	DESCRIPTION	USCS SYMBOL	UTHOLOGY	REMARKS
-70-Grab		0	- 60' Them callebe layer? 1 5117, 58 CO3 - Functionly	ML		-Rattle drill sten, short intervalot white chips Varyminor Recover
			Silt, 201. Sond, 52 caliele sodulas, 5487/6 red ul yelow, Fine & redgried sud, subrousd Graded, dry,	le Mi		0.0 - dravie to Dex
	4a 17	en e	85 - becomes more cloyey & lesi sonty 40'SAND, FIR-grain & 1/10', doy \$ 5017. 5' med & consegrins, SYA 7/3 proto, dry, subcourd, pourly Grated	SF	?	0.0
-00	-		Becores More sility / charey 100 S. Is w/ day & Fine Sond TO 201. SYR5/6 yellovish Red, Dung, subrand,	mc		0.0
			105-Mudston - 6 roudinto the Above described Sitt. -110' & Mudston / caliche - 807. Mudstone	ML	-	0.0
-110-	Interbec		610 BAHOSTOR / Caliche Galiche gront) 60000 His Sitt/clay, 401. Caliche gront) WATR/PAY dust - dump/dry rellow Rec Syr 16 To prav/white SYR 8/2. -145 Caliche Cuphoch? W/beds of Silr & chay Very hard To Fairly SOFT	in mil		20

AING NUMBER: 07/06-1059 COORDINATES: DATE: \$\frac{1}{20}/00 EVATION: GWL: Depth Date/Time DATE STARTED: \$\frac{1}{2}/27/0 AGINEER/GEOLOGIST: \$\frac{1}{20}\$ #.541, \$\frac{1}{10}\$ iv Depth Date/Time DATE COMPLETED: 9/10 AGINEER/GEOLOGIST: \$\frac{1}{20}\$ #.541, \$\frac{1}{10}\$ iv Depth Date/Time DATE COMPLETED: 9/10 AGINEER/GEOLOGIST: \$\frac{1}{20}\$ #.541, \$\frac{1}{10}\$ iv Depth Date/Time DATE COMPLETED: 9/10 AGINEER/GEOLOGIST: \$\frac{1}{20}\$ #.541, \$\frac{1}{10}\$ iv DESCRIPTION \$\frac{1}{20}\$ \$\frac{1}{2}\$ of \$/0\$ AGINEER/GEOLOGIST: \$\frac{1}{20}\$ #.541, \$\frac{1}{10}\$ iv DESCRIPTION \$\frac{1}{20}\$ \$\frac{1}{2}\$ of \$/0\$ AGINEER/GEOLOGIST: \$\frac{1}{20}\$ #.541, \$\frac{1}{2}\$ of \$/0\$ DESCRIPTION \$\frac{1}{20}\$ \$\frac{1}{2}\$ of \$/0\$ AGINEER/GEOLOGIST: \$\frac{1}{20}\$ #.541, \$\frac{1}{2}\$ of \$/0\$ DESCRIPTION \$\frac{1}{2}\$ \$\frac{1}{2}\$ of \$/0\$ AGINEER/GEOLOGIST: \$\frac{1}{2}\$ #.541, \$\frac{1}{2}\$ of \$/0\$ DESCRIPTION \$\frac{1}{2}\$ \$\frac{1}{2}\$ of \$/0\$ AGINEER/GEOLOGIST: \$\frac{1}{2}\$ #.541, \$\frac{1}{2}\$ of \$/10\$ DESCRIPTION \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ of \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{	
GINEER/GEOLOGIST: SPB H. Sutphie Depth Date/Time DATE COMPLETED: 9-10 DILLING METHODS: DESCRIPTION DESCRIPTION DESCRIPTION GO GO GO GO GO GO GO GO GO GO	
ILLING METHODS: MATY PAGE: S OF / D INDEX DESCRIPTION DOB DOB DOB INDEX DESCRIPTION DESCRIPTION DOB DOB INDEX DESCRIPTION DESCRIPTION DOB DOB INDEX DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION INDEX SIT MIL DESCRIPTION DESCRIPTION DESCRIPTION INDEX SIT MIL DESCRIPTION DESCRIPTION DESCRIPTION INDEX SIT MIL DESCRIPTION DESCRIPTION DESCRIPTION INDEX SIT SIT SIT DESCRIPTION DESCRIPTION DESCRIPTION INDEX SIT SIT SIT SIT DESCRIPTION </td <td>0-00</td>	0-00
DESCRIPTION DESCR	
-6120 -6120 -5/7 V/40i. Free Soid - Syr 4/6 redult Nelton, dry, sob control, poorly girled -RES- More called bods / Heddoles -S. IT V/10i. Fran Sond Syr 4/6 redult allow MC D.D -S. IT V/10i. Fran Sond Syr 4/6 redult allow MC D.D -S. IT V/10i. Fran Sond Syr 4/6 redult allow MC D.D -S. IT V/10i. Fran Sond Syr 4/6 redult allow MC D.D -S. IT V/10i. Fran Sond Syr 4/6 redult allow MC D.D -S. IT V/10i. Fran Sond Syr 4/6 redult allow MC D.D -S. IT V/10i. Fran Sond Syr 4/6 redult allow MC D.D -S. IT - Clayer TO Sitzectury -SYR 4/6 MY -Sitzectury J. Structure -	
- Site w/10, Fransond Syr 1/6 rectail allow ML D.D. dry rodon subandut, posty Bradel, compared - Drilling very difficult - clay content ML O. = clayey Sils - gurming & Dill Site-clayer to siteschap - StR 4/6 ML D.D Low planticity, compared dig todard, ML D.D Sityclag contraines ML	
Silt-clayer to siltysching-StR 66 044 D.D. Low pleasticity, compared diry todump, 1/cl D.D Siltyclay contributes 14/cl	4
Silt-clayer to siltyclay -5/1846 044 D.D. Low planting, compart, dig todarge, My Siltyclay contributes My	
- Sitryclay contraines my Ism 0.0	
	11:0
Grab O BILTY FGSAND, wellow tails (57R = 4) O BILTY FGSAND, wellow tails Camp, trace groweb = 10 mm Light Brown (5 YR = 4)	ial) 71-2-1 <u>9</u>
The \$ 3.0 Silty Fg Savel, trace clay, Sun Clamp, wellsonteel, how dig Strangth, Cight Brown (SVI2Ch)	
De Orab D Paris Graded save, Fine grained SP well serted, minor silt, Damp, hoose, moderate yellowish ISoowy & dryness + stated	A 10-00

JECT NUI	MBER: 3	215		PROJECT NAM	AE:				
AING NUM	BER: PT	X06-	1059	COORDINATE	S:		DATE:	8-30-00	
EVATION:				GWL: Depth	Date/Time		DATE ST	ARTED: 8-29	-00
NGINEER/GE	OLOGIST	: H.5	atphin	Depth	Date/Time		DATE CO	MPLETED:9-1	0-00
RILLING ME	THODS:	0	DEX				PAGE: 7	OF /0	
SAMPLE SAMPLE	BLOWS ON -	BECOVERT		DESCRIPTIO	N	Dance synth	АЗОТОНШЛ	REMARK	s :
90		0,2:	Silty o (1) 20 20 50 10 10 10 10 10 10 10 10 10 1	light yellow is when a formation of the construct of the construct of the construct of the construct of the construction of th	with sitt;), poorly grace), loose. Svarel deg and, with and models) yest? nit is any and with 1 to 1/2" chiam? 25/3] Same as and smaller it is duy i loos (to 1/2" chiam? 25/3] Same as and smaller it is duy i loos (to 1/2" chiam?	2 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	ч	Sample 2 PTX06-205 Methovol (1837)	Use

.

50

4

.

JRING NUMBER	ER: 3615	PROJECT NAME: BUIMING (M	ounds	700	1 Gas
	a: PTXOlo-	1059 COORDINATES:			83100
ELEVATION:		GWL: Depth Date/Time	C	ATE ST	ARTED: 08 29 00
INGINEER/GEOL			C	ATE CO	MPLETED: 9-10-0
RILLING METHO	oos: AKv	1 oderf	F	PAGE: 5	OF / a
DEPTH () SAMPLE TYPE & NO. BLOWS ON	RECOVERY ()	DESCRIPTION	USCS SYMBOL	Кролонти	REMARKS
250	0-52' ' . 	250-252' 50/(5W) gravely Sand, Sande 40% Coarde grain , Gravel & 60% EO 1/2" diam. Endis fire to med, loose and dry 260'(30) Sm) very pale brown (10M)/4 Sli. Sitty Sand W/growel to l'cliam Sub-rounded, loose and dry 265'(50) pale brown (104K43] pooly Gradid Sands, Sine to med grain W/some Amall gravel, Wivist and Loose 270' (Sm) Very pale brown (104K8/3] Silts Sand, NO grand. Siltend Sand @ 50/50 a Curlent 272' (Sm) finkish white [7.54K8/2] Silt, ground to rock - flow, dry and loose 280'(CL) brown [7.545/3] Ed clay W/ 10% Sand, Some Small gravel Clay is plastic, SLi. damp and deuse	5 5 5 5 5 h		280-282' Sumple 280-282' Sumple 280-5 HE 0445

	CT NILIN	BER: 3	1.5		PROJECT NAM	AE: R	inning M		1.5	iothan
		BER: PT		1059	COORDINATE		Northing 15			9-09-00
ELEVA			106-		GWL: Depth		ate/Time			ARTED: 08 2900
		OLOGIS	7TL	lall	Depth		ate/Time			MPLETED: 9-10-00
OPILLI	NG MET	HODS	n. l.	1000	V17% "Tri					OF /0
			mua	oning	V/ 1/8 W/	com				
DEPTH	SAMPLE TYPE & NO.	BLOWS ON SAMPLEPV	RECOVERY ()		DESCRIPTION	N	1	USCS SYMBOL	LTHOLOGY	REMARKS time
				(7.5 yR7/ graded, roundic med. den 315-340 Sand 1s f e = 330' light brow Sieve buy Collectio 340-365 (OP) SA fineara	(SP) SAND inclomed grain graded to an(n in color (7.5 t Not chough n. ND light brow in sand, sub-ro ay. contains	nsanc vains matins solo ves for s	rouncied 340"(CU) was in ample kupic			2325 - 0015 (9-10) 0020 - 0125
İ	3:			•	<i>a</i> .			4		

2

	MBER: 3	615	PROJE	CT NAME	: BG5G	-			
RING NUM	BER: PT	xclo-1	DS COOR	DINATES	:			091000	
LEVATION:			GWL: C	Depth	Date/Tim	ne		TARTED:	
NGINEER/G	EOLOGIS	シートー	al([Depth	Date/Tin	18	DATE C	OMPLETE	D: 9-10-00
RILLING ME	THODS:	Mudr	otary w/71/8"	tri-co	one		PAGE:	7 OF 10)
DEPTH () SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY	DESC	RIPTION			LTHOLOGY	RE	MARKS
310-			365 - 370 '(90) Some fine grunn @380' sand beau wlgvain size to a mafic material st 390 - 415' 390 - 405 Gpt Sub-angulart Coarse gruin so down again 405-415'- fine No ching. in cotor	isands w we have ourse the course the course the course the course the course the meligod	Lbrown(7.5 well grode ore, sub-ro nt Led Sunds rounded.fir 25' drilling	80% d urded.			- 02/0 - 0335
410- 415- 420-			415-440'(5P) Veryfine to fine Sands. abundant Mufic Material.	+ in 5:0-	MALUMAY	1110		0340	о - ощо

				0.51	PROJECT NAM			DATE	: 0	51000	
EVATIO					GWL: Depth	Date/Tim	8	DATE STARTED: 082900			
	ERIGEOLOG		1:	611	Depth	Date/Tim			_		
					71/8" tri-co				DATE COMPLETED: 9-10-00 PAGE: 8 OF /0		
		,	- mile P	UCCOM IN [170 . 01 00						
()	TYPE & NO.	SAMPLER()	RECOVERY ()		DESCRIPTION				птногосу	REMARK Line	S
				440- Minin Finegrai Sumpleh	nsand (Sp) not	adiquate			247	0415 - 05	
			•••••	•				1			

JRING NUMBER: PTRO6-1059 COORDINATES: DATE: 9-10-00 ELEVATION: GWL: Depth Date/Time DATE STARTED: 8-24- ENGINEER/GEOLOGIST: R-Rupp Depth Date/Time DATE COMPLETED: 9-10- DRILLING METHODS: Mul ROTTING PAGE: 9 OF 10 H- HON BOY DESCRIPTION BOY OF 10 H- HON BOY DESCRIPTION BOY OF 10 H- HON BOY DESCRIPTION BOY OF 10 H- HON BOY DESCRIPTION BOY OF 10-10 HON GOY DESCRIPTION BOY	ROJECT NUI	MBER:	3614	5	PROJECT NAM	E: B65G			
ELEVATION: GWL: Depth Date/Time DATE STARTED: 8-24-0 ENGINEER/GEOLOGIST: Q. Trupp Depth Date/Time DATE COMPLETED: 9-10-0 DRILLING METHODS: mul. Rotting Depth Date/Time DATE COMPLETED: 9-10-0 DRILLING METHODS: mul. Rotting Depth Date/Time DATE COMPLETED: 9-10-0 Hand Song Hand DESCRIPTION Song Song REMARKS Hand Song Hand DESCRIPTION Song Song F PAGE: 9 OF / O Hand Song Hand DESCRIPTION Song Song F REMARKS Hand Song Hand DESCRIPTION Song Song F O/NO 9-10-1 Hand Song Hand Song F O/NO 9-10-1 Song								ATE:	9-10-00
ENGINEER/GEOLOGIST: R-Rupp Depth Date/Time DATE COMPLETED: 9-10- DRILLING METHODS: Mul RATTAN DRILLING METHODS: Mul RATTAN DESCRIPTION H H H H H H H H H H H H H									
DRILLING METHODS: Mul Potting PAGE: 9 OF 10 Hand Internet in the set of the set o	ENGINEER/GE	OLOGIS	T: 2	Dunn				ATE CO	MPLETED: 9-10-10
H- H- H- H- H- H- H- H- H- H- H- H- H- H			Mud	Dation	the second second second second second second second second second second second second second second second se				
490 490 Hon Carthing To 500 Sand, finch very finer lift yellnih brown Sand, finch very finer lift yellnih brown (10 yra 6/4) 90°2 fin guild, subwild, guilger onl 10 yra 6/4) 90°2 fin guild, subwild, guilger onl 10 yra 6/4) 90°2 fin guild, subwild, guilger onl 0930 STMET Driv 500 / E 0940 SUD / S10'S AND, Coarse to very coarse predominents to 50° when signifient SIV 50' E 0940 Sing with 10's making a mility of mility of the subwild of the subwild of the subwind of the s			1.000	2 1001111					
470 43 m 43 m 43 m 43 m 10 yr 6/4) 90 ° fingenit, subwind, gut mond 10 yr 6/4) 90 ° fingenit, subwind, gut mond 100-'510 SAND, Coarse to very coarse 500-'510 SAND, Coarse to very coarse 500' @ 0940 500' @ 00	DEPTH () SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY ()		DESCRIPTION		USCS SYMBOL	лыолонти	REMARKS
510 510 - Consu fuedon durport still 510 - Consu fuedon with brown Sand fingen is above with brown 518 ce 1230 520 - To rever come pien of fin 520 - To rever come find the first of the first 520 - Store for the first of the first of the first of the first 530 Perturbor piele of first of the first of first 530 Perturbor piele of first of first of first of first 530 Perturbor piele of first of first of first of first of first 530 Perturbor of first of	413 ~~ 			Catch ch SQue (10 yre 6/4) 10 yre 6/4) 500-1510 predome frithe of suite of South and SIO - Sand for Suite of Suite of Suite of Suite of Suite of Suite of Su	SAND, COard SAND, COard To to Sto' SAND, COard The Surgers SAND, COard The to Sto' is 90's cleanon the to subserger the to subserger the formation Top of Occleanon the formation the format	Lier lift yellow subwinded, gut a fo very coarse when arging int of a smith or and a smith or disposit still with brown to constant for other price of the price to constant for the south of a still chatting to a still chatter for a chart of the a still chart of a still a stil	SN Gr	and 50	515'@ 1025 530 @ 4105

1

.

JRING NUM	DER. P)	V / / /	o Fa	COORDINATES				a	
LEVANON.		206-1	057		Date/Time			9-10-12	1 1
NGINEER/GEOLOGIST: R. R. Tarp				GWL: Depth	Date/Time		ATE CO	ARTED: 8	24/50
a support concerns to search a			0 1	Depth	Date/ Ilme		ATE CO	MPLETED:	0/21/10
	THODS:	nu	2 note	}		P	PAGE 0 OF/0 9-10		
SAMPLE SAMPLE	BLOWS ON' SAMPLEPV()	RECOVERY ()	÷	DESCRIPTION		USCS SYMBOL	ИТНОГОСУ	REMA	rks
	9/11/00 padbe	1	Red (2.5 fine of 545 Sh hard .) So 2 ser Clayey Conto H Costo Re Costo Re Soft	Alleyopound, Deand, winn printention with a - you could will a - you could a so a - you could will a - you could a so a you could a so - you c	1. quantyone 1. quantyone And (10 R 4/6) lead gestion Interior to show this a white this a white for gray white for	the pr	le yelle	1140 e 4 545' C 1 545' C 1 547' C 13 552' C 14	(230 4) 102

Contractor: S.M. Stoller Corporation

Contract #: 3615

OPTIX #:

Included Documents

___Drilling Log ___Draft ___Final

___Installation Log

_X_Lithologic Logs _X_Draft _X_Final

____Geophysical Logs

____Neutron

___Gamma

____e-log

___Bond Log

____Deviation log

____State Well Report

PTX06-1060

			· 2-3	VISU	AL CLASSIFICA	TION OF SOIL	s	c Maralda	• • ?	Regulational	
	CTNU	185D. "	2615		PROJECT NAME	0		C-1	1		1
Farma			201-2	0(0	COORDINATES:	: Burning 60	ound	DATE:	Gass		
ELEVA		- p	X06 - 1	060	GWL: Depth	Date/Time	-		8-27	-20	
		OLOGIS	T. C	21	HAS Depth	Date/Time			MPLETED:	27/00	
		THODS:	4					PAGE: /	OF 4		
		1003.	Hirk	otary;	11/4" Tr	ione		PAGE:]	or l		
DEPTH	SAMPLE TYPE & NO.	BLOWS ON SAMPLERY	RECOVERY ()		DESCRIPTION		USCS SYMBOL	LITHOLOGY	REMA Pid in f	17280 TEL 197	
	Grub.			0-25 Po	rt box organity.	soil - monters					
					L, day mix.	VO3/ Carport	ML		0.0	•,	
:]	u			hard dry	log - Dertaber 7.5					. *	
-10 -				-C)rulico	id a Mair line	62- Low 7.5 x2/1	Myc	,	0.0	· ;	
			•	STIFF, CO	The day Moiss list mpour med playric	- difficient to Drill	10	(!	
:]				- SAME AS O	bore less moist				0.0		÷
:]										n 	
-20	"			-"site/day	Light realish brow	plant	m Yc	4	0,5		
	<u>t</u> -		5 3420cr	Clerg sith	2 214, media 22/10842).	ni dezestionstra	M L	i deternet	0.0 7 5 4 4		a wysylania y sy
40 - 	-+/		-	clayer sit	H, trucc Fyson R 42)	al pale Red,	mL	195 a.	All vetur		
R R L L	Jab				ionel, (SYA 4		5p-5	~	0.0		
-	Grad	-	i - 1		uit Light Bione trucc (190 ka.	u (5 yr 44)	5-11		0.0		
OTES:	0	60								÷.	
							-	•••	1		100 (100 100 100

	* .	ومقدم. معاد	VISU	AL CLÁSSIFIC	ATION OF SOIL	LS			топьтон и 1911 години и 1911 години и	54 X &
PI T	NUMBER:	to concernents	5-1060	PROJECT NAM		_	DATE:	8-27-0	<u>cp</u>	
ELEVATIO		17.01	2100	GWL: Depth	Date/Time		DATE ST	ARTED: 2	0-27-00	
ENGINEER	GEOLOGI	ST: AB	Sutphin	Depth	Date/Time		Contraction of the second	MPLETED		
DRILLING		/	Rotary	11 14" Tru	COR		PAGE: Z	OF 9		
DEPTH ()	BLOWS ON SAMPLER()	RECOVERY ()		DESCRIPTION		USCS SYMBOL	LTHOLOGY	rem P:1 "	IARKS A PPM	1
			75)carso.	Ay with 5% so VK. (5yR 8/4) Fine grained, Du note Nodular (4) Acc, tr. c log te Ccz ordala	Gon un blowle	5C 3m		70 C 12 FID 0.	00 ev m	
90 - <i>Gira</i> -			- /	D) hatter D) hatter Costroyum	and 1000000	Sin		Joseph In	aprad (2)	
100 6125			548.74 11 Culich ch 105 - 51 10 - 517 m red - 505 115 - As about 5.17 major fr	rendoni sub 1 mbs 10%. Ir, Dump, red, 2 1/ Fricsond To 15: rounded, Damp P w/ calide To 20 3 sund yellowish re	1. Syr 4/6. velow ourly gradul, loove	sm ml ml mc mc		0.0 0.0 0.0 0.0		
)TES:			hom, Calide	picus 70 2°1.		<u> </u>				

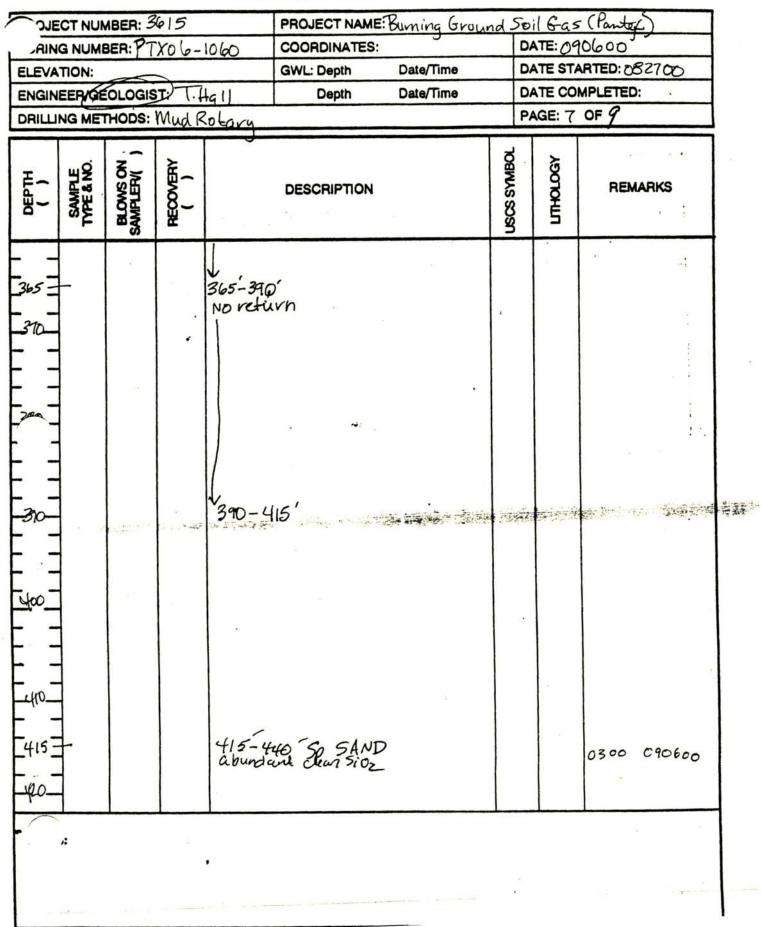
P ST NUMBER: 36	15	PROJECT NAME	BurNing Grou	od ?	Soil (bas -	la La	
BORING NUMBER: PTXC	6-1060	COORDINATES:	-	D	ATE: 2	3/27/00		
ELEVATION:		GWL: Depth	Date/Time	D	ATE ST	ARTED: 8/27	-/00	
ENGINEER/GEOLOGIST:	S. Brinkman	Depth	Date/Time	D	ATE CO	MPLETED:		
DRILLING METHODS: A		1/4" Tri-cone	ODEX	P	AGE: 3	OF 9		
		DESCRIPTION		USCS SYMBOL	лтногосу	REMARK P.L in PP	:	W.
	Silr contra Silr contra Loose, Do -135' Silr c Zlay bed Sand Contra Lire yellow Sub rounded Sond contra 150 Way P 10YA 7/6 Y -155' Sund Fine gran Sub round -160 Some Fine gran Sub round - 165 Silr R Pourly S - Mudston Sud-Fine - 175' - daya	i. VPg sond, 51 np. inp. infines w/ calic s - this ic Grain clay to M ropal bow 10 yR , poorly Gradet, d inces w/ culicle inces w/ culicle stope as about t STORE as about t STORE as about t STORE as about t STORE as about t STORE as about t STORE as about t STORE as about t STORE as about t STORE - Poorly 9 out g sond - Poyr	1/3 5% Med grand // Sof Med grand // Sof rand // Sof rand // Sof rand day Sanddsilr JYR 6/4 and, dry, sub round. Moisr Syrt/4 in Grain body dry	тС SP SP SM SM SM		0,0 0,0 0,0 0,0 0,0 0,0 0,0		

DTES:

.

	CTNUN	ABER: 3	415		PROJECT NAME	Burning 6.	Cara	1 50	il Gans		1
		BER: D	and the second design of the s	1060	COORDINATES				128/00		1
LEVAT				1000	GWL: Depth	Date/Time		DATE ST	and a second state of		1
		OLOGIS	T:S.R	nationsa	Depth	Date/Time			MPLETED:		1
RILLIN	IG MET	HODS:	Air Re	Taly M	""YY ODEX			PAGE: 4			1
				in y in					1		1
	SAMPLE SAMPLE	BLOWS ON	RECOVERY ()	×	DESCRIPTION	×	USCS SYMBOL	лыогосу	REMARI Pid in PPI	1	н А. В.
				med salle i	· Fire to very Fire 0 10% 10 YA 1/4 100 Carputed, contains	lebra. sub rounded	sp		0.0	- i	
				DIDMA I	Med grain u/ 2 10% grain u/ 2 10 YA J/4 Sub round	o'r. course, 20in macan. Palu lub, weth brabab,	SW		0.0 %		
				-195- Incre -195- Incre -200 - 10 41 Bradid, 6	dry, aning Gravel 10 Thy As above con ry; hord, w/ Grave	As above marrix use substant 1 to 3 cn.	sw		D. 9	 	
		8			me Sand ssone		sw		0.0). 	-12 5 er-13
1111	12.02	मु र नहालका		-214 - his Flower - U	a linestone? white dust - v/ 3 while Rock plant	ground to rock read to 3 cm.	Ls		an an an an an an an an an an an an an a		
1111				- 224 Ba 57. Coor. 102. Very F Sab roma	LV TO SANDSTOM Se sunt, 10%, me in q 10%, citr/clay 2, bry, hard, well q bed - 7.5yr 3/4 0	VE S'a gravel I soud 60%. Fire Yellow 10YR 74 rout.	SW		0.0		
				10 20 -230 - Sen 6121 30 1.1 Very Pele bri	i. and 4 cm. Addr distone - Graded M med graig 20%. consul www. 104R 3/4 sub r	Dary, have - D' sitt/day 2014 frie 2 # 10 h gravel Sudde, wanted, hur			0.0		
10			*	-235- 5.15.	STORE W/ 35 " Fu al 2045 \$19 010000,	ectory free sond	mc		0.0		

OTES:


.

I ICT NUMBER:	3Arg		: B6 Soul	6.0?		
BURING NUMBER: D	TX26-	INCO COORDINATES:			8/28/00	
ELEVATION:		GWL: Depth	Date/Time	DATE ST	ARTED: 8/2.7/00	
ENGINEER/GEOLOGI	ST: H. 54	etakin Depth	Date/Time	DATE CO	MPLETED:	
DRILLING METHODS:	Au	Retain 11/4 ODE	X	PAGE: 5	OF 9	
DEPTH () SAMPLE SAMPLER NO. BLOWS ON SAMPLERV()	RECOVERY ()	DESCRIPTION		LTHOLOGY	remarks PCD	g
240 _ 61.4		brus (10 yATH) with que	wel, dig, hard		0.0	
250 En al	•	Peorly graded sand ely Fysand 207, CgSand In GISUNNI, V pale orang	avel		0	×
- 260 		(10 YR 42), U. 1005c, duy Dowpsand, grasch & 1 11 party gradol sand, 7 My Sand 152, 10% grav Damp, 1005c	nda ·		0	•
170 6100 Terme 173 175		J73' color change to Mo (5472 /4), with sitt, w 375' Top F62 Fine pra Sand -/ Clay, domp	derate brown inor gravel inor sitty -		275 TOP FGZ	1999 N.
10 Grab		SILL, clayer - 1 Fg sand 1 25 mm, dump light	trace proved - brown (5 yi2 5%)		Low Receiver, clay gourning up oDex Bit. - set Bottown of casing	1
	4					3.41

OTES: 240 -300

÷.,

JECT NUM			PROJECT NAME:	wrminy Ground					
	ER: M	X06-	1060 COORDINATES:	J		82700			
ELEVATION:			GWL: Depth	Date/Time	DATE ST	ARTED: 082700			
ENGINEERAE				Date/Time	DATE COMPLETED:				
DRILLING MET	HODS: /	mud	Kotary		PAGE: 60F9				
DEPTH () SAMPLE TYPE & NO.	BLOWS ON SAMPLEPV()	RECOVERY ()	DESCRIPTION	LISCS SYMBOL	ЛТНОГОСУ	REMARKS			
315 315 330 340 340			No recovery return 315-340' (sp) SAND Ven (10YR713) Sli graded sands. grain, sub-rounded, loose 340-365 (sp) SAND m (0 YR713) poorly graded sand fine grain, sub-rounded. 100	. wiji wiji kata kata i sin		315'2230 090500			
- 360						and the second sec			

.

JECT NU	MPED. 2	1.10	PRO JECT NAME!	2	: 1 C	PLA
JECT NU				Burning Grounds S		
	BER: P	11010-		Data	DATE O	
ELEVATION:		3-1	GWL: Depth	Date/Time		ARTED: 082700
ENGINEER/G				Date/Time		OMPLETED:
	THODS:	Mud 1	Cotary		PAGE:8	OF 9
DEPTH () SAMPLE TYPE & NO.	BLOWS ON SAMPLERV()	RECOVERY ()	DESCRIPTION		ASOTOHUT	REMARKS
40 45 40 475 480			440 Lyp - Could be Dockey drilling mud red Elok 4, slow, NO bries of Clay ye 440 - 465 (Sc) Sand. Silty W/ clay @ Bo% Wore clay by densiof yes return y by densiof yes 465' - 475' 465' @ 0700 St/ take dagged out. 475' 485' 0840 daillej buolije 480' and circulate but vandy with vey fine white ton and yellow	(10 Rq/8) grobably prot good	to 84 C-ad ad elay	440'COY30

		3615	PROJECT NAME: B656	7		
DRING NUM	BER: PTX	06-1	60 COORDINATES:		DATE:	1-6-00
LEVATION:			GWL: Depth Date/Time		DATE ST	ARTED: 8-27-00
NGINEER/G	EOLOGIS	T: R.	Rupp Depth Date/Time			MPLETED:
RILLING ME	THODS:	mud	Totany		PAGE: 9	OF 9 .
SAMPLE TYPE & NO.	BLOWS ON .	RECOVERY	DESCRIPTION	USCS SYMBOL	лыогоси	REMARKS
5/10 5/10 5/15 5/15 5/15 5/10 5/15 5/10 5/15 5/10 5/15 5/10 5/15 5/10			C 485' penetustion este daops start diel 2487' Los & circulation 2489' circulation Recovered pentration sole grows 25'in 25 mm 490' - 515' interbedled weak ad (10R 444) sitteton with youg 10yn 6/1) and boys 6/6) burning clay increasing composited depets. brochale continues to take on Water clay increasing composited depets. brochale continues to take on Water cutting on decreasing and and cutting on decreasing and and 530' T D cuttings are clayof site dark and (25 yr 3/6) art of water other pentrolog and polon falling on the pentrol of (0R 3/6) clay recorded the bit is same when , very plant	and the get and th	490'	24/87 € 0920 Total Lose of curculation @134/5 circulation be add pyte to 543 520'@ 1442 \$24 € 1504 530 € 1720

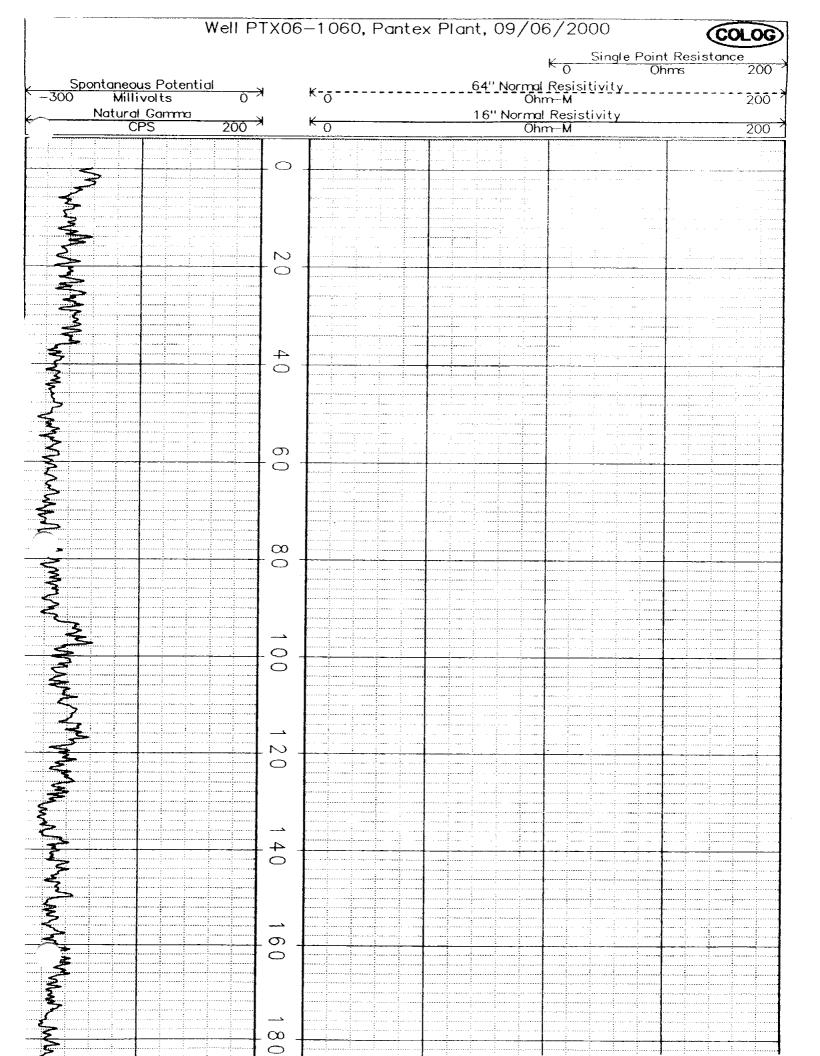
-2.5' TOPSOIL, dark br ix .5-10' SILT, with clay, d ightly damp 0-20' SILT, with clay to nedium plastic, stiff, mois 0 15' less moist 0-30' SILT/CLAY, light lastic, stiff, dry to moist 0-40' SILT, clayey, grey rength, dry	Client: Northing: 3758599.72 Total Depth of Borehole: Depth to Water: Well Type: TOC Elevation: Description own, organic, rootlets, silt, silt, silt, silt, silt, brown (7.5YR 3/2), dense 50%, light reddish brown (5 st, difficult to drill reddish brown (5YR 5/4), m ish red (10R 4/2), medium d red (10R 6/2), trace fine grave	Easting: 62 530' BGS 357' BGS 10 Monitoring V 3571.51'	
tensen)9/06/00 7 7/8" Mud Rotary -2.5' TOPSOIL, dark brain .5-10' SILT, with clay, d ightly damp 0-20' SILT, with clay to nedium plastic, stiff, mois 0 15' less moist 0-30' SILT/CLAY, light lastic, stiff, dry to moist 0-40' SILT, clayey, grey rength, dry	Total Depth of Borehole: Depth to Water: Well Type: TOC Elevation: Description own, organic, rootlets, silt, silt, silt, silt, silt, brown (7.5YR 3/2), dense 50%, light reddish brown (5 st, difficult to drill reddish brown (5YR 5/4), m ish red (10R 4/2), medium d	530' BGS 357' BGS 10 Monitoring V 3571.51' sand, clay se, dry to SYR 6/4), nedium	/10/00 Well, 4" Stainless Ste Sample
09/06/00 7 7/8" Mud Rotary -2.5' TOPSOIL, dark br ix .5-10' SILT, with clay, d lightly damp 0-20' SILT, with clay to nedium plastic, stiff, mois 0-30' SILT/CLAY, light lastic, stiff, dry to moist 0-40' SILT, clayey, grey rength, dry	Depth to Water: Well Type: TOC Elevation: Description own, organic, rootlets, silt, si ark brown (7.5YR 3/2), dens 50%, light reddish brown (5 st, difficult to drill reddish brown (5YR 5/4), m ish red (10R 4/2), medium d	357' BGS 10 Monitoring V 3571.51' sand, clay se, dry to SYR 6/4), medium Iry	Well, 4" Stainless Ste
7 7/8" Mud Rotary -2.5' TOPSOIL, dark bruix .5-10' SILT, with clay, d lightly damp 0-20' SILT, with clay to nedium plastic, stiff, mois 0-30' SILT/CLAY, light lastic, stiff, dry to moist 0-40' SILT, clayey, grey rength, dry	Well Type: TOC Elevation: Description own, organic, rootlets, silt, same statements ark brown (7.5YR 3/2), dense 50%, light reddish brown (5 st, difficult to drill reddish brown (5YR 5/4), m ish red (10R 4/2), medium d	Monitoring V 3571.51'	Well, 4" Stainless Ste
-2.5' TOPSOIL, dark braix .5-10' SILT, with clay, d lightly damp 0-20' SILT, with clay to nedium plastic, stiff, mois 0-30' SILT/CLAY, light lastic, stiff, dry to moist 0-40' SILT, clayey, grey rrength, dry	TOC Elevation: Description own, organic, rootlets, silt, silt, silt, silt, silt, silt, silt, silt, brown (7.5YR 3/2), dense ark brown (7.5YR 3/2), dense 50%, light reddish brown (5 st, difficult to drill reddish brown (5YR 5/4), m ish red (10R 4/2), medium d	3571.51'	Sample
-2.5' TOPSOIL, dark br ix .5-10' SILT, with clay, d ightly damp 0-20' SILT, with clay to nedium plastic, stiff, mois 0 15' less moist 0-30' SILT/CLAY, light lastic, stiff, dry to moist 0-40' SILT, clayey, grey rength, dry	Description own, organic, rootlets, silt, silt, silt, silt, silt, brown (7.5YR 3/2), dens 50%, light reddish brown (5 st, difficult to drill reddish brown (5YR 5/4), m ish red (10R 4/2), medium d	sand, clay se, dry to SYR 6/4), — nedium Iry — —	Sample Number
-2.5' TOPSOIL, dark br ix .5-10' SILT, with clay, d ightly damp 0-20' SILT, with clay to nedium plastic, stiff, mois 0 15' less moist 0-30' SILT/CLAY, light lastic, stiff, dry to moist 0-40' SILT, clayey, grey rength, dry	own, organic, rootlets, silt, s ark brown (7.5YR 3/2), dens 50%, light reddish brown (5 st, difficult to drill reddish brown (5YR 5/4), m ish red (10R 4/2), medium d	se, dry to	Sample Number
hix 5-10' SILT, with clay, d lightly damp 0-20' SILT, with clay to hedium plastic, stiff, mois 0 15' less moist 0-30' SILT/CLAY, light lastic, stiff, dry to moist 0-40' SILT, clayey, grey rrength, dry	ark brown (7.5YR 3/2), dens 50%, light reddish brown (5 st, difficult to drill reddish brown (5YR 5/4), m ish red (10R 4/2), medium d	se, dry to	-
rength, dry			-
rain, poorly graded, medi	wish red (5YR 5/6), non-plas		
rain, trace (1%) carbonate	e nodules (<2mm), medium	dense	
/4), medium dry strength/5' carbonate nodules (, fine grain sand, dry (<6mm) blown up hole	,	
hite C03 nodules <1mm			
		ined,	
	rain, trace (1%) carbonat 0-80' CLAY, silty, with (4), medium dry strength (4), 75' carbonate nodules (0-90' SAND, silty, trace (hite C03 nodules <1 mm) 0-100' SAND, silty, ligh	rain, trace (1%) carbonate nodules (<2mm), medium 0-80' CLAY, silty, with 5% sand, moderate orange p (4), medium dry strength, fine grain sand, dry (4), medium dry strength, fine grain sand, dry (575' carbonate nodules (<6mm) blown up hole 0-90' SAND, silty, trace clay, fine grain sand, loose, (590' SAND, silty, light brown (590), fine grain 0-100' SAND, silty, light brown (590), fine grain pose, damp, trace CO3 fragments	0.75' carbonate nodules (<6mm) blown up hole 0-90' SAND, silty, trace clay, fine grain sand, loose, dry, 2% thite C03 nodules <1mm 0-100' SAND, silty, light brown (5YR 5/6), fine grained,

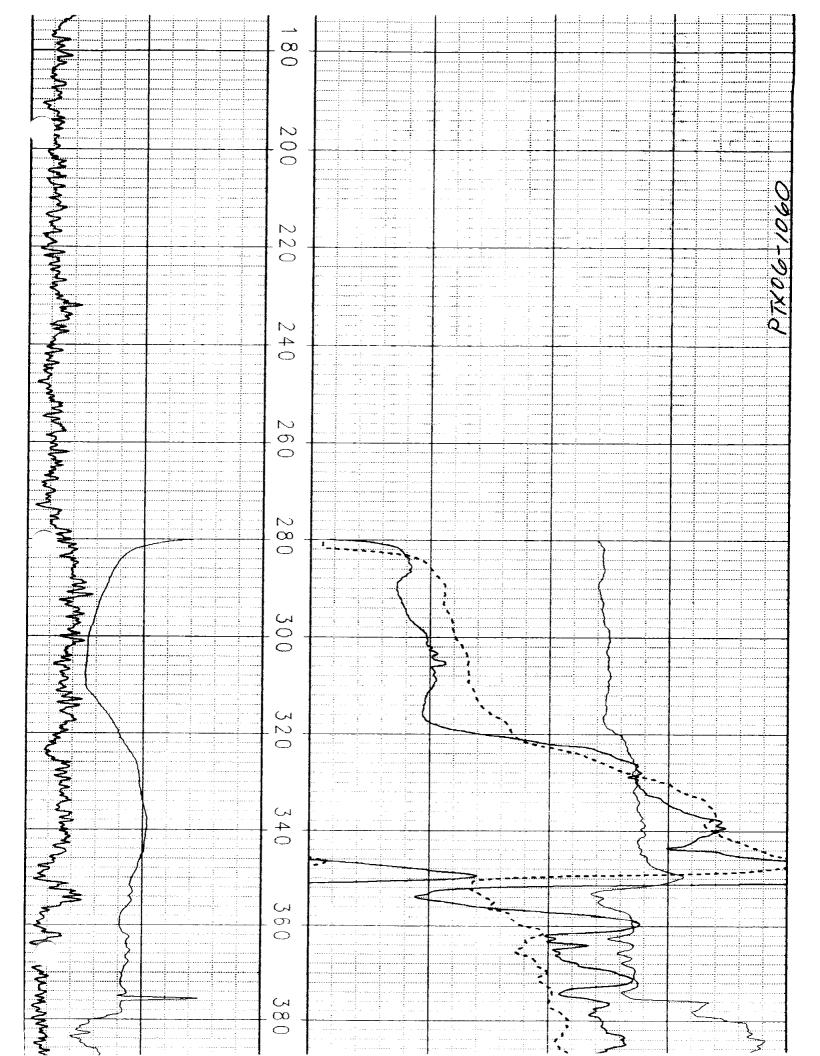
Pantex Burning Grou	nds Soil Cas	Pantov Pla	nt (Zone 8)		Amarillo, Tex
Project Number:	3615	I antex I la	Client:	Mason & Han	ger Corporation
Geologist:		/Sutphin/Hall/Rupp	Northing: 3758599.72	Easting: 620	
Drilling Contractor:	Layne Chi		Total Depth of Borehole:	530' BGS	,0,,,,,
Dates Drilled:	•	- 09/06/00	Depth to Water:	350 BGS 10/1	0/00
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		ell, 4" Stainless Stee
Ground Elevation:	3568.74'		TOC Elevation:	3571.51'	
Completion Debth (Ft.)	Lithology USCS]	Description		Sample Number
	0:::0::0 ::0::0::0 ::0::0::0 ::0::0::0 ::0::0		6 silt, light red brown (5YR) subrounded, loose, dry, 10%		
	ML	105-110' SILT, red (2.5YI	· · · · ·		
	ML	110-120' SILT, with 15% subrounded, poorly graded @ 115' with caliche to 20%		R 4/6),	
	ML	120-130' SILT, with mino (5YR 6/6), loose, damp, ca	r fine grain sand, reddish yel liche pieces to 2%		
	ML	130-140' SILT, with 10% (5YR 6/6), low plasticity, 1 @ 135' caliche pieces to 2		yellow	
	SP				
	oo.o.o oo.o.o oo.o.o oo.o.o o oo o oo o o oo o o oo o o o o o o o o o o o o o o o o o o o	150-160' SANDSTONE, s grain sand, subrounded, po	silty, yellow (10YR 7/6) very oorly graded, damp	/ fine	
	9:::::::::::::::::::::::::::::::::::::		with silt to 10%, yellow (10X subrounded, poorly graded,		
	ML	165-170' SILT to very find subrounded, poorly sorted,	e grain sand, yellow (10YR 7 damp	7/6),	
	MUD		round into sand and silt, ligh e grain to fine grain, subroun yey, soft, moist		
	SP SP	grain, subrounded, poorly 180-190' SANDSTONE, s 7/4), fine to very fine grain	silt to 20%, very pale brown	(10YR	
	SW	190-200' SANDSTONE, y grain with 20% coarse, 209 subrounded, well graded, c @ 195' increasing gravel i	emented, dry	medium	

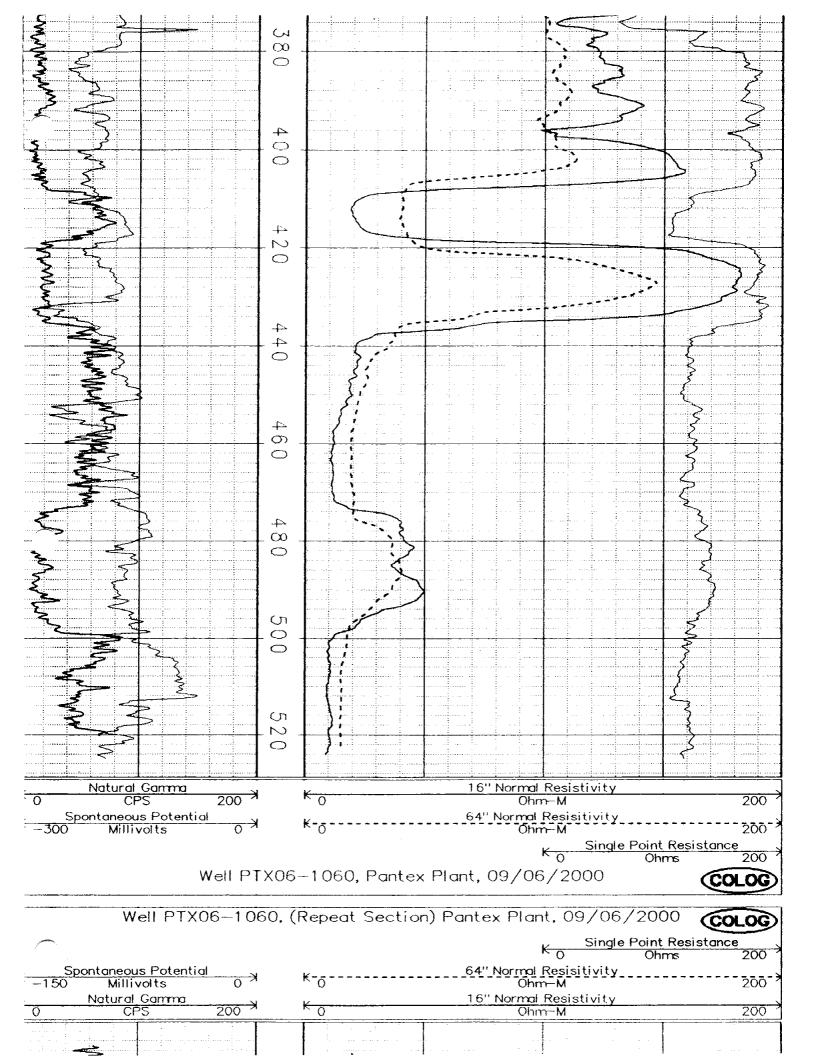
S:\WELLOG\Pantex BGSG #3615\PTX06-1060.wld

Drainat Number	2(15		Int (Zone 8)	Magan 0 IT	agan Carranti
Project Number:	3615	/C	Client:		nger Corporation
Geologist:		/Sutphin/Hall/Rupp	Northing: 3758599.72	Easting: 620	1909.93
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	530' BGS	10/00
Dates Drilled:		- 09/06/00	Depth to Water:	357' BGS 10/	
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		Vell, 4" Stainless Ste
Ground Elevation:	3568.74'		TOC Elevation:	3571.51'	
Depth (Ft.)	Lithology USCS		Description		Sample Sample Number
	SW	(10YR 7/4), coarse grain,	with gravel to 3cm, very pale graded, dense, dry with gravel to 3cm, ground t		-
	LS SW MI SP SP	fine grain, 10% medium, 1 coarse, 5% gravel, subroun 226-230' SILT, with grave (7.5YR 7/8), dense, damp 230-235' SANDSTONE, 7 fine grain, 30% medium, 2 silt/clay, subrounded, grad 235-240' SILTSTONE, ye fine grain sand and 2% gra 240-250' SANDSTONE, 7 grained with gravel, dense 250-260' SAND, with gra sand 10%, 20% gravel <15 8/2), poorly graded, very 1 @ 256' sand, gravels <1-i	ellow (10YR 8/8), 35% fine avel, damp very pale brown (10YR 7/4) , dry vel, fine grain sand 70%, cos 5mm, sand is very pale orang oose, dry nch, damp n 65%, medium grain 25%,	5% //ellow , 30% , 30% to very , finer arse grain ge (10YR	
	0: 0: 0	275-280' SAND, silty, with low recovery, clay gummi conductor casing at 280'		p FGZ, of	

Pantex Burning Ground		Pantex Pla	ant (Zone 8)	M	Amarillo, Tex
Project Number:	3615		Client:	Mason & Hange	-
Geologist:		n/Sutphin/Hall/Rupp	Northing: 3758599.72	Easting: 62096	9.93
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	530' BGS	/00
Dates Drilled:		- 09/06/00	Depth to Water:	357' BGS 10/10	
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		l, 4" Stainless Ste
Ground Elevation:	3568.74'		TOC Elevation:	3571.51'	
Completion Depth (Ft.)	Lithology USCS		Description		Sample Number
	SP	315-340' SAND, very pal grain, subrounded, slightly	e brown (10YR 7/3), very fii		
	SP	Water Level at 357' BGS of	on 10/10/00		
	SM				
	SM	390-415' SAND, silty, po	or cuttings recovery		


Drilling Contractor:LaDates Drilled:08Borehole Type:12	nkman /ne Ch 27/00		Client: Northing: 3758599.72 Total Depth of Borehole: Depth to Water: Well Type: TOC Elevation: Description	Mason & Ha Easting: 62 530' BGS 357' BGS 10 Monitoring ' 3571.51'	0969.93 0/10/00	1
Drilling Contractor: La Dates Drilled: 08 Borehole Type: 12 Ground Elevation: 35 Completion (1) Hd-O Q (1) Ground (1) Hd-O Q (1) Ground (1) Hd-O Q (1) Ground (1) Hd-O Q (1) Hd-O Q (1) Ground (1) Hd-O Q (1	vne Ch 27/00 ARCI 58.74' SOSD	ristensen - 09/06/00 H 7 7/8" Mud Rotary	Total Depth of Borehole: Depth to Water: Well Type: TOC Elevation:	530' BGS 357' BGS 10 Monitoring '	0/10/00 Well, 4"	Stainless Ste Sample
Dates Drilled: 08 Borehole Type: 12 Ground Elevation: 35 Completion 11 Hold 11 Output 00 00 00	27/00 ARCI 58.74' SOSD	- 09/06/00 H 7 7/8" Mud Rotary	Depth to Water: Well Type: TOC Elevation:	357' BGS 10 Monitoring	Well, 4"	Sample
Borehole Type: 12 Ground Elevation: 35 Completion (1) Hdog (1) Completion (1) Ground Elevation: 35 Completion (1) Hdog (1) Ground Elevation: 35 Completion (1) Ground Elevation: 35 Completion (1) Ground Elevation: 35 Completion (1) Ground Elevation: 35 Completion (1) Ground Elevation: 35 Completion (1) Ground Elevation: 35 Completion (1) Ground Elevation: 35 Completion (1) Ground Elevation: 35 Ground Elevation: 35	SOSO	H 7 7/8" Mud Rotary	Well Type: TOC Elevation:	Monitoring	Well, 4"	Sample
Ground Elevation: 35 Completion (1) Hd O Ground Elevation: 35 Completion (1) Hd O Ground Elevation: 35 Completion (1) Hd O Ground Elevation: 0 Hd	SOSU		TOC Elevation:			Sample
Completion Depth (Ft.)	USCS			3571.51'	Sample	-
	9 2 1 9 2 2		Description		Sample	-
	SM	415-440' SAND, poorly g				
	SP SC	@ about 440' drilling mud 440-465' SAND, silty wit	raded, abundant clear Si02 turns red (10R 4/8), no trace h clay at 30%, red (10R 4/8), nt based on penetration rate ar mation			
	CL	465-475' CLAY, dark red	(2.5 YR 3/6), sand has dropp	ped out		
	SP ML	above, variegated white, ta grain, subangular, quartz s @ 475' drilling break - qui @ 485' penetration rate dh @ 487' LOST CIRCULA	ick penetration to 480' rops	fine		
	CL	siltstone with gray (10YR clay, increasing clays with	6/1) and brownish yellow (1	0YR 6/6)		


Pantex Burning Ground		Pantex Pla	nt (Zone 8)	N 0 1		marillo, Texas
Project Number:	3615	(a) 11 (a) 11 (a)	Client:	Mason & H	<u> </u>	rporation
Geologist:		/Sutphin/Hall/Rupp	Northing: 3758599.72	Easting: 6	20969.93	
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	530' BGS	_ / /	
Dates Drilled:		- 09/06/00	Depth to Water:	357' BGS 1		
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		Well, 4"	Stainless Steel
Ground Elevation:	3568.74'		TOC Elevation:	3571.51'		
Ground Elevation: Completion 1 understand 1 understand - - -	3568.74' SON CL	time), borehole continues t (a) 517' Borehole continuer rate greatly decreases, cutt and yellows falling out (a) 524' SILTSTONE, sam- grain, subangular to subrotic continues to take water (a) 530' Total Depth Drille (10R 3/6), clay recovered for plastic, stiff, moist Total Depth of Borehole 5 Fine Grain Zone 275' BGS Geophysical log indicates Well Completion Details: Borehole Diameter: 12" surface to 280' 7 7/8" 280-530' 8 5/8" steel conductor casi Total Depth of Well 508' F 4-inch, Type 316 stainless	Description to take on water es to take on water and penetrings are decreasing in size w dy, dark red (2.5YR 3/6) ver unded, quartzose sand, boreh ed, cuttings are clayey silt, da from the bit is the same color 30' BGS top of Redbeds at 500' BGS top of Redbeds at 500' BGS steel casing and 10-slot scre creen (378-503'), 380' casing o Silica Sand (362-530') ith 4 bollards	ration ith grays y fine ole rk red -, very	Sample	Sample Number
S.M. STOLLE	CR COR	PORATION				Page 6


SAMPLE INTERVAL	ASDE		MODILE TYPE S /N	PROBE TYPE, S/N	TIME SINCE CIRC.	Rm at TEMP	FLUID TYPE	FLUID LEVEL	WI TNESSED BY	RECORDED BY	TOP LOGGED INTERVAL	BTM LOCGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	LOG TYPE	RUN NUMBER	DATE ACQUIRED	DRILL MEAS. FROM:	LOG MEAS. FROM:	PERMANENT DATUM: G.L	WELL:	SM ST PTX06 Pantex TX C	-106 OUNT	0 Y:Car		0	GAMMA-E	UNTON	22
0.3	N/A	20	TIM 1 484	RAB 2021 EPF 1567	2 Hours	N/A	Mud.		Rapth Rupp	MLWhitney	/AL 4 Ft. 280 Ft.	/AL 525 Ft. 525 Ft.	525 Ft. 525 Ft.	530 Ft.	Garme 16,64,SPR.SP		00/90/60 00/90/60	: G.L.	G.L. 0.0 FEET AE	A: G.L. ELEVATION:		LOCATION:	STATE: TX CO	FIELD: Pantex	WELL: PTX06-1060	COMPANY: SM STCLLER	LECTRI		Y
				7											R.SP				FEET ABOVE PERM. DATUM	JN:	Deviation	OTHER	COUNTY: Carson		00	רח גד	C LOG	, Suite 265, Golden Colorado 80401 9-0171 FAX: (303) 278-0135	COLOG Division of Layne Christensen,
																					<u>SECOP</u>	OTHER SERVICES:						rado 80401 278–01 35	en, Co.

BOREHOLE REC	CORD		CASING RECOR	ND CI		
BIT SIZE	FROM	TO	SIZE/WGT	FROM	TO	
9.5"	Surface	280 Ft.	8" Steel	Surface	280 Ft.	
7 7/8"	280 F t.	TD				
COMMENTS:			COMMENTS:			
DIGITAL FILES:	1060.FIN; 1060.F	RPT; 1060.HDP				

Well PTX06-1060, Pantex Plant, 09/06/2000 K Single Point Resistance Ohms 200

Contractor: S.M. Stoller Corporation

Contract #: 3615

OPTIX #:

Included Documents

___Drilling Log ___Draft ___Final

___Installation Log

_X_Lithologic Logs _X_Draft _X_Final

____Geophysical Logs

____Neutron

___Gamma

____e-log

___Bond Log

____Deviation log

____State Well Report

PT206-1061

PROJE	CTNUN	ABER: 3	215	-	PROJECT NAME	BURNING	600	und	Soul Gas
-		BER: PT		1061	COORDINATES:			ATE: 9	
ELEVA				1001	GWL: Depth	Date/Time			ARTED: 4/4/00
		OLOGIS	T:S.R	rinkman	Depth	Date/Time			MPLETED:
DRILLI	NG MET	HODS:	Arr	Rotacy	Tricone		P	AGE: (OF 15
				Mary -				1	
DEPTH	SAMPLE STYPE & NO.	BLOWS ON SAMPLERV()	RECOVERY	-	DESCRIPTION		USCS SYMBOL	птногосу	REMARKS Pid in PPM
	61			5 1 20	1. 603/ 1	why reddishird, roarders	ml		0.0
- // - - // - 	ų		:/D	- Calile, -Silt vician Plast. con	5007, White, Sit sopr, White, Sit dir, daisy, 50207, 5414/41		ML		0.0
- 20	"		-17	Sola No	celite To 201. \$	Jay 201. 1 SYN 8/1 pink	ML		0.0
	4		25	-Silt w/c	dide strayers to je	1. 4 day Dr.	MC		0.0
-20-	"	-	20'	Some			ML		0,0
			22	-5. lr, w/	celicle 5% and	day 20%	ML		0.0
-%-			40'	SYA 4/6 As abou	yellow fee; Shi ie - easy drilling	g -	ML		0,0
			45	SYA 5/6	yellorish and, d	o'. sult & pir. day	sm		0.0
-56-	-			5.4,10:	printer sund, 20% d.	m, Syrtly redduk	m	-	02 0
 - 6D-			25	S.Ir - Asc	above w/ calich	L TO 20%.	ML		0.0

NO

PROJECT NUMBER:	3615	PROJECT NAM	E: BURNIN 60	and	So.	1 bus	
	Tx06-106	The second second second second second second second second second second second second second second second s			TE: 9	1 (
ELEVATION:		GWL: Depth	Date/Time	DA	TE ST	ARTED: 2/8/0	0
ENGINEER/GEOLOG	SIST.S. Bruke	Depth	Date/Time	DA	TE CO	MPLETED:	
DRILLING METHODS	: Air Roran	w/ "Tricon	×	PA	GE:2	OF 15	
DEPTH () () SAMPLE TYPE & NO BLOWS ON SAMPLERV()	RECOVERY ()	DESCRIPTION		USCS SYMBOL	птногосу	REMARKS	Т
	65 - Cal 407 70- Silr 70- Silr 80- Son 80- Son 80- Son 60- 85- 85- 85- 85- 85- 85- 85- 85- 85- 85	1/ calide To 20 is p, carper - 10 is Fin ide N/ bedi of SiT- ide Calide - introbedde in the sore of SiT- ide To Core of Site SYR 7/4, sub fondel, ide 107, book - For 1/ All red (10 yr 1/ All red duy 1/ All solard, pinte 1/ Sotted, subourd form stronger - 140 Sand, F	- Soi calide - 60 i. calide - crystrallio, white - 16 - culide white - with the stringers - with the str	nc SM		0.0 0.0 0.0 0.0 0.0 0.0	
-//° - 17:08	fine callo audr	todamp infor	well so they m throughout, s somewhat, mad grams, !'			0.0 0.0	

NOT

	CTNUN	ABER:	36/5	5	PROJECT NAM	E: BURNING (FROU	NDS S	DIL GAS			
				-1061	COORDINATES			DATE:	9/11/00			
LEVA	TION:				GWL: Depth	Date/Time	1	DATE STARTED: 9/9/00				
NGIN	EER/GE	OLOGIS	T:T	SUKUP	Depth	Date/Time	1	DATE CO	MPLETED:			
BRILLING METHODS: AIR ROTARY								PAGE:	30F 15			
	SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY		DESCRIPTION		USCS SYMBOL	Кролонти	REMARK	S		
1 1 3				120-14	O'sand do	-deve,			0,0	4 4		
30 1			•				*		0.0	-		
49				140-15	o'send, h	ounish yellow	- SP		0.0 0.0			
1 1 1				(10 YR G/C sulangel dry total	an to-sulrou	runish yellow , f-ut grained, , def grains, , loose.			0.0			
	PTX06- VOC+ SIEVE	150	10006	150-152 V. poletre	(Sieve samp	(e) sand,), t-vt grained, -subrounded calconeous, loose	SP		0.0	•		
8	SAMPLE PTX 86- 1061-10 1500 10:26			152-2	QODAMA,	-subrounded calconeous, loose vorof pole hom ned, well sorted	1 >1	0	0.0	, 1		
		1		Autom	alon to subro covous, loo slightly th	under around	7	()	0.0			
70-				voires	Slightly I	roughour.			0.0			
-									0.0	s		
0									0,0	30		

NOT

NGIN	TION: EER/GE	OLOGIS	T: J	SUKUP Depth Date/Time	_		ARTED: 9/9/00 DMPLETED:
	NG MET		AL		F	PAGE:	OF 15
() ()	SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY ()	DESCRIPTION	NSCS SYMBOL	LTHOLOGY	REMARKS
60-				Some as above to 200.	80494		0.0
							p.0
0			•	*	1		0.0
	TOC AND SIEVE			а Тарана (т. 1996) Тарана (т. 1996)			0.0
00-	SAMPLE PTX 06- 1061-200 @16123		7506	200-202' sieve + VOC somple: Sand V. pale brown (107 R7/2) fine - V. fine granied, well acted, subangula to subrid grains, scatt caliene galls present,	P		0.0
-				fine - V. Rine grand, well "			2.0
6-				am, loose.			0.0
				202-223 sand v pole bown (104R8/3-104R8/4) f-v torind, well sorted, subangulato subrounded			0,0
20	23			grams scattered caliche fags dry, loose, color vories slightly.			0.0
-		(6)		+		+	0.0
35	_			330' SAND (SC, SP) Sli. Clayeysand Brownish Yellow (10) re6/6) fine to med grain (dump) sand w/ 20% Clay, some Well 235 (Same GS above (?) Cemental sst	sc/sp	,	first-moistnee @ = 230 ' 2045-09,
- 3				l ·	Sulg	iu	

1. . . .

	615		E:BGSG-		
G NUMBER: P	X06-106	(COORDINATES	:	DATE	E: 09-12-00/9/19/0
ELEVATION:	2	GWL: Depth	Date/Time	DATE	E STARTED: 090900
ENGINEERVGEOLOGI	ST:) T.#a	Depth	Date/Time	DATE	E COMPLETED:
RILLING METHODS:	1AV Rot	uM		PAG	E:5 OF 15
DEPTH () TYPE & NO:- BLOWS ON SAMPLER()	RECOVERY	DESCRIPTION		JSCS SYMBOL	REMARKS
244 - Hait	-70p FG	(CL) yellowish brown (Sandy. Only very Sti. A P. Cume Z CALLED 3 N 9/12/	outeshy) Shill Rushic. Shi. To by T. Hace	sula Fyz	248' Split Spon for HE EVOC 2355 091100
260 260 260 260 260 260 260 260 260 260	Rund Hund tot 2488 from 268 Very 1000 ind	248 565 Control Cenvented on 9/14/10 1 Portany Drilling w 268 Sart, clone yel 268 Sart, clone yel 268 Sart, clone yel 268 Sart, clone yel 268 Sart ports guild 250 Clay, sanly pro- fine Sand 202 automba B cutting records of 100 pudominanty cl ton of F62 cyprofinite	to to 240 ill be used to low the born (104R #4) in modian grain , some time of thy. in (240 #44) of (7.5 4/2 7/4) of putty good number lay / oilly clay	SP CL	268'e 2036
- 780 	(/c	-30 Sand, lightyu	the 200 very gre	SP.	289 e 2147
93-or@2112 	& 3. 8 34	"- Sitt Strong 10' medium and coar into sand with a lo int bentomite probably	thely in	ML	300 @ 2312

.

ING NUMBER: $PTXUb - 1061$ COORDINATES:DATE: $9/19/ro - 9/raboELEVATION:GWL: DepthDate/TimeDATE STARTED:9/9/roENGINEER/GEOLOGIST:P. RegardDepthDate/TimeDATE COMPLETED:DRILLING METHODS:Imad BottanyPAGE: 6 OF 15PAGE: 6 OF 15The start of the	PROJECT NUMBER: 3615	PROJECT NAME: BURMINGGO	n	lo soil	GAS			
ELEVATION: GWL: Depth Date/Time DATE STARTED: 9/9/00 ENGINEER/GEOLOGIST: P. Roy: Depth Date/Time DATE COMPLETED: DRILLING METHODS: und Bitary PAGE: 6 OF 15 Image: A of the stary PAGE: 6 OF 15 Image: A of the stary DESCRIPTION Image: A of the stary Image: A of the stary DESCRIPTION Image: A of the stary Image: A of the stary DESCRIPTION Image: A of the stary Image: A of the stary DESCRIPTION Image: A of the stary Image: A of the stary DESCRIPTION Image: A of the stary Image: A of the stary DESCRIPTION Image: A of the stary Image: A of the stary DESCRIPTION Image: A of the stary Image: A of the stary DESCRIPTION Image: A of the stary Image: A of the stary DESCRIPTION Image: A of the stary Image: A of the stary B of the stary Image: A of the stary Image: A of the stary B of the stary Image: A of the stary Image: A of the stary B of the stary Image: A of the stary Image: A of the stary Image: A of the stary Image: A of the stary								
DRILLING METHODS: und Bitany PAGE: 6 OF 15 How with the start of t		GWL: Depth Date/Time						
DRILLING METHODS: und latery PAGE: 6 OF 15 How with the start of t	ENGINEER/GEOLOGIST: R. Rugs	Depth Date/Time						
How NO Alton DESCRIPTION NO NO 310 310 000000000000000000000000000000000000		1		PAGE: 6	OF 15			
310 310 310 310 310 310 310 310				1	T			
38'-07@ 2805 320 330 330 	RECOVERY RECOVERY	DESCRIPTION	USCS SYMBOL	ПТНОГОСУ	REMARKS			
352 352 C 355 Continued Sitt and above with increasing white colerate and foring rando and N	310 310 310 310 310 310 310 310	Silt, chogy, party pink (7.5 YR 7/3) mudans grain subtornel guts or eny dilling with rapid penetro Continued Silt as above incursing white colectu	mL		33 1 '@ 2336			

1

BROJE	CT NU	BER:	361	5	PROJECT	NAME:	Buring	Gim	R	Soil	600
H -		BER: 77		and the second se	COORDINA	TES:	/			TE:	9-20-00
ELEVA					GWL: Dept	n	Date/Time		DA	TE ST	ARTED: 9-9-00
ENGIN	EER/GE	OLOGIS	T: R.	Rypp	Depth	n	Date/Time		DA	TE CO	MPLETED:
DRILLI	NG MET	THODS:	mud	notan					PA	GE: 7	OF 15
S ()	SAMPLE TYPE & NO.	BLOWS ON SAMPLER()	RECOVERY ()		DESCRIPT	non				ИТНОГОСУ	REMARKS
	on@ 24	00 9/9/00				ŧ		m	A		364 @ 0015
380		220		@ 385 Cr pard % quety, quety, point	minud S inversion , submet	sil and for the stand	abore ty, clear and to mer outingue	·			389 °C. 070 33
_393	MEU	7		gunias	above we	Th die	man ould		NI/SP		
 	oneo	93 <i>8</i>		as close	of caliba as I concar	Le pin	bu (7.5 yr. 7)				414 E 005D
NC	<u> </u>			.	-				1		۱

C

PROJECT NUI		The second second		PROJECT NAM				
	BER: PT	206-20	061	COORDINATES				7-20-00
ELEVATION:		T .		GWL: Depth	Date/Time			ARTED: 9-9-00
ENGINEER/GE			- Rayp	Depth	Date/Time			OMPLETED:
DRILLING ME	HODS:	m	& Rota	7			AGE: 8	OF 15
K DEPTH () SAMPLE TYPE & NO.	BLOWS ON SAMPLERV	RECOVERY ()		DESCRIPTION	l	USCS SYMBOL	ЛТНОГОСУ	REMARKS
425	56		mud is. B water	8 1	up - no loss .	ar		439'C 0112
-462 	15-		HTO' Se guno	I light brown very fine with t determine son ficant charge and still berling en the there at the share at the so atom we very fine -	the inering	SP SP		464 e 0134

POJECT	T NUMBER:	3615		PROJECT NAM	: Buring	lon	le c	the
	NUMBER: P			COORDINATES	~~~/			9-20.00
ELEVATIO				GWL: Depth	Date/Time			ARTED: 9-9-00
ENGINEE	RIGEOLOGI	ST:	2-Rapp	Depth	Date/Time			MPLETED:
DRILLING	METHODS:		(noting	_			PAGE: 9	OF 15
DEPTH () SAMPIE	BLOWS ON SAMPLER()	RECOVERY ()		DESCRIPTION		USCS SYMBOL	ПТНОГОСУ	REMARKS
	€ 0 140 Tont dilej € C146			and tight the ments	www.(7.54 R 4/	SP (3) SP		489'@ 0200 514@ 0228
 -540			poren	nd and				539'e 0246
×								
		,				÷	t.	

PROJECT NUMBER: 3615	PROJECT NAME: BURNINGER	who sut gas
NG NUMBER: PTX06-		DATE: 9-20-00
ELEVATION:	GWL: Depth Date/Time	DATE STARTED: 9-9-01
ENGINEER/GEOLOGIST: L.	Rupep Depth Date/Time	DATE COMPLETED:
DRILLING METHODS: minh	Ratery	PAGE: 10 OF 15
DEPTH SAMPLE TYPE & NO. BLOWS ON SAMPLERV() RECOVERY	DESCRIPTION	TOBWAS SSSN
543 on @ v234 650	@ 520'- 570' claying 1. ght burn	CL Se
560 568 mi & 0250 570 580	@ 520' Sand Olegry 1. ght burn (7.5 pr. 6/4) find to come sand suborgale to angular sky about 302 @ 564 pentrut how parts shows down for Ant 5'. 570' - 598 Stord / Great do mult colour forguent friends very coarse subarycles to angula largely guesty up 20+ % mylis	564'@ 0258
-590_ -593 me 0308		589@ 0.330
	598'-625' Sand sitty clayer fund to making grin 60% vary fund grin 40 " light bown (9.54pl) subaryular 1 sutt and clay almat	SM (14)
Ν,		

•

PROJECT NUMBER: 3	615	PROJECT NAME	Burny Gr	ond	b Suil	600
NG NUMBER: PTXU	0-1061	COORDINATES:	1			20-00
ELEVATION:		GWL: Depth	Date/Time		DATE ST	ARTED: 9-9-00
ENGINEER/GEOLOGIST:	R. RUPP	Depth	Date/Time		DATE CO	MPLETED:
DRILLING METHODS: N	nud votany			F	PAGE: //	OF15
DEPTH () () SAMPLE TYPE & NO. BLOWS ON SAMPLER() RECOVERY	-	DESCRIPTION		USCS SYMBOL	NOLOGY	REMARKS
640 640 640 620 630 640 640 640 643 643 643 643 643 643 643 643	@ 639 an washed added + 439'- 0 polyn Sand a Color - (104/2 b)	Hame the h clean and f o duilly fluing 164' return nit with	rewas by to clay by down in flind, all was oly Bore of free up is heavy them fame the a	•		614'@ 0417 639'@ 0438 90 70 get more Duil prival Wate 07 20 - 639' stuck in bole @ 2103 9/20/00 Rods are free ago
N						. s.a.*

ENGINEERVQEOLOGIST Hatt K. Any Depth Date/Time DATE COMPLETED: DRILLING METHODS: Mud Rotary PAGE: /2 OF 15 Han of the Description 000 000 000 000 000 000 000 000 000 0	PPOLECT NU	MBER: 3	615	PROJECT NAME: BG-SG-			
ENGINEERIQEOLOGIST HATT R. Aryo Depth Date/Time DATE COMPLETED: DRILLING METHODS: Much Rotary PAGE: /2 OF 15 REMARKS BAD DESCRIPTION BAD D	GNUN	BER: P	TXDI-10	coordinates:	0	DATE: C	0920
DRILLING METHODS: Mud Robary PAGE:/2 OF 15 Hand Ward Ward Ward DESCRIPTION Ward Ward REMARKS Hand Ward Ward Ward DESCRIPTION Ward Ward REMARKS Hand Ward Ward Ward Ward DESCRIPTION Ward Ward REMARKS Hand Ward Ward Ward Ward Ward Ward REMARKS Hand Ward Ward Ward Ward Ward Ward REMARKS Hand Hand from Ward Ward Ward REMARKS Hand Hand from Ward Ward Guide Guide Hand Hand from Ward Ward Guide Guide Hand Hand from Ward Ward Guide Guide Hand Hand from Guide Guide Mard Guide Guide Hand Hand Guide Guide Guide Guide Guide Guide Guide Hand Guide Guide Guide Guide Guide Guide Guide Hand	ELEVATION:					DATE ST	TARTED: 090900
DRILLING METHODS: Mud Robary PAGE:/2 OF 15 Hand Ward Ward Ward DESCRIPTION Ward Ward REMARKS Hand Ward Ward Ward DESCRIPTION Ward Ward REMARKS Hand Ward Ward Ward Ward DESCRIPTION Ward Ward REMARKS Hand Ward Ward Ward Ward Ward Ward REMARKS Hand Ward Ward Ward Ward Ward Ward REMARKS Hand Hand from Ward Ward Ward REMARKS Hand Hand from Ward Ward Guide Guide Hand Hand from Ward Ward Guide Guide Hand Hand from Ward Ward Guide Guide Hand Hand from Guide Guide Mard Guide Guide Hand Hand Guide Guide Guide Guide Guide Guide Guide Hand Guide Guide Guide Guide Guide Guide Guide Hand	ENGINEER	EOLOGIS	出土	TH R. Rungs Depth Date/Time	C	DATE CO	OMPLETED:
647 040 2121 647 040 2121 647 040 2121 647 040 0121 670 040 0121 670 040 0121 680 0121 0121 100 100 0121 180 0121 0121 0121 1000 0121 180 01210 guild and amount. 689'e 2217 689'e 2217 689'e 2217 689'e 2217 689'e 2217 689'e 2217 1897 20 above send orgin Mu energy as above send orgin Mu 180 180 180 180 180 180 180 180					F	AGE: /	2 OF 15
600 040 2121 600 600 600 600 600 600 600 60	SAMPLE TYPE & NO.	BLOWS ON SAMPLERV()	RECOVERY ()	DESCRIPTION	USCS SYMBOL	ИТНОГОСУ	REMARKS
	600 670 670 670 693 700 700 700	207		lag content estinte low, still significat polyn, so wood Change, light yellowith bown duello quick and anworth. 689'- 714' contenis Sett, so clary as above sand sige	e mi		

1

	MBER:	3615		PROJECT NAM	E: Burning	Gro	le Soul	lian
NG NUM	BER: PI	206-1	1061	COORDINATES				09-20-00
LEVATION:				GWL: Depth	Date/Time		DATE ST	ARTED: 9-9-00
NGINEER/GI	EOLOGIS	ST: R.	Rapp	Depth	Date/Time		DATE CO	MPLETED:
	THODS:	m	nd poto	7		1	PAGE:/	3 OF 15
SAMPLE SAMPLE TYPE & NO.	BLOWS ON SAMPLEPV()	RECOVERY		DESCRIPTION		USCS SYMBOL	LIPHOLOGY	REMARKS
	2307		24-73 pineto 724-73 pineto color as yellon 240 245 in cl 260' ev slow cutting yellon	increases she with born much and some much in and and it born (104 increases of increases she increases she	finguin log stown wooginging the darker by 10 5/6) yor mudor woom (by) ho prenetate ngly a clay/muso ny 65/6) mi	CL CL CL CL CL CL CL CL		734'@ 2301 754'@ 2349 circulaticand Work mid

VISUAL CLASSIFICATION OF SOILS

OJECT NU	MBER:	3615	-	PROJECT NAM	E: Buig Gro	nd	(Fill G	200
ING NUM				COORDINATES				9-21-00
ELEVATION:				GWL: Depth	Date/Time			ARTED: 9-9-00
ENGINEER/G	EOLOGIS	ST: R-	Bupp	Depth	Date/Time			MPLETED:
DRILLING ME	THODS:	much	- Rotan				PAGE: /	F OF 15
	1					T	T	1
C DEPTH C) SAMPLE TYPE&NO.	BLOWS ON SAMPLER()	RECOVERY ()		DESCRIPTION		USCS SYMBOL	ЛТНОГОСУ	REMARKS
-748 -748 -748 -748 - 			(10 yr 7, (5 yr 4) with 1. muslos Doctes Doctes Doctes Doctes	12) and pidele (4) very fin sht pellowith me character Tomotion	ty light guy ich yellow grain, mit borne oye 6/4 inti D lowen born (7.5 yest an guardy fingun gog and son			794'@0148 Normethermod 814'@0313
538 once	0323		e 837 per Lown Varg	Dockun Fr	in pelily all	7		834'@ 0345
•	con	atini			light onege for	r f	nth	_

VISUAL CLASSIFICATION OF SOILS

JECT NUMBER	. 2415			: Burning 6	KIT CO	har	- 6 600
tion of the local division of the local divi	PTXOG	-1061	COORDINATES				9-21-00
ELEVATION:		100	GWL: Depth	Date/Time			ARTED: 9-9-00
ENGINEER/GEOLO	GIST: R.	RUPP	Depth	Date/Time			OMPLETED:
DRILLING METHOD		2 rota		Martin	F	AGE: /	5 OF /5
BLOWS ON SAMPLE TYPE & NO. BLOWS ON	RECOVERY ()		DESCRIPTION		USCS SYMBOL	ПТНОГОСУ	REMARKS
852 	4	e 850' angul que angul que and ture e 855 B clay is pale y mill e 858 p 860' Pe \$60' Pe \$60' Pe \$60' Pe \$60' Pe \$100 \$100 \$100 \$100 \$100 \$100 \$100 \$10	conseto U en conseto U en polistationo polistationo polistationo cliquipole cliquipole cliquipole ned (2.5 y R 5. clow (2.5 y R interno Ride interno Ride inte	(course gra low Sandot vey consects (und (with (16) with (16) with (16) with (16) with (16) with (16) with (16) with (16) contener (16) conten	SC	T	854'@ 0440 868'@ 0625 876' @ 0446

N

Project Number:	3615		Client:	Mason & Har	ger Corporation
Geologist:		/Sukup/Hall/Rupp	Northing: 3773186.59	Easting: 625	* *
Drilling Contractor:	Layne Ch	* **	Total Depth of Borehole:	876' BGS	
Dates Drilled:	· · · · ·	- 09/21/00	Depth to Water:	480' BGS 10/	09/00
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		/ell, 4" Stainless Ste
Ground Elevation:	3588.63'		TOC Elevation:	3591.40'	,
Depth (Ft.)	Lithology USCS]	Description		Sample Number
	ML ML ML	1-5'SILT, with 30% clay, dry5-10'SILT, caliche, white10-17'SILT, with 30% clay plasticity, compact, damp	rn, porous, hard, dry, rootlets dark reddish brown (5YR 3) re(5YR 8/1), soft, dry, dusty ay, reddish brown (5YR 4/4) to 20% and clay 20%, pink (/3), hard,	
	ML	7/4), low plasticity, compa 25-35' SILT, with caliche yellowish red (5YR 4/6), h	stringers to 20% and clay 10° and 1	<u>)%,</u>	
	ML	(5YR 4/6), hard, slightly d	5% and clay 10%, yellowish amp		
	SM	yellowish red (5YR 5/6), v dense, dry 50-60' SILT, 10% sand, 20	very fine grain, subrounded, g 0% clay, reddish brown (5Y orly graded sand, hard, dry	graded,	
	ML	7/4), fine grain, subrounde	to 30% and 10% sand, pink d sand, compact, dry eds of silt, 60% caliche, 40%		
	ML ML	caliche - hard, crystallized 70-75' SILT/CALICHE- i	, white; silt - yellowish red (nterbedded; caliche, white ($\frac{5 \text{YR}}{5 \text{YR}} \frac{5/6}{8/1}, \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	
	ML	5/4), soft, damp 75-80' SILT, same as abov			
	0, , , , , , , , , , , , , , , , , , ,	7/4), fine to very fine grain	20% and caliche 10%, pink n, subrounded, poorly graded e, pale red (10YR 7/3), 100%	l, dry	
90-	SM	very fine grained, loose, dr 90-100' SAND, pink (7.5)	ry, caliche in consolidated fr YR 8/4), well sorted, loose, c	agments	
	Sr	@ 90-95' 25% caliche frag	gments		

Pantex Burning Group Project Number:	3615	Pantex Plant (Northwe	Client:	Mason & Hor	Amarillo, Tex ager Corporation
Geologist:		/Sukup/Hall/Rupp	Northing: 3773186.59	Easting: 625	* •
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	876' BGS	001.01
Dates Drilled:		- 09/21/00	Depth to Water:	480' BGS 10/	09/00
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		/ell, 4" Stainless Ste
Ground Elevation:	3588.63'		TOC Elevation:	3591.40'	,
Completion (Et.)	Lithology USCS		Description		Sample Number
	SP SP	well <u>sorted</u> , <u>loose</u> , <u>dry</u> , <u>uni</u> 102-140' SAND, pink (5' subangular to subrounded, color varies somewhat	TR 7/4), subangular to subrou form throughout, split-spoon YR 7/4), fine to very fine gra well sorted, dry to damp, ca	<u>sample</u> ined, leareous,	PTX06-1061-2-0 VOC/Gradation
	SP SP SP	grained, subangular to sub damp, calcareous 150-152' SAND, very pale grained, subangular to sub damp, calcareous; split-spo 152-200' SAND, very pale	rounded, well sorted, loose, of e brown (10YR 7/4), fine to rounded, well sorted, loose, of boon sample e brown (10YR 7/4), fine to rounded, well sorted, loose, of	dry to very fine dry to	PTX06-1061-2-0 VOC/Gradation
S.M. STOLLI					Page 2

Project Number:	3615	×	Client:	Mason & Har	nger Corporation
Geologist:		/Sukup/Hall/Rupp	Northing: 3773186.59	Easting: 625	U 1
Drilling Contractor:	Layne Ch	* **	Total Depth of Borehole:	876' BGS	001.01
Dates Drilled:	,	- 09/21/00	Depth to Water:	480' BGS 10/	00/00
			1		
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		/ell, 4" Stainless Ste
Ground Elevation:	3588.63'		TOC Elevation:	3591.40'	
Depth (Ft.)	Lithology USCS		Description		Sample Sumber
-210-	SP	grained, subangular to sub scattered caliche fragment 202-230' SAND, very pal	e brown (10YR 8/3-8/4), fine o subrounded, well sorted, loo	dry,	PTX06-1061-2-0 VOC/Gradatio
-240-	- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	fine to medium grain, dam 240-248' SAND, with gra subrounded, well graded, s diameter (fragments too), 248-264' CLAY, slightly only very slightly plastic, o	sandy, yellowish brown (10) dense, slightly damp	n /R 5/4),	PTX06-1061-2-02 VOC/HE
	CL	09/14/00 to 248' BGS 264-270' SAND, slightly	or casing installed and cemer	10YR	
	SP CL	poorly graded, trace of cer 270-280' CLAY, sandy, 2 subrounded sand, low % of predominantly clay/silty c	0% sand, pink (7.5YR 7/4), of cuttings recovered indicati lay	very fine ng	
-290	SP	280-300' SAND, light yel with 20% very fine, suban	lowish brown (10YR 6/4), fi gular quartz sand	ne grain	
S.M. STOLL					Page 3

Project Number:	3615		Client:	Mason & Ha	nger Corporation
Geologist:		/Sukup/Hall/Rupp	Northing: 3773186.59	Easting: 625	5651.61
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	876' BGS	
Dates Drilled:		- 09/21/00	Depth to Water:	480' BGS 10/	
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		Vell, 4" Stainless Ste
Ground Elevation:	3588.63'	1	TOC Elevation:	3591.40'	1
Completion Debth (Ft.)	Lithology USCS		Description		Sample Sample Number
	ML	sand	dium and coarse subangular \overline{k} (7.5YR 7/4), medium to co	-	
	ML	subangular quartz sand			
	ML		ndy, pink (7.5YR 7/3), fine t quartz sand, smooth easy dr		
	ML	355-385' SILT, as above v grain sand	with increasing white caliche	and fine	
	ML		as above, sand % increasing fine to medium grain, subro te steady and rapid		

Pantex Burning Grour Project Number:	3615	x	est of Burning Grounds) Client:	Mason & Ha		marillo, Tex rporation
Geologist:		/Sukup/Hall/Rupp	Northing: 3773186.59	Easting: 62		•
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	876' BGS		
Dates Drilled:	*	- 09/21/00	Depth to Water:	480' BGS 10)/09/00	
Borehole Type:	12" ARCI	H 7 7/8" Mud Rotary	Well Type:	Monitoring	Well, 4"	Stainless Ste
Ground Elevation:	3588.63'	y	TOC Elevation:	3591.40'	-	
Depth (Ft.)	Lithology USCS		Description		Sample	Sample Number
	0 0 0 0 ML 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	fine to medium grain, incr caliche 425-455' SAND, some sil by drilling fluid, fine and	% sand, 40% silt, pink (7.5Y easing sand decreasing silt an t, pink (7.5YR 7/4), color inf very fine grain sand (50/50), d, mud is really loading up w	nd loss of		
	SP	and very fine with trace m graded, mud too thick to d change in drilling rate, mu thin it out	liche, light brown (7.5YR 6/4 edium grain, subrounded, po letermine silt or clay, no sign id still loading up - drillers w	orly ificant orking to	_	
	SP	Water Level at 480' BGS o	on 10/09/00			
S.M. STOLLI		PORATION				Page 5

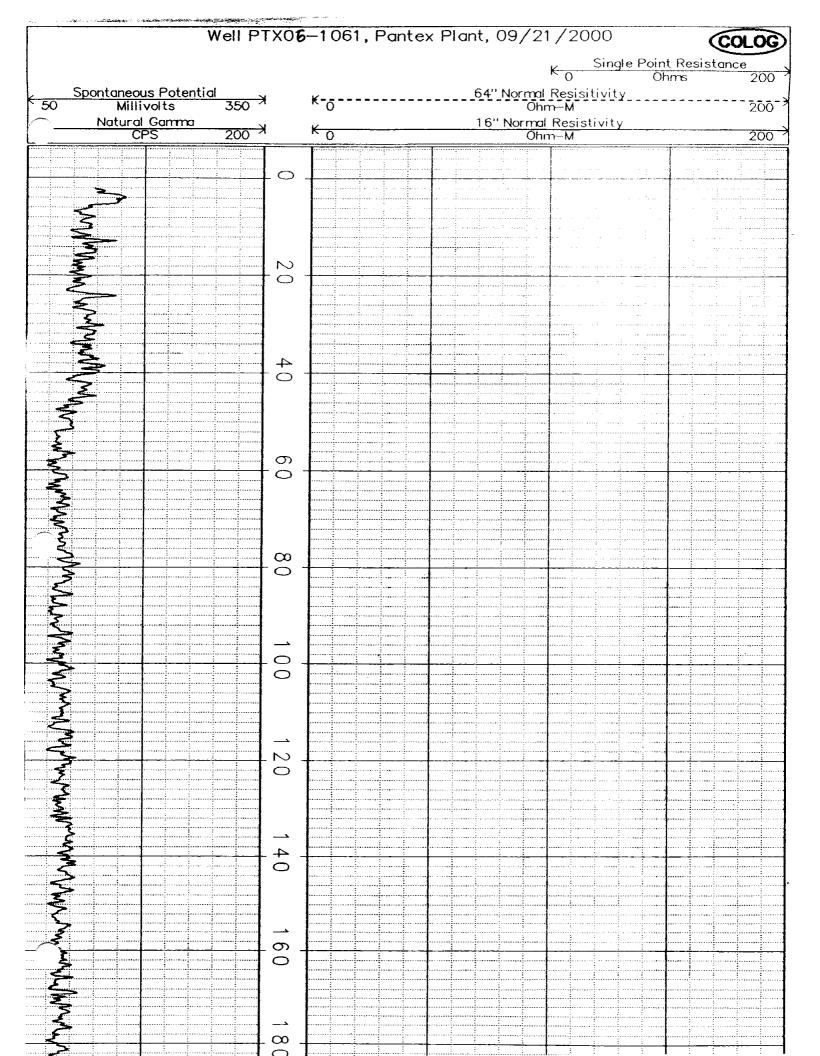
Project Number:	3615		Client:	Mason & Har	ger Corporation
Geologist:	Brinkmar	/Sukup/Hall/Rupp	Northing: 3773186.59	Easting: 625	* *
Drilling Contractor:	Layne Ch	ristensen	Total Depth of Borehole:	876' BGS	
Dates Drilled:	09/09/00	- 09/21/00	Depth to Water:	480' BGS 10/	09/00
Borehole Type:	12" ARC	H 7 7/8" Mud Rotary	Well Type:	Monitoring W	ell, 4" Stainless Ste
Ground Elevation:	3588.63'		TOC Elevation:	3591.40'	1
Completion [Lt]	Lithology USCS		Description		Sample Samble Number
	SP	500-530' SAND, as above	own (7.5YR 6/3), 70% very f	ĭne, 30%	
	SP	560-570' SAND, clayey, c 6/4), fine to coarse sand, su @ 564' penetration rate sh		(7.5YR	
	SW		, multi-colored fragments, fi ilar, largely quartz with 20+9		

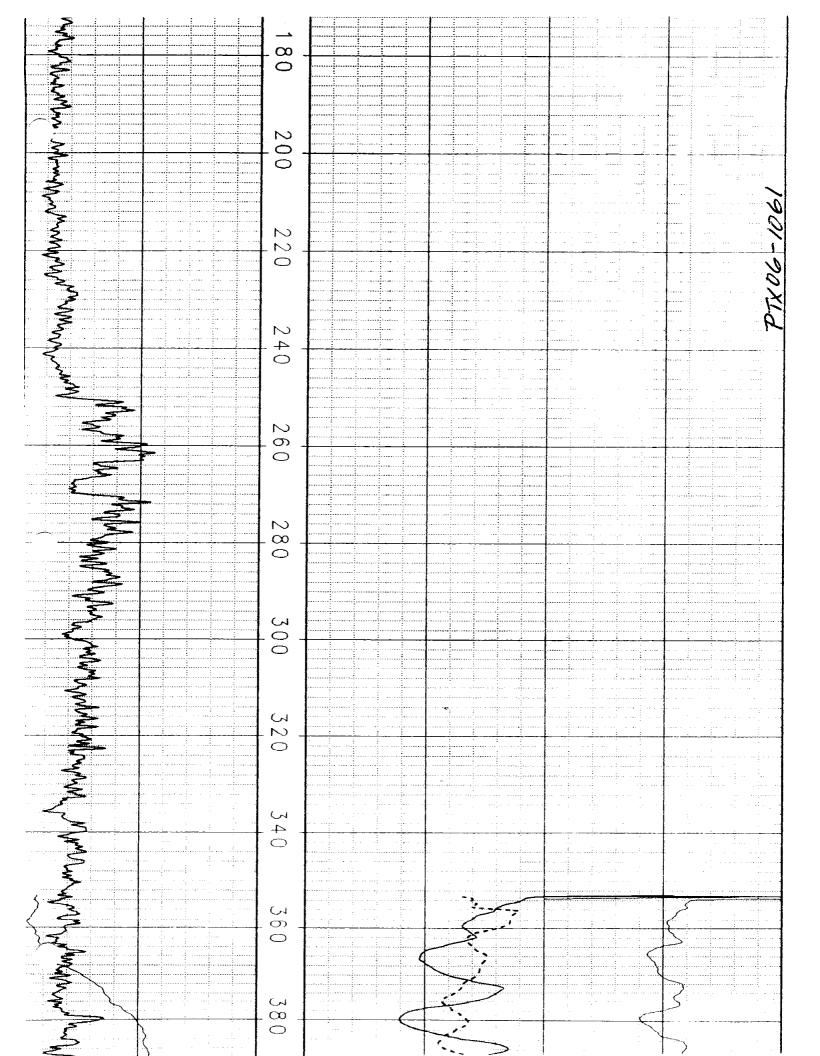
Pantex Burning	Groun	nds Soil (Jac	Pantex Plant (Northwe	st of Burning Grounds)		Δ	marillo, Texas
Project Number:	Groun	3615	Jas	I antex I fant (100 thwe	Client:	Mason & H		
Geologist:			man	/Sukup/Hall/Rupp	Northing: 3773186.59	Easting: 62	-	roimion
Drilling Contracto	or.			ristensen	Total Depth of Borehole:	876' BGS	23031.01	
Dates Drilled:	01.			- 09/21/00	Depth to Water:	480' BGS 1	0/09/00	
Borehole Type:				H 7 7/8" Mud Rotary	Well Type:			Stainless Steel
Ground Elevation	ı.	3588.		1 / //o Widd Rotary	TOC Elevation:	3591.40'	wen, i	Stamess Steer
Completion	Depth (Ft.)	Lithology	USCS		Description		Sample	Sample Number
			SM	brown (7.5YR 6/4), 60% fi grain, subangular	yey, silt and clay about 20% ine to medium grain, 40% ve	ry fine		
	-630		ML	625-639' SILT, clayey to 6 brown (color of the drilling	CLAY, with very fine sand, 7 g fluid)	light		
	· 640 		ML	6/4) (a) 639' the drill pipe becan was washed clean and Poly to free the drill pipe. After	ndy, light yellowish brown (ne stuck in the borehole. Th y-Bore was added to the drill regaining rotation the drillin t with fine sand and silt/clay.	e hole ing fluid 1g fluid		
			ML		yey, light yellowish brown (artz sand, estimated clay con er, drills quick and smooth			
	- 690 		ML	689-714' SILT, sandy, cla slightly - 90% fine grain	yey, as above, sand size incr	easing		
S.M. STO	LLF	ER CO	OR	PORATION				Page 7

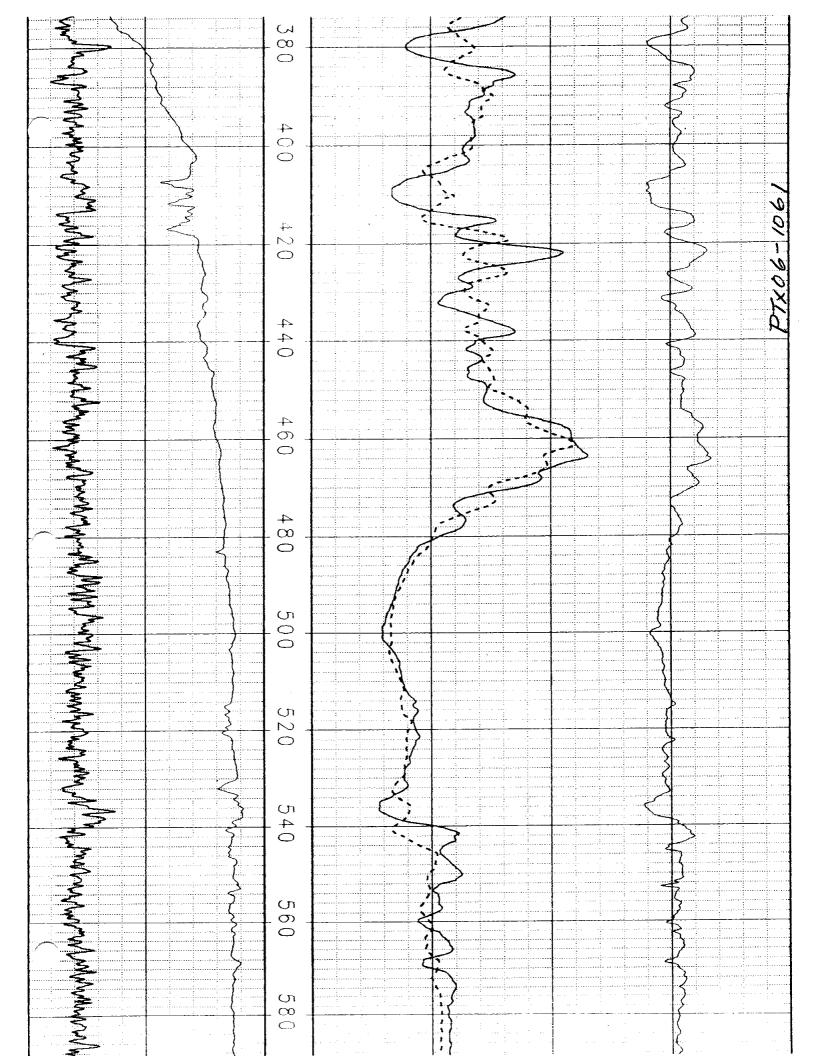
S:\WELLOG\Pantex BGSG #3615\PTX06-1061.wld

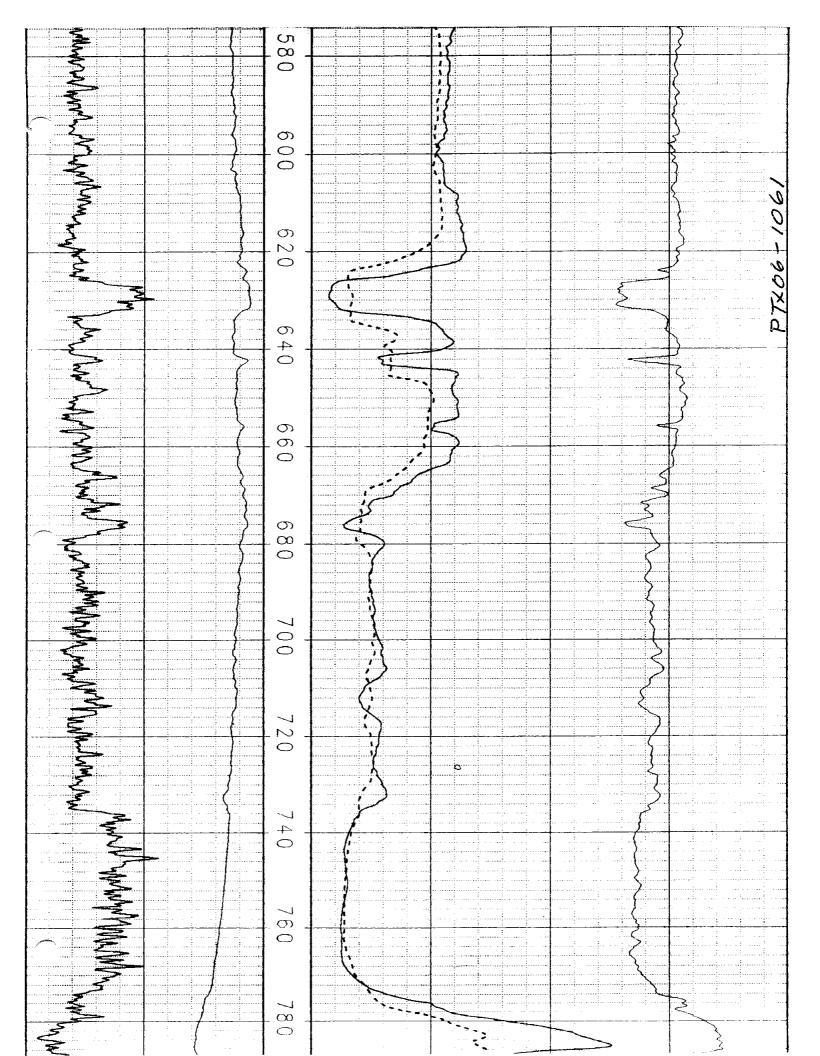
Project Number:	3615		Client:	Mason & Han	ger Corporation
Geologist:	Brinkma	n/Sukup/Hall/Rupp	Northing: 3773186.59	Easting: 625	651.61
Drilling Contractor:	Layne C	hristensen	Total Depth of Borehole:	876' BGS	
Dates Drilled:	09/09/00	- 09/21/00	Depth to Water:	480' BGS 10/09/00	
Borehole Type:	12" ARC	CH 7 7/8" Mud Rotary	Well Type:	Monitoring W	ell, 4" Stainless Ste
Ground Elevation:	3588.63'		TOC Elevation:	3591.40'	
Completion [Lit]	Lithology		Description		Sample Number
-710-					
-720-	MI	sand, some medium grain	ght yellowish brown, fine gra n, subangular	in quartz	
-730-	СІ	5/6), increasing clay, slow	olor change to yellowish brow wer penetration rate	wn (10YR	
740	СІ	fine sand	ish brown (10YR 5/6), increas	sing very	
····. [::.···.]	СІ	sand , slow drilling	stone, continued as above, occ	cassional	
	CI	fine quartz sand	ne, yellowish brown (10YR 5	/6), some	
		@ 767' drilling break, pe	enetration rate increases sharp	-	
-790-		yellow (5YR 6/6) very fin	ght gray (10YR 7/2) and redd ne grain sand mixed with ligh 6/4) mudstone		
	SF	, 794-800' SANDSTONE, subangular quartz	, brown (7.5YR 5/4), fine graf	n	

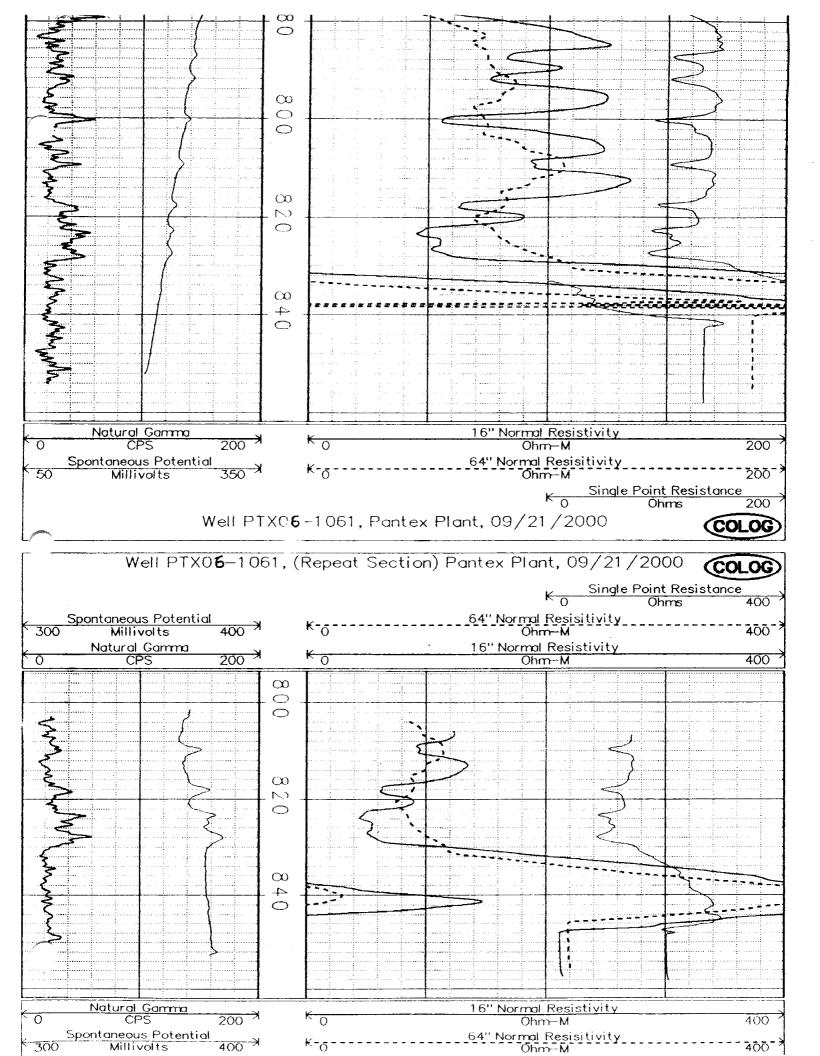
					·
Pantex Burning Grou		Pantex Plant (Northwe	st of Burning Grounds)		Amarillo, Texas
Project Number:	3615		Client:	Mason & Hange	*
Geologist:		n/Sukup/Hall/Rupp	Northing: 3773186.59	Easting: 62565	1.61
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	876' BGS	
Dates Drilled:		- 09/21/00	Depth to Water:	480' BGS 10/09/	
Borehole Type:		H 7 7/8" Mud Rotary	Well Type:		, 4" Stainless Steel
Ground Elevation:	3588.63'	1	TOC Elevation:	3591.40'	
Completion Depth (Ft.)	Lithology USCS		Description	-	Sample Number
	ML	light gray and reddish yello			
-840-	CL	yellow-brown clay, pebble penetration rate slows 841-855' SANDSTONE, t	s are very angular to subrout trace clayey silt, multi-colore se to fine grain, coarse to ver	nded, ed, grain	
	0, 0, 0, 0 0, 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, r>0, 0 0, 0 0, 0 0 0, 0 0, 0 0, 0 0 0, 0 0,0 0 0,0 0,	is red (2.5YR 5/6) with pal mottling @ 858' penetration rate slo 860-876' CLAYSTONE, v	with very fine sand (<10%), .5YR 3/6) with light gray to	red	
		Total Depth of Borehole 8 Fine Grain Zone 248' BGS Redbeds at 860' BGS Well Completion Details: Borehole Diameter: 12" surface to 248' 7 7/8" 248-876' 8 5/8" steel conductor casin			
S.M. STOLL	ER COF	RPORATION			Page 9


	~ . ~						
Pantex Burning			Pantex Plant (Northwe	st of Burning Grounds)			marillo, Texas
Project Number:		615		Client:	Mason & Ha	-	
Geologist:			n/Sukup/Hall/Rupp	Northing: 3773186.59	Easting: 62	5651.61	
Drilling Contracto		•	ristensen	Total Depth of Borehole:	876' BGS		
Dates Drilled:			- 09/21/00	Depth to Water:	480' BGS 10		
Borehole Type:			H 7 7/8" Mud Rotary	Well Type:		Well, 4"	Stainless Steel
Ground Elevation	1: 3:	588.63'		TOC Elevation:	3591.40'		
Completion	Depth (Ft.)	USCS	Total Depth of Well 865' E			Sample	Sample Number
	910 920 930 940 950 960 970 980 990		4-inch, Type 316 stainless	steel casing and 10-slot scre een (775-860'), 40' casing (7 7' casing (+2-465') 876') '45-765') th 4 bollards			
S.M. STO	LLER	COR	RPORATION				Page 10


COLO		COLOG Division of 17301 West Colfax, PHONE: (303) 279	Lay Suite	ne Chri: 265, Golo 71 FAX:	Christensen, Golden Colorado FAX: (303) 278-	en, Co. prado 80401 278-01 35
GAMMA-	П	-ECT	TRICL	OG		
	COMPANY:		SM STOLLER			
SON	WELL:	PTX(6-1	6 -1061			
I	FIELD:	PANTEX	$\stackrel{m}{\times}$			
-106	STATE:	T X	COUNTY:	CARSON	NO	
PTXO 6 PANTE	LOCATION:				OTHER S	SERVICES:
					DEVIATION	OZ
PERMANENT DATUM: G.L.	TUM: G.L.	E	ELEVATION:			
LOG MEAS. FROM:	M: G.L.	0.0	FEET ABOVE PERM. DATUM	M. DATUM		
DRILL MEAS. FROM:	OM: G.L.					
DATE ACQUIRED	/ 12/60	00	09/212/00			
RUN NUMBER	,				-	
DEPTH-DRILLER	876 Ft.		יס,04,טדג,טד			
DEPTH-LOGGER						
BTM LOGGED INTERVAL	1		856 Ft.			
RECORDED INTERVAL	ERVAL OFT.		353 Ft.			
WI TNESSED BY	Ralph Rupp	Ğ				
FLUID LEVEL						
FLUID I YPE	MUD					
Rm at TEMP						
PROBE TYPE S/N	/N 2PGA 2278		70FA 7779			
MODULE TYPE, S/N	_		MGXII 1077			
LOGGING SPEED	18					
A.S.D.E.						
SAMPLE INTERV	0.1					
SOURCE SIZE, S						


BOREHOLE REC	ORD		CASING RECOR	RD	
BIT SIZE	FROM	TO	SIZE/WGT	FROM	TO
9.5"	Surface	280 Ft.	8" Steel	Surface	280 Ft.
7 7/8"	280 Ft.	TD			
					*
COMMENTS:			COMMENTS:		
DIGITAL FILES:	1061.fin; 1061.r	pt; 1061.hdp			/


Well PTX06-1061, Pantex Plant, 09/21/2000 COLO K Single Point Resistance 0 Ohms


200

Contractor: S.M. Stoller Corporation

Contract #: 3615

OPTIX #:

Included Documents

___Drilling Log ___Draft ___Final

___Installation Log

_X_Lithologic Logs ___Draft _X_Final

____Geophysical Logs

____Neutron

___Gamma

____e-log

___Bond Log

____Deviation log

_X_State Well Report

Project Number:	3615		Client:	BWXT Pante	ex
Geologist:	J. Ford/P.	Fahringer/ R. Rupp	Northing: 3771685.22	Easting: 633	017.18
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	905' BGS	
Dates Drilled:		- 05/03/01	Depth to Water:	485.5' BTOC	
Borehole Type:		H 8" Mud Rotary	Well Type:		/ell, 4" Type 316 S
Ground Elevation:	3568.76'		TOC Elevation:	3571.79'	
Completion [Lt]	Lithology USCS]	Description		Sample Numbe
	ML CL- ML	3/3), low to medium plasti	T, clayey, reddish brown (5	`	
	CL	plasticity, stiff, dry, with c mottling throughout	reddish brown (5YR 6/4), me aliche nodules to 1/2", MnO	2	
	ML	(7.5YR 5/4), hard, dry, cal	some fine grained sand, brow iche veinlets and small node addish brown (5YR 6/4), hard ghout	S	
	SLT STN ML		sh gray (5YR 7/2), hard, den yey, light reddish brown (5Y		
	SLT	dense	ROCK, pinkish white (5YR 8 ilty, pink (5YR 7/3), fine gra	•	
	• • • • • • • • • • • • • • • • • • •		inded, moderately dense, dry		
	0:1 0:1 0 0:1 0:1 0 0:1 0:1 0 0:1 0:1 0 0:1 0:1 0 0:1 0:1 0 0:1 0:1 0		$\overline{\text{Id}}$, $\overline{\text{light}}$ brown $\overline{(7.5 \text{YR } 6/4)}$,		
	99 SM	grained to fine grained, mo nodules to 1/4" and cemen	oderately dense, dry, with cal ted sand lenses (thin)	liche	

Pantex Burning Group Project Number:	3615		th of Firing Site 1) Client:	BWXT Pantex	Amarillo, Texa
Geologist:		Fahringer/ R. Rupp	Northing: 3771685.22	Easting: 633017	.18
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	905' BGS	
Dates Drilled:	04/21/01	- 05/03/01	Depth to Water:	485.5' BTOC 06	/07/01
Borehole Type:	11" ARC	H 8" Mud Rotary	Well Type:	Monitoring Well,	4" Type 316 SS
Ground Elevation:	3568.76'		TOC Elevation:	3571.79'	
Depth (Ft.)	Lithology USCS]	Description	Samule	Sample Number
	99 				
	SM	104-112' SAND, silty, findry, some caliche nodules	e with medium grain, subrou to 1/4"	inded,	PTX06-1062-2-01 HE/VOC Metals
	SP		lowish brown (10YR 6/4), ve edium, subangular to rounded lense, dry		
	SP	130-168' SAND, brownish grained, subrounded to rou on thin sandstone lenses, d	h yellow (10YR 6/6), fine to inded, poorly graded, loose t lry	very fine o dense	
		@ 148-150' SAND, as abo	ove, fine grained, dry		PTX06-1062-2-03 HE/VOC Metals
	00 000 0000 000 000 00000 00000 00000 00000 00000 00000 00000 0000000 000000000		and, very pale brown (10YR unded to rounded grains, loo		
		ⓐ 180-188' as above with	dense, thin, sandstone lense	s	
	SM		dish yellow (7.5YR 6/6), ve o rounded, medium dense, di		
	SP	196-214' SAND, very pale	e brown (10YR 7/4), fine gra	uned	

Pantex Burning Groun Project Number:	3615	Pantex Plant (Nor	Client:	BWXT Pante	Amarillo, Tex
Geologist:		. Fahringer/ R. Rupp	Northing: 3771685.22	Easting: 633	
Drilling Contractor:	Layne Ch	• • • •	Total Depth of Borehole:	905' BGS	
Dates Drilled:	04/21/01	- 05/03/01	Depth to Water:	485.5' BTOC	06/07/01
Borehole Type:	11" ARC	H 8" Mud Rotary	Well Type:	Monitoring W	vell, 4" Type 316 SS
Ground Elevation:	3568.76'	1	TOC Elevation:	3571.79'	
Completion (1) Debth (Ft.)	Lithology USCS		Description		Sample Number
	SP 0 0 0 0 0 0 0 SM 0 0 0 SM 0 0 0 SM SP 0 0 0 SM SP 0 0 0 SM SP 0 0 0 SM SP 0 0 0 CL 0 0 0 SC 0 0 0 SC	 dense to dense, dry (a) 210' SAND, yellow (10 moderately dense, dry 214-221' SAND, silty, broc to medium grain, subround dense, damp 221-226' SAND, very pale grain with trace coarse san graded, loose, dry 226-236' SAND, very pale grained, with flat pebbles a loose to moderately dense, 30%. (a) 234' gravel to 1 1/4", fl 236-240' SILT, sandy, red 7/4), very fine grained, har 240-242' SILT, trace sand (7.5YR 6/4), medium plast damp, small caliche nodule increasing with depth alon 242-247' SILT, clayey to 0 6/6), medium plasticity, ha moist; conductor casing ce 247-280' CLAY, silty, pin medium grained sand; still 	Idish yellow to pink (7.5YR rd, dry and some clay (25%), light ticity, very fine grain, hard-d es throughout 1/8 - 1/4", moi g with clay content CLAY, silty, brownish yello urd to very stiff, damp to slig mented at 246' k (7.5YR 7/4), mixed with s fine grain zone	ain, ery fine erately medium oorly coarse graded, depth to 7/6 to 7/6 to brown / ense, sture // w (10YR / htly / ome	PTX06-1062-2-02 HE/VOC Metals
S.M. STOLLI	en con				Page 3

Pantex Burning Groun		Pantex Plant (Nor		DUATE	Amarillo, Tex
Project Number:	3615	Eahringer/D. D.	Client:	BWXT Pantex	
Geologist:		Fahringer/ R. Rupp	Northing: 3771685.22	Easting: 6330	17.18
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	905' BGS	06/07/01
Dates Drilled:		- 05/03/01	Depth to Water:	485.5' BTOC	
Borehole Type:		H 8" Mud Rotary	Well Type:		ell, 4" Type 316 SS
Ground Elevation:	3568.76'		TOC Elevation:	3571.79'	
Completion [Ft.] Debth (Ft.]	Lithology USCS]	Description		Sample Number
	0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 0 9 0 0 0 9 0	with 10% fine grained sand 322-340' SILT, sandy, bed 340-380' CALICHE SAN		 its,	
	0 0 9 0 0 9		ark brown (7.5YR 3/3) in co		
	0:10 0 0:10 0		h caliche, sand 35%, silt/calie fine grain sand, getting sand		
S.M. STOLLE	ER COR	PORATION		I	Page 4

Pantex Burning Groun		s Pantex Plant (Nor	, <u> </u>	DUUVED	Amarillo, Tex
Project Number:	3615		Client:	BWXT Pantes	
Geologist:		P. Fahringer/ R. Rupp	Northing: 3771685.22	Easting: 6330	17.18
Drilling Contractor:		Christensen	Total Depth of Borehole:	905' BGS	0.07.01
Dates Drilled:		1 - 05/03/01	Depth to Water:	485.5' BTOC	
Borehole Type:		CH 8" Mud Rotary	Well Type:		ell, 4" Type 316 SS
Ground Elevation:	3568.76	/	TOC Elevation:	3571.79'	
Depth (Ft.)	Lithology		Description		Sample Number
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M 410-424' SAND, clayey, s brown (7.5YR 6/3), nonpla fina grain subangular, gua	silty, 60% sand, 40% clay/sil astic, 80% very fine grain san rtzose		
	s	90% fine grain, subrounde caliche at 437', silty.	and clay, light brown (7.5Y d, poorly graded, quartz sand	1. Some	
	00 000 000 000 000 000 000 000 000 000 000 0000 0000 0000 0000 0000 00000 0000 00000 00000 000000000	brown (10YR 6/3) fine and poorly graded. Water Level at 485.5' BTC	yey, 90% sand, 10% silty cla d medium grain sand, subrou DC on June 7, 2001		
		RPORATION			Page 5

Pantex Burning Grou Project Number:	3615		th of Firing Site 1) Client:	BWXT Pantex	Amarillo, Tex
Geologist:		Fahringer/ R. Rupp	Northing: 3771685.22	Easting: 6330	
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	905' BGS	1,.10
Dates Drilled:		- 05/03/01	Depth to Water:	485.5' BTOC 0	6/07/01
Borehole Type:		H 8" Mud Rotary	Well Type:		ll, 4" Type 316 SS
Ground Elevation:	3568.76'		TOC Elevation:	3571.79'	
Depth (Ft.)	Lithology USCS		Description		Sample Number
-510-	9.: 9.9 9.: 9.	510-535' SAND, trace silt	t, pale brown (10YR 6/3), fir rounded, poorly graded, quar	e to very	
-520-	SP				
-540- -550- -560-	00 000 000 000 000 000 000 000 000 000	(10YR 6/6), fine grain with poorly graded, quartz sand	% sand, 25% silt, brownish y h some very fine grain, subro l.		
-570-	0:: 0:0 0::	brown (10YR 6/4), very fi subrounded, poorly graded	% sand, 20% silt, light yello ne grain, some fine grain, ro 1.		
- 590-	ML	brown (10YR 6/4), very fi			
	SP		t, light yellowish brown (10) grain, rounded to subrounded		

Layne Chr 04/21/01 - 11" ARCH 3568.76'		Northing: 3771685.22 Total Depth of Borehole: Depth to Water:	Easting: 633 905' BGS 485.5' BTOC		
04/21/01 - 11" ARCH 3568.76'	- 05/03/01	Depth to Water:			
11" ARCH 3568.76'		*	485 5' BTOC		
3568.76'	I 8" Mud Rotary	XXX 11 (5)			
		Well Type:	Monitoring W	/ell, 4" Tyj	pe 316 SS
gy		TOC Elevation:	3571.79'		
Lithology USCS	Ι	Description		U U	Sample Number
SP					
SP			nedium		
GW	655-667' GRAVEL, sandy course angular lithic fragm conglomerate.	y, yellowish brown, cuttings ents. Could be a well cemer	are very nted		
SP SP SP	693-723' SAND, pink (7.5 subrounded, well sorted.	YR 7/3), mostly (75%) fine	grain,		
	SP SW SW SW SW SP SP SP SP SP	graded, grain size increasir very fine to very coarse gra lithic fragments. SP SW SW SW SW SW SW SP 645-655' SAND, pale brow grain, subrounded, graded, SP GW 655-667' GRAVEL, sandy course angular lithic fragm conglomerate. GW 667-693' SAND, pink (7.5 (40%) grain, rounded to su quartz. SP 693-723' SAND, pink (7.5	graded, grain size increasing with depth, becoming wel very fine to very coarse grain by 620' with very coarse lithic fragments. SP SP SW SP 645-655' SAND, pale brown (10 YR 6/3) very fine to r grain, subrounded, graded, quartz sand. SP GW 655-667' GRAVEL, sandy, yellowish brown, cuttings course angular lithic fragments. Could be a well cemer conglomerate. GW GW 667-693' SAND, pink (7.5YR 7/3) fine (60%) to medit (40%) grain, rounded to subrounded, moderately well s quartz. SP SP 693-723' SAND, pink (7.5YR 7/3), mostly (75%) fine subrounded, well sorted.	graded, grain size increasing with depth, becoming well graded very fine to very coarse grain by 620' with very coarse angular lithic fragments. SP SP SW SW SW SW SW SP 645-655' SAND, pale brown (10 YR 6/3) very fine to medium grain, subrounded, graded, quartz sand. SP GO GO GW 655-667' GRAVEL, sandy, yellowish brown, cuttings are very course angular lithic fragments. Could be a well cemented conglomerate. GW GW 667-693' SAND, pink (7.5YR 7/3) fine (60%) to medium (40%) grain, rounded to subrounded, moderately well sorted, quartz. SP G93-723' SAND, pink (7.5YR 7/3), mostly (75%) fine grain, subrounded, well sorted.	graded, grain size increasing with depth, becoming well graded very fine to very coarse grain by 620' with very coarse angular lithic fragments. SP SW GSP 645-655' SAND, pale brown (10 YR 6/3) very fine to medium grain, subrounded, graded, quartz sand. SP GSP GW GSP GW GW GSP GW GSP GSP GSP GW GSP GW GSP GW GSP GW GSP GW GSP GW

Project Number:	3615			Client:	BWXT Par	ntex
Geologist:	J. For	d/P. 1	Fahringer/ R. Rupp	Northing: 3771685.22	Easting: 6	33017.18
Drilling Contractor:	Layne	c Chr	ristensen	Total Depth of Borehole:	905' BGS	
Dates Drilled:	04/21/	/01 ·	- 05/03/01	Depth to Water:	485.5' BTO	C 06/07/01
Borehole Type:	11" A	RCH	I 8" Mud Rotary	Well Type:	Monitoring	Well, 4" Type 316
Ground Elevation:	3568.2	76'		TOC Elevation:	3571.79'	
Depth (Ft.)	Lithology	USCS]	Description		Samp Samp Numb
-710- -720- -720- -730- -730- -740-		SP CL	(10YR 7/4), clay is plastic, subrounded, well sorted, q 737-765' SAND, clayey w	5%), silty (10%), very pale y , sand is very fine grain, rout uartz. /ith <10% silt, very pale yell ne grain, rounded, well sorte	nded to	
-750-		SP	lithology with some clay le	enses.		
770 770		SP	mixed lithology. 767-790' CLAY, sandy, gr	rained with some fine grave ravelly, silty, light reddish b lts mixed with sands/gravels	rown	
		CL				
		CL CL	YR 4/6), drills hard, little r	ht brown, clays are plastic, n	x	_

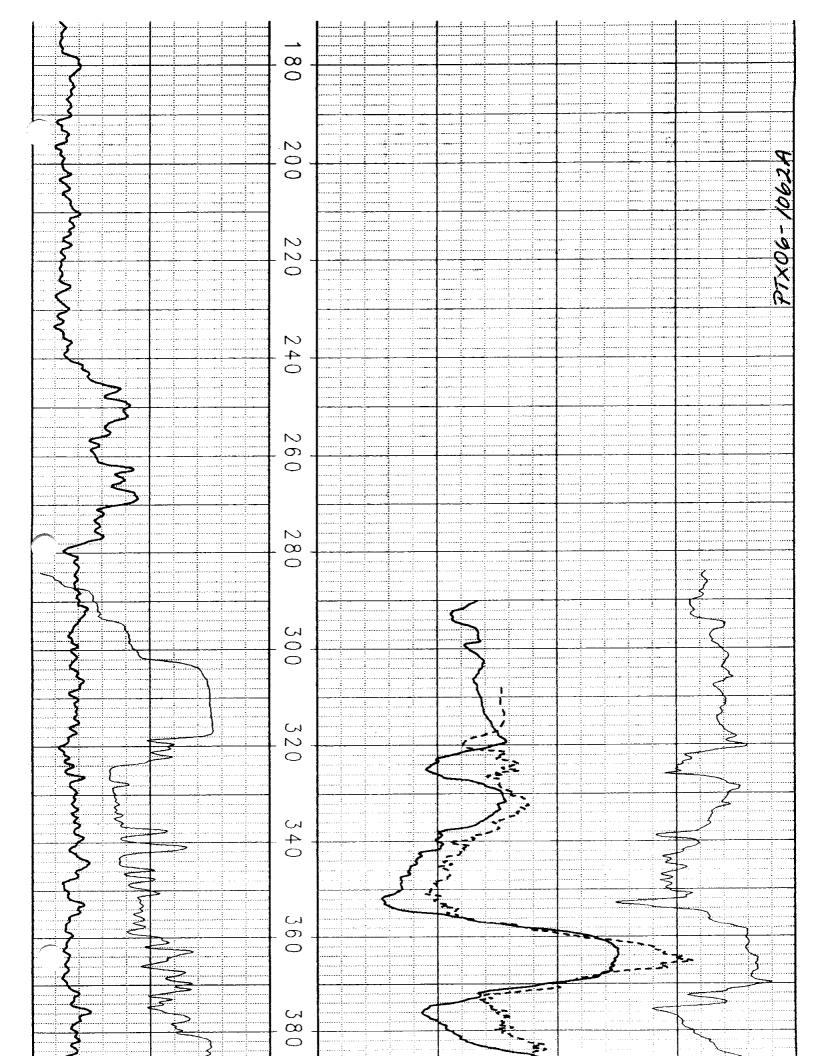
Pantex Burning Groun		as Pantex Plant (Nor	, <u> </u>	DUUVER	Amarillo, Tex
Project Number:	3615		Client:	BWXT Pantex	10
Geologist:		I/P. Fahringer/ R. Rupp	Northing: 3771685.22	Easting: 633017	.18
Drilling Contractor:	-	Christensen	Total Depth of Borehole:	905' BGS	107/01
Dates Drilled:		01 - 05/03/01	Depth to Water:	485.5' BTOC 06	
Borehole Type:		RCH 8" Mud Rotary	Well Type:	Monitoring Well,	4" Type 316 SS
Ground Elevation:	3568.7	(6'	TOC Elevation:	3571.79'	
Depth (Ft.)	Lithology	USCS	Description	Samule	Sample Number
		CL 820-840' CLAY, silty wit (5YR 4/4) when wet, hard CL	h some (10%) sand, reddish to drill.	brown	
		840-857' CLAY, silty, red 5/6) highly plastic, stiff. CL	d (2.5YR 4/8) to yellowish re	ed (5YR	
		857-867' CLAY, gravelly	y, silty, (5YR 4/6), with quart	z gravels.	
		CL		eh er d	
			NDSTONE, shale is yellowi 5/6), sandstone is white (5YI fine grain, rounded, soft.		
		Ss			
		Ss sandstone flecks.	YR 4/6) clay and white (5YF		
			YR 4/6), highly plastic, no sa YR 8/1) reduction mottles. Pe		
S.M. STOLLI					Page 9

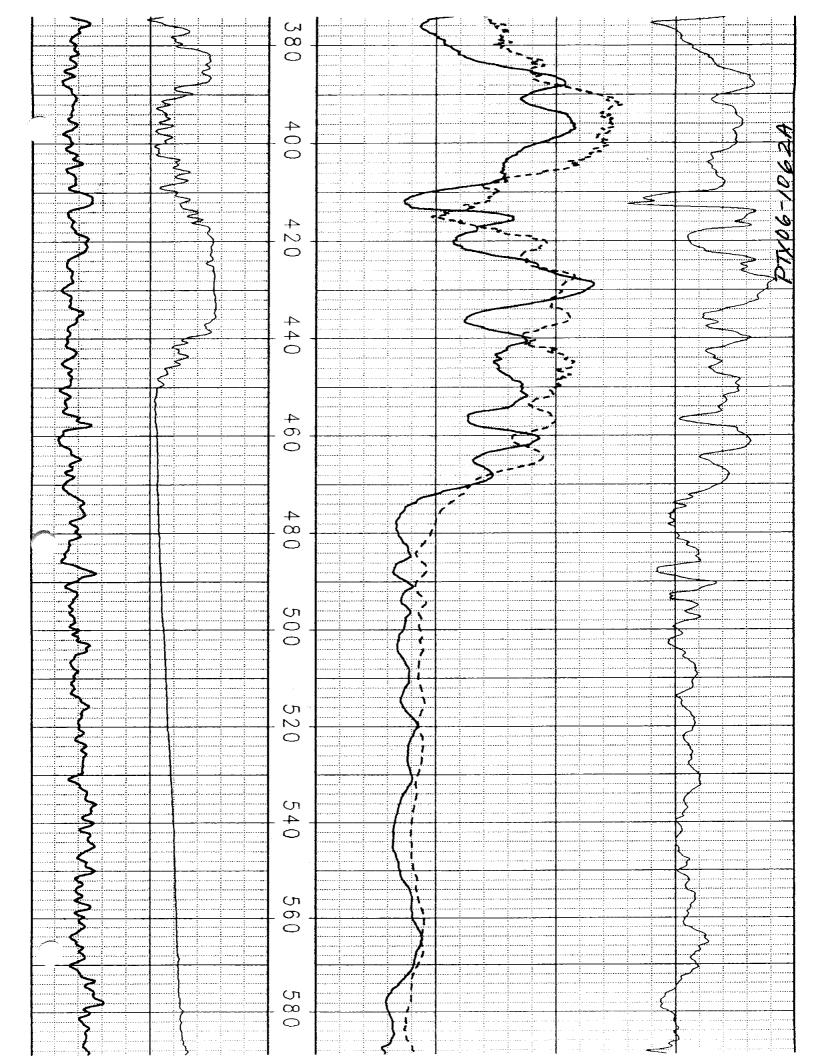
Pantex Burning Grou	nds Soil Cas		th of Firing Site 1)		Amarillo, Tex
Project Number:	3615	I antex I fant (1901	Client:	BWXT Pante	
Geologist:		Fahringer/ R. Rupp	Northing: 3771685.22	Easting: 633	
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	905' BGS	
Dates Drilled:		- 05/03/01	Depth to Water:	485.5' BTOC	06/07/01
Borehole Type:		H 8" Mud Rotary	Well Type:		Vell, 4" Type 316 SS
Ground Elevation:	3568.76'		TOC Elevation:	3571.79'	,,
Completion Depth	Lithology USCS]	Description		Sample Number
		Total Depth of Well 892' 4-inch, Schedule 10, Type Screen 470' Blank (+3-467) 290' Screen (467-757') 40' Blank (757-797') 90' Screen (797-887') 5' Sump (887-892') 3' Cement Seal (0-3') 437' Volclay bentonite gro 6' Bentonite seal (440-446 318' Filter pack, 10/20 Col 22' Bentonite seal (764-78 106' Filter pack, 10/20 Col 13' Backfill, 10/20 Colorad Surface Completion:	BGS ng cemented from surface to 316 Stainless Steel casing a but (3-440') ') lorado Silica Sand (446-764' 6') lorado Silica Sand (786'-892 do Silica Sand (892-905') with four bollards and 10-inc	nd 10-slot) ')	
S.M. STOLLI	ER COR	PORATION			Page 10

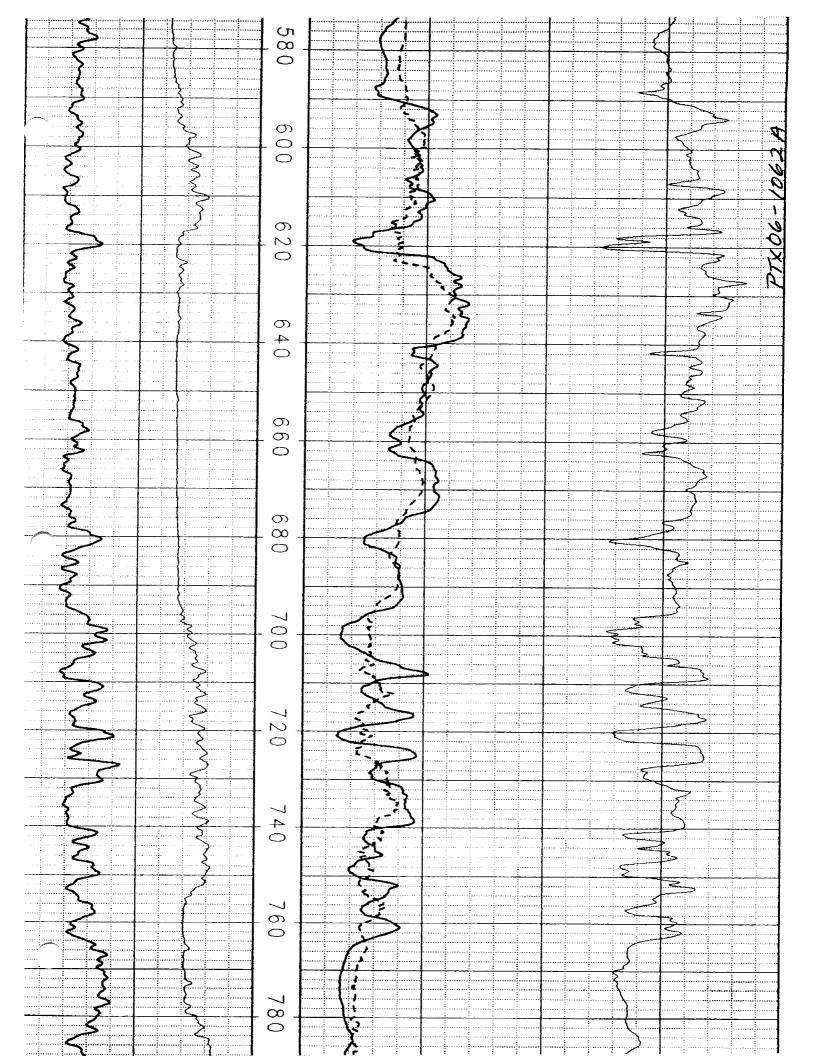
SOURCE SIZE, S	SAMPLE INTERVAL	A.S.D.E.	LOGGING SPEED	MODULE TYPE, S/N	PROBE TYPE, S/N	TIME SINCE CIRC.	Rm at TEMP	FLUID TYPE	FLUID LEVEL	WITNESSED BY	RECORDED BY	TOP LOGGED INTERVAL	BTM LOGGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	LOG TYPE	RUN NUMBER	DATE ACQUIRED	DRILL MEAS. FROM: GL	LOG MEAS. FROM: GL	PERMANENT DATUM: GL		LL:P): P	.M. St TXO6 antex X C	-106 Plan DUNT	l Y:Car		0	GAMMA-EL			220	
none	0.5	AN	15 ft/min	MGX II 11 44	2PEA, 2078	NA	NA	Water	NA	P. Fohringer	T. Staatz		AL 900'	900'	905'	GAMMA-ELECTRI¢		May 02, 2001	GL	SL 0.0 FT ABOVE PERM. DATUM	: GL ELEVATION: NA	SEC TWP RGE	DEVIATION	LOCATION: OTHER SERVICES:	STATE: TX COUNTY: Carson	FIELD: Pantex Plant	WELL: PTX06-1062A	COMPANY: S.M. Stoller	V-ELECTRIC	1 FAX: (303) 278-	17301 West Colfax, Suite 265, Golden Colorado 80401	COLOG Division of Layne Christensen Company	
BOREHOLE RECOR BIT SIZE 12 3/4"					F G	FROM GL				T0 246'						CASING RECORD SIZE/WGT 8 5/8"			F	FROM 3'				T0 243'									
7 5/8" 243' TD COMMENTS:										СО	MME	NTS	S:								· · · · · · · · ·												

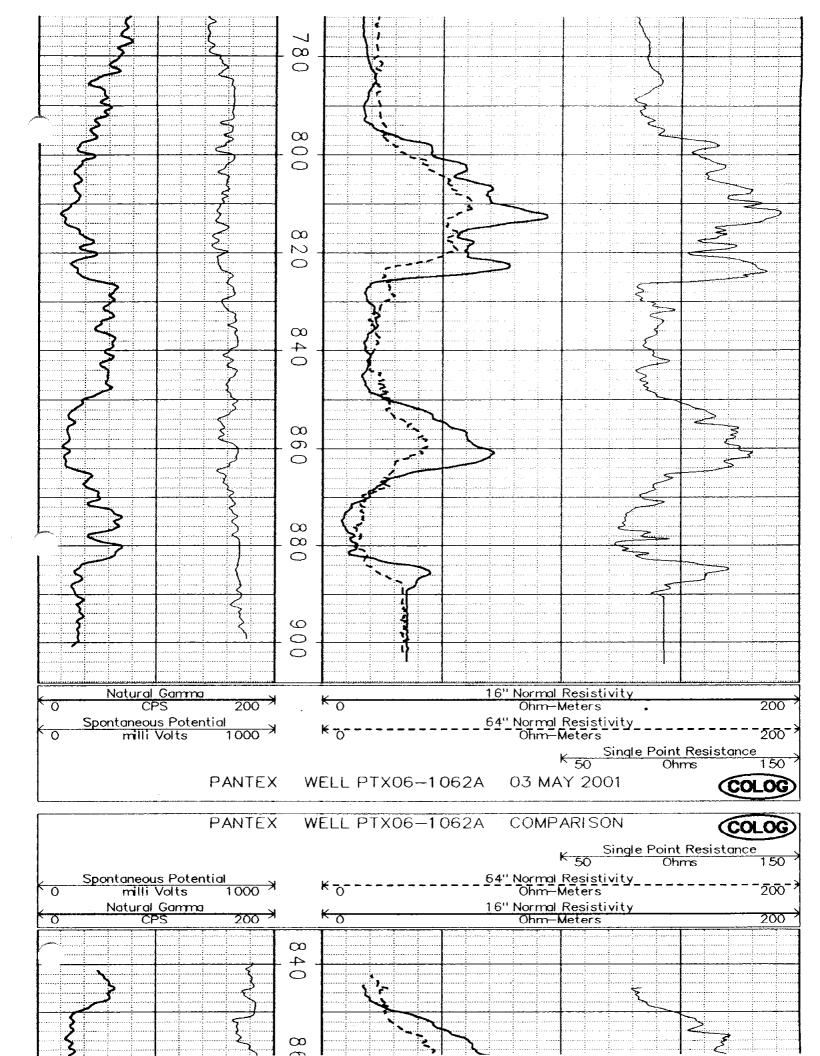
'A - NOT AVAILABLE, N/A - NOT APPLICABLE

DIGITAL FILES: 1062A, dev.hdp


PANTEX WELL PTX06-1062A 03 MAY 2001


COLOG


150


K Single Point Resistance

		F	PANTEX	<	/ELL PT	X06-1	062A	. 03				le Poi	nt Re		-	LOG
	nontenno	o Datanti	-1					C AR NI-				le Poi C	hms	<u>/0101</u>		150
K O	pontaneou milli		1000	ł	K-0			<u>64'' No</u> Ol								-200-3
<u> </u>	<u>Natural</u> CF	<u>Gamma</u> S		ł	<u>к о</u>			16" Noi Of	rmal F nm—M	<u>Resist</u> eters	ivity	,				200
				0			T									
	\$				······································									÷		
	5				:											
	5								· · · · · · · · · · · · · · · · · · ·		-		-			
2				\sim												
	7			\circ												
	>		· · · · · · · · ·					· · · · · ·		·····						
	>															
	3			4												
ļ	>			- 0 -	 								-			
								÷								
5				ດ			· · · · · · · · · · · · · · · · · · ·						· · · · ·			
->-				- 0 -												
3																
													-	<u> </u>		
				_												
15-				- 8												
<u> </u>																
λ				د									-			
5				0,												
2				0												
2																
13																
5				N												
5				0						• • • •			-			
Σ.																
- ζ										·						
5				 												
Į				\circ												
Lξ																
{											f	·····				
2				 . ത							· · · · · ·					
				0							· · · ·					
}							· · · · · · · · · · · · · · · · · · ·	·		на, н 1941 - 19	i*					
				∞							· · ·			· · · · · · · · · · · · · · · · · · ·		
1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		0							· · · ·		• • • •	· ·		

01/28/2003 09:35 FAX

· ·· · · ·

002

Send original copy by certified return receipt requested mail to: TDLR, P.O. Box 12157, Austin, TX 78711

	of Texas REPORT COPPER Austin, TX 78711											
PTX06-1062-A water.well@license.state.tr.us												
1) OWNER PANTEX U.S. D.O.E. ADDRES	(Streetor RFD) (City) (State) (Zip)											
2) ADDRESS OF WELL'S LOCATION: County CARSON HWY. 2373 N. HWY. 60 AM. A (Street, RFD or other) (City)	Lat _ Long.											
New Weil Deepening Industrial Infigation In	Initial Solution Initian Solution Initian Solution											
Reconditioning Plugging If Public Supply well, were plans supply 6) WELL LOG: DIAMETER OF HOLE Date Driffing: Dia, (in.) From (ft.) Started 4-23-2001 103/4 Started 5-5 2001 73/8 24/2 905	7) DRILLING METHOD (Check): Driven Air Robary Mud Robary Bored Air Hammer Cable Tool Jetted Other ODEX DVAL WALLAIR											
From (ft.) To (ft.) Description and color of formation material 6) Borehole Completion (Check): Open Hole Straight Wall O - 4 - TOP SOIL 4 - 12- BROWN SILTY CLAY IN CALICHEBENTONITE PELLETS 4740-446-786												
12-51- BROWN SANDY SLAY 51-69- CALICHE	CASING, BLANK PIPE, AND WELL SCREEN DATA: New Steel, Plastic, etc. Setting (ft.) Gage											
19-91- PINK SAND	Dia. or Perf., Slotted, etc.											
91-112- LIGHT BROWN SAND												
112-230- BROWHISHYELLOW FINE SAND 230-239- BROWN GRAVELLY SAND	4 N JOHNSON 316 33 0 467 BLANK											
139-280- LIGHT BROWN STIFF CLAY	4 N TOHHSON 316 35 467 757 0.10											
20-767- BROWN SAND WICHAVELS	4 N JOHNSON 316 55 887 892 BLANK 9) CEMENTING DATA 85/8" ST.E.EL - 0-246- 103-5K5 CEMENTING DATA 85/8" ST.E.EL - 0-246- 103-5K5											
7- 790- YELLOW SAND W/CRAVELS	Camenteditorn Ont. to 3 th No. of sacios used 2											
(Use reverse side of Well Owner's copy, if necessary)	VOLCLAY 3 The 440 The No. of sacks used 93											
13) Well plugged within 48 hours	Commented by LAYNE-CHRISTENSEN											
Casing left in well: Cement/behtonite placed in well: Sacks used: From (ft) To (ft) From (ft) To (ft)	Distance to septicay stem field lines of other concentrated contaminationft											
From (ft) To (ft) From (ft) 10 (ft)	Method of verification of above distance											
	10) SURFACE COMPLETION											
14) TYPEPUMP:	Specified Surface Stabinstalled 5'×5'×8'											
	Specified Steel Sleeve Installed											
Depth to pump bowls, cylinder, jet, etc.,fL	Pitiess Adapter Used Approved Alternative Procedure Used											
15) WELLTESTS:												
Typetest Pump Bailer Jetted Estimated Yield:gpm withft. drawdown after hrs.	11) WATER LEVEL: Static levelfL below land surface Date											
16) WATER QUALITY:	Artesian flow gpm, Date											
Did you knowingly penetrate any strata which contained undesirable constituents?	12) PACKERS: Type Depth											
Typeofwater? Depth of strata												
Wasachemical analysis made? Yes X No												
I certify that I drilled this well (or the well was drilled under my direct supervision) and that each and all of the statements herein are true and correct. I understand that failure to complete items 1 thru 16 will result in the log(s) being returned for completion and resubmittal.												
MPANY NAME LAYNE-CHRISTENSEN (Typeorprint)	WELL DRILLER'S LICENSE NO. 2583 W/											
DORESS 17075. 4490 W. SA	(City) UTAH 84104 (Zip)											
(Signed) N. J. L. Sunsee (Licensed Well Driller)	(Signed) (Registered Driller Apprentice)											
Please attach electric log, chemical analy	ysis, and other pertinent information, if available.											
TDLR FORM 001WWD (4/98) White - TDLR Yellow - DRILLER Pink - WELL OWNER												

.

£

APORTANT NOTICE FOR PERSONS VINGWELLSDRILLEDCONCERNING CONFIDENTIALITY

Section 32.005 of the Texas Water Code, concerning confidential information in the Reporting of Well Logs, reads as follows:

14

003

"Every licensed driller drilling, deepening or otherwise altering a water well within this State shall make and keep a legible and accurate well log in accordance with the department rule on forms prescribed by the department. Not later than the 60th day after the completion or cessation of drilling, deepening, or otherwise altering the well, the licensed driller shall deliver or transmit by certified mail a copy of the well log to the department and to the owner of the well or the person for whom the well was drilled. Each copy of a well log, other than a department copy must include the name, mailing address, and telephone number of the department. The well log shall be recorded at the time of drilling, and must show the depth, thickness, and character of the strata penetrated, the location of waterbearing strata, the depth, size and character of casing installed, and any other information required by department rule. The department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner or person for whom the well was drilled."

The last sentence specifies the means whereby you may, if you wish, assure that logs of your wells will be kept confidential.

PTX06-1062-A From (ft.)

To (ft.) Description and color of formation material 95-817- BRAWN SUTY

867-890-YELLOWISH RED SHALFWYSS 890-905-RED CLAY . * a ۰. 1

COLOG Division of Layne GeoSciences, Inc.

	Depth Ref.: ClosureLength (line ft.) 0.00 50.00 50.00 50.00 50.00	GL	Total Depth (vertical ft.) 0.00 50.00 50.00	879 Northing (feet) 0.00 0.43 -0.08		Plant TrueDepth (feet) 0.00 50.00 99.99	(feet) 0.00 0.66		SLP EastSum (feet) 0.00 -0.51
Depth (feet)Inclination (degrees)Bearing (degrees)0.000.6835050.000.76310100.000.75263150.000.62110200.001.10200	ClosureLength (line ft.) 0.00 50.00 50.00 50.00 50.00	ClosureDist. (horiz. ft.) 0.00 0.66 0.65 0.54	ClosureDepth (vertical ft.) 0.00 50.00 50.00	Northing (feet) 0.00 0.43 -0.08	Easting (feet) 0.00 -0.51	(feet) 0.00 50.00	Dist.Sum (feet) 0.00 0.66	NorthSum (feet) 0.00	EastSum (feet) 0.00
(feet) (degrees) (degrees) 0.00 0.68 350 50.00 0.76 310 100.00 0.75 263 150.00 0.62 110 200.00 1.10 200	(line ft.) 0.00 50.00 50.00 50.00 50.00	(horiz. ft.) 0.00 0.66 0.65 0.54	(vertical ft.) 0.00 50.00 50.00	(feet) 0.00 0.43 -0.08	(feet) 0.00 -0.51	(feet) 0.00 50.00	(feet) 0.00 0.66	(feet) 0.00	(feet) 0.00
(feet) (degrees) (degrees) 0.00 0.68 350 50.00 0.76 310 100.00 0.75 263 150.00 0.62 110 200.00 1.10 200	(line ft.) 0.00 50.00 50.00 50.00 50.00	(horiz. ft.) 0.00 0.66 0.65 0.54	(vertical ft.) 0.00 50.00 50.00	(feet) 0.00 0.43 -0.08	(feet) 0.00 -0.51	(feet) 0.00 50.00	(feet) 0.00 0.66	(feet) 0.00	(feet) 0.00
0.00 0.68 350 50.00 0.76 310 100.00 0.75 263 150.00 0.62 110 200.00 1.10 200	0.00 50.00 50.00 50.00 50.00	0.00 0.66 0.65 0.54	0.00 50.00 50.00	0.00 0.43 -0.08	0.00	0.00 50.00	0.00	0.00	0.00
50.00 0.76 310 100.00 0.75 263 150.00 0.62 110 200.00 1.10 200	50.00 50.00 50.00 50.00	0.66 0.65 0.54	50.00 50.00	0.43	-0.51	50.00	0.66		
100.00 0.75 263 150.00 0.62 110 200.00 1.10 200	50.00 50.00 50.00	0.65 0.54	50.00	-0.08				043	-0-21
150.000.62110200.001.10200	50.00 50.00	0.54			-0.65	yy uu			
200.00 1.10 200	50.00		50.00				1.21	0.35	-1.16
		0 06		-0.19	0.51	149.99	0.67	0.16	-0.65
250.00 0.37 350				-0.90	-0.33	199.98	1.23	-0.74	-0.98
	50.00	0.32	50.00	0.32	-0.06	249.98	1.12	-0.42	-1.03
300.00 1.48 352	50.00	1.29	49.98	1.28	-0.18	299.96		0.86	-1.21
350.00 1.74 355	50.00	1.52	49.98	1.51	-0.13	349.94	2.72	2.37	-1.35
400.00 0.37 347	50.00	0.32	50.00	0.31	-0.07	399.94	3.04	2.68	-1.42
450.00 0.36 345	50.00	0.31	50.00	0.30	-0.08	449.94	3.34	2.99	-1.50
500.00 1.25 86	50.00	1.09	49.99	0.08	1.09	499.92	3.09	3.06	-0.41
550.00 0.95 94	50.00	0.83	49.99	-0.06	0.83	549.92	3.03	3.01	0.42
600.00 1.11 65	50.00	0.97	49.99	0.41	0.88	599.91	3.65	3.41	1.29
650.00 1.15 44	50.00	1.00	49.99	0.72	0.70	649.90	4.59	4.14	1.99
700.00 1.16 19	50.00	1.01	49.99	0.96	0.33	699.89	5.60	5.09	2.32
750.00 1.27 15	50.00	1.11	49.99	1.07	0.29	749.88	6.69	6.16	2.61
800.00 0.85 332	50.00	0.74	49.99	0.65	-0.35	799.87	7.18	6.82	2.26
850.00 0.19 257	50.00	0.17	50.00	-0.04	-0.16	849.87	7.10	6.78	2.10
880.00 0.12 146	30.00	0.06	30.00	-0.05	0.04	879.87	7.06	6.73	2.13

Totals:			
True Depth	DistSum	NorthSum	EastSum
879.87	7.06	6.73	2.13

Page 1 of 3

Definitions

Bearing = Azimuth Degrees from Magnetic North (Raw Data)

ClosureDistance = Horizontal Feet Between Each Station

ClosureDepth = Vertical Feet Between Each Interval

Northing = North/South Component of Horizontal Distance Between Each Station (Negative = South) (Closure Dist.) x cos(Bearing)

Easting = East/West Component of Horizontal Distance Between Each Station (Negative = West) (Closure Dist.) x sin(Bearing)

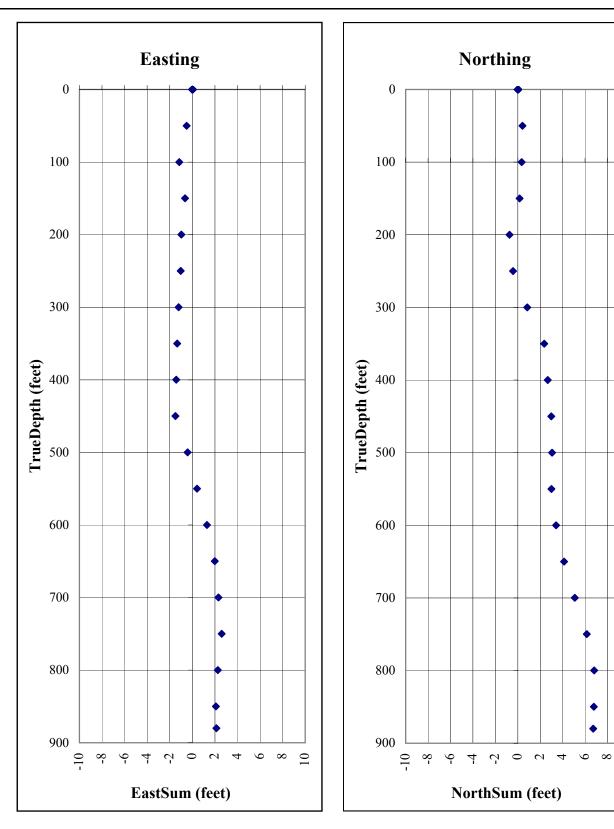
TrueDepth = Vertical Depth from the Surface to This Station

DistanceSum = Horizontal Distance from Wellhead to this Station

NorthSum = North/South Component of Horizontal Distance from the Wellhead to This Station (Negative = South) Running Sum of Northing

EastSum = East/West Component of Horizontal Distance from the Wellhead to This Station (Negative = West) Running Sum of Easting

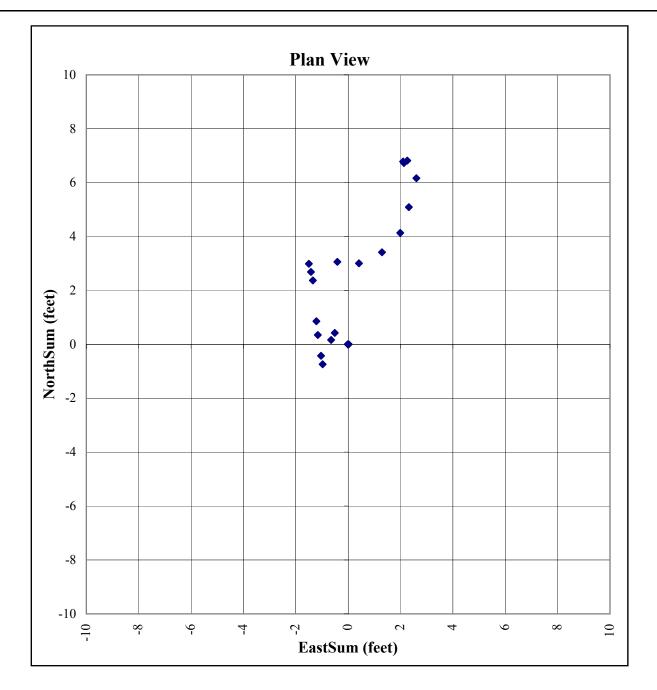
COLOG Division of Layne GeoSciences, Inc.


Deviation Survey for: S. M. Stoller

Well: PTX06-1062A Depth Ref.: GL

Field:Pantex PlantTotal Deptl879.87

 Date:
 5/2/2001


 Probe Type, S/N:
 SLP

10

Probe Type, S/N: SLP

Sheet2

east	north	depth
0.000	0.000	0.000
-0.508	0.426	49.996
-1.158	0.347	99.991
-0.649	0.161	149.988
-0.978	-0.740	199.979
-1.034	-0.423	249.978
-1.213	0.856	299.961
-1.346	2.369	349.938
-1.418	2.683	399.937
-1.500	2.987	449.936
-0.412	3.063	499.924
0.415	3.005	549.918
1.293	3.414	599.908
1.990	4.136	649.898
2.320	5.093	699.888
2.607	6.164	749.876
2.259	6.819	799.870
2.097	6.781	849.870
2.132	6.729	879.870

Contractor: Llano Permian Environmental Services

Contract #: PTX.001.OGA

OPTIX #:

Included Documents

___Drilling Log ___Draft ___Final

_X_Installation Log

_X_Lithologic Logs ___Draft _X_Final

_X_Geophysical Logs

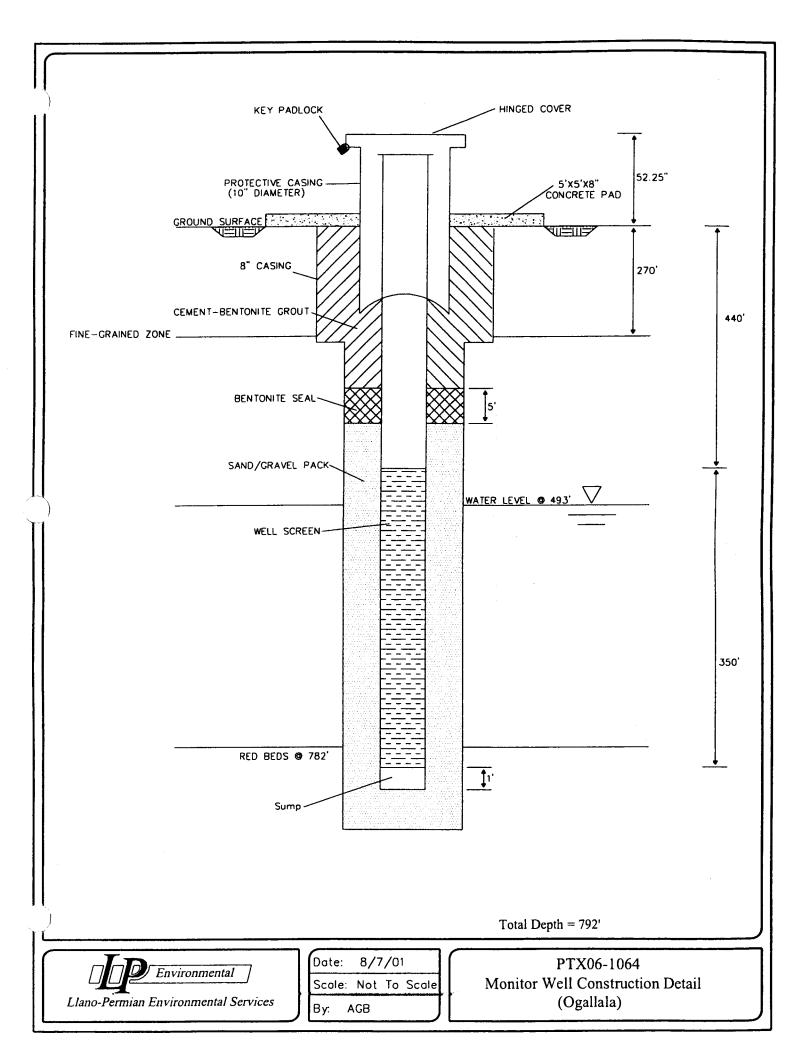
____Neutron

____Gamma

____e-log

___Bond Log

____Deviation log


_X_State Well Report

1064 Draft Boring Log

Hard copy is located in volume II of the PTX06 originals book.

The copies are illegible.

12 pages

MONITORING WELL LOG WELL NO. PTX06-1064

ELEVATION: 3560.24 Surface

PROJECT: Assessment of the Ogallala Aquifer PROJECT NO.: PTX.001.0GA

LOCATION: Osborne Property

DRILLER: Talon Drilling DATE DRILLED: May 21, 2001 DATE COMPLETED: May 31, 2001

WATER DEPTH: 493' LOGGER: Chado/Hagan COMPLETION DEPTH: 792 feet

PROTECTIVE Well Construction Diagram DEPTH (ft. Sampler Soil Graphic COVER TYPE: 10" dia. DESCRIPTION steel upright locking SURFACE COMPLETION: Moderate brown 5yr4/4 clay, damp, stiff, some silt and sand 0 Type: concrete pad Size: 5'X5'X8" Dusky yellowish brown 10yr2/2 clay, moist, stiff, some silt Total Depth of Concrete: 15' Light brown 5yr6/4 silty sand, dry, very fine grained, well **GROUT**: sorted, subrounded to subangular 15 Moderate brown 5yr4/4 sandy clay, fine grained, subrounded Type: Portland/Volclay to rounded, dry, stiff Total Thickness: 412 Light brown 5yr5/6 sandy clay fine grained, subrounded, slightly moist, stiff CASING: 30 Diameter: _____4" Length: _____ 365_____ Stick Up: 2 less sand SEAL 45 Type: <u>Bentonite</u> Quantity: 427'-432' Total Thickness: 5' more silt 60 some caliche nodules SCREEN Type: Stainless Steel Diameter: _____ 4" Light brown 5yr5/6 clayey sand, very fine grained, subangular to subrounded, soft, slightly moist Slot Size: 0.010 factory 75 more clay Screened Interval(s): 440'-790' Light brown 5yr5/6 sand, fine grained, subangular, very little clay, dry, moderately well sorted Grayish orange 10yr7/4 silty sand, very fine grained, well COMMENTS sorted, subangular particles, slightly moist 90 105 Dark yellowish orange 10yr6/6 silty sand, fine grained, well

MONITORING WELL LOG

PROJECT: Assessment of the Ogallala Aquifer PROJECT NO.: PTX.001.0GA ELEVATION: 3560.24 Surface LOCATION: Osborne Property DRILLER: Talon Drilling DATE DRILLED: May 21, 2001 DATE COMPLETED: May 31, 2001 WATER DEPTH: 493' LOGGER: Chado/Hagan COMPLETION DEPTH: 792 feet PROTECTIVE Well Construction Diagram DEPTH (ft.) Sampler Soil Graphic COVER TYPE: 10" dia. DESCRIPTION steel upright locking SURFACE COMPLETION: sorted, subrounded particles Type: concrete pad Size: 5'X5'X8" Total Depth of Concrete: 15' 120 **GROUT**: Type: Portland/Volclay Grayish orange 10yr7/4 silty sand, fine grained, well sorted, Total Thickness: 412 subrounded particles 135 CASING: Diameter: _____4" Length: _____ 365_____ 150 Stick Up: _____ 2 SEAL Type: Bentonite Quantity: 427'-432' 165 Total Thickness: 5' SCREEN Type: Stainless Steel 180 Diameter: _____4" Slot Size: 0.010 factory Screened Interval(s): 440'-790' 195 COMMENTS 210

MONITORING WELL LOG WELL NO. PTX06-1064

PROJECT: Assessment of the Ogallala Aquifer PROJECT NO.: PTX.001.0GA

LOCATION: Osborne Property

Construction

Well

Diagram Sampler

DEPTH (ft.)

225

240

255

270

285

300

)315

DESCRIPTION

Grayish orange 10yr7/4 poorly sorted sand and gravel, sand

Very pale orange 10yr8/2 sandstone, very fine grained, tightly

Dark yellowish orange 10yr6/6 clayey sand, poorly sorted,

angular to subangular, gravel rounded.

some gravel, subrounded, 1/4" size

cemented (calcareous), very hard

angular to subangular coarse particles

moderately sorted, less clay

Top of FGZ

more clay, slightly moist

ELEVATION: 3560.24 Surface DRILLER: Talon Drilling _____ DATE DRILLED: May 21, 2001 ____ DATE COMPLETED: May 31, 2001 WATER DEPTH: 493' LOGGER: Chado/Hagan COMPLETION DEPTH: 792 feet

PROTECTIVE

COVER TYPE: 10" dia.

steel upright locking

SURFACE COMPLETION:

Type: <u>concrete pad</u> Size: 5'X5'X8" Total Depth of Concrete: 15'

GROUT:

Type:	Portl	and/Volclay
Total 1	Thickness:	412

CASING:

Diameter:	4"	
Length:	365	_
Stick Up:	2	_

SEAL

Type:B	entonite
Quantity:	427'-432'
Total Thickness:	5'

SCREEN

Туре:	Stainless Steel
Diameter: _	4"
Slot Size: _	0.010 factory
Screened In	terval(s): 440'-790'

COMMENTS

Grayish orange 10yr7/4 sand, medium to coarse grained, well sorted, subangular particles, some clay

Soil Graphic

MONITORING WELL LOG

PROJECT: Assessment of the Ogallala Aquifer PROJECT NO.: PTX.001.0GA ELEVATION: 3560.24 Surface LOCATION: Osborne Property DRILLER: Talon Drilling DATE DRILLED: May 21, 2001 DATE COMPLETED: May 31, 2001 WATER DEPTH: 493' LOGGER: Chado/Hagan COMPLETION DEPTH: 792 feet PROTECTIVE Well Construction Diagram DEPTH (ft. Soil Graphic Sampler COVER TYPE: 10" dia. DESCRIPTION steel upright locking SURFACE COMPLETION: 330 Type: <u>concrete pad</u> Size: <u>5'X5'X8"</u> more clay content Total Depth of Concrete: 15' Grayish orange 10yr7/4 sandy clay, medium to coarse grained, well sorted, subangular particles **GROUT**: 345 Type: Portland/Volclay Total Thickness: 412 CASING: 360 more sand content Diameter: _____4" Length: 365 Stick Up: _____2_ 375 fine rounded to subrounded sand particles SEAL Type: Bentonite Quantity: 427'-432' Total Thickness: 5' 390 SCREEN Type: Stainless Steel Diameter: 4" 405 Slot Size: 0.010 factory Screened Interval(s): 440'-790' Grayish orange pink 5yr7/2 clayey sand, very fine grained, COMMENTS rounded to subrounded, well sorted 420 Grayish orange 10yr7/4 clayey sand, very fine to fine grained, moderately well sorted, subrounded to rounded particles, some gravel 435

---- -----

MONITORING WELL LOG WELL NO. PTX06-1064

PROJECT: Assessment of the Ogallala Aquifer PROJECT NO.: PTX.001.0GA

LOCATION: Osborne Property

DRILLER: Talon Drilling DATE DRILLED: May 21, 2001 DATE COMPLETED: May 31, 2001

WATER DEPTH: 493' LOGGER: Chado/Hagan COMPLETION DEPTH: 792 feet

PROTECTIVE Well Construction Diagram **JEPTH** (ft.) Soil Graphic Sampler COVER TYPE: 10" dia. DESCRIPTION steel upright locking SURFACE COMPLETION: Grayish orange 10yr7/4 clayey sand, very fine grained, Type: _____ concrete pad_____ moderately well sorted Grayish orange 10yr7/4 clayey sand, rounded to subrounded Size: 5'X5'X8" Total Depth of Concrete: 15' 450 GROUT: Pale yellowish brown 10yr6/2 sand and clay Type: Portland/Volclay Grayish orange 10yr7/4 sand and clay, very fine to fine Total Thickness: 412 grained, well sorted, rounded to subrounded 465 CASING: moderately well sorted Diameter: _____4" Length: _____ 365 480 Stick Up: _____2 more sand SEAL Type: <u>Bentonite</u> Quantity: 427'-432' 495 Total Thickness: 5' well sorted SCREEN Type: Stainless Steel 510 Diameter: 4" Slot Size: 0.010 factory Screened Interval(s): 440'-790' 525 COMMENTS 540

ELEVATION: 3560.24 Surface

MONITORING WELL LOG WELL NO. PTX06-1064

LOCATION: Osborne Property

Sampler

Soil Graphic

Diagram

Well Construction

DEPTH (ft.

555

570

585

600

615

630

645

DESCRIPTION

PROJECT: Assessment of the Ogallala Aquifer PROJECT NO.: PTX.001.0GA ELEVATION: 3560.24 Surface DRILLER: Talon Drilling DATE DRILLED: May 21, 2001 DATE COMPLETED: May 31, 2001 WATER DEPTH: 493' LOGGER: Chado/Hagan COMPLETION DEPTH: 792 feet

PROTECTIVE

COVER TYPE: 10" dia.

steel upright locking

SURFACE COMPLETION:

Type: <u>concrete pad</u> Size: 5'X5'X8" Total Depth of Concrete: 15'

GROUT:

Type:	Portl	and/Volclay
Total T	hickness:	412

CASING:

Diameter:	4"	
Length:	365	
Stick Up:	2	

SEAL

Type: Bentonite Quantity: 427'-432' Total Thickness: 5'

SCREEN

Туре:	Stainless Steel	
Diameter:	4"	
Slot Size:	0.010 factory	
Screened Ir	terval(s): <u>440'-790'</u>	

COMMENTS

with dark yellowish brown 10yr4/2 clay

Dark yellowish orange 10yr6/6 sand and clay, very fine grained, well sorted, rounded to subrounded particles

Elauro 2

660

PAGE 6 of 8

MONITORING WELL LOG

PROJECT: Assessment of the Ogallala Aquifer PROJECT NO.: PTX.001.0GA ELEVATION: 3560.24 Surface LOCATION: Osborne Property ____ DRILLER: <u>Talon Drilling</u> DATE DRILLED: <u>May 21, 2001</u> DATE COMPLETED: <u>May 31,</u> 2001 WATER DEPTH: 493'_____ LOGGER: Chado/Hagan COMPLETION DEPTH: 792 feet PROTECTIVE Well Construction Diagram DEPTH (ft.) Sampler Soil Graphic COVER TYPE: 10" dia. DESCRIPTION steel upright locking SURFACE COMPLETION: Type: concrete pad Dark yellowish orange 10yr6/6 sand and clay, very fine Size: <u>5'X5'X8"</u> grained, well sorted, rounded particles, intermixed with dark Total Depth of Concrete: 15' vellowish brown 10yr4/2 clay 675 GROUT: Type: Portland/Volclay Total Thickness: 412 moderately well sorted, fine to very fine grained 690 subangular to rounded particles CASING: rounded to subrounded particles Diameter: _____4" Length: _____ 365_____ Stick Up: 2 705 Dark yellowish orange 10yr6/6 sand, medium to fine grained, SEAL moderately sorted, subangular particles medium to coarse grained, subangular to angular Type: <u>Bentonite</u> Quantity: 427'-432' Moderate yellowish brown 10yr5/4 coarse grained, moderately Total Thickness: 5' sorted, subangular to angular 720 SCREEN Type: Stainless Steel Diameter: _____4"___ 735

Pale yellowish brown 10yr6/2 sand medium to coarse grained,

moderately sorted, angular to subangular

angular to subrounded

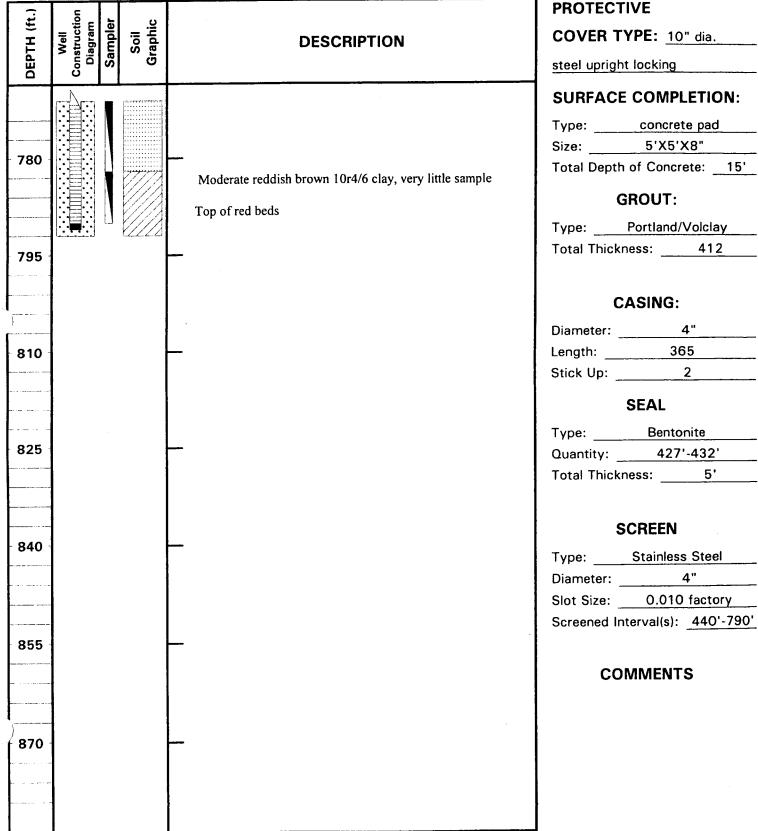
Slot Size: 0.010 factory Screened Interval(s): 440'-790'

COMMENTS

DAGE 7 of 8

750

765


MONITORING WELL LOG WELL NO. PTX06-1064

 PROJECT: Assessment of the Ogallala Aquifer
 PROJECT NO.: PTX.001.0GA

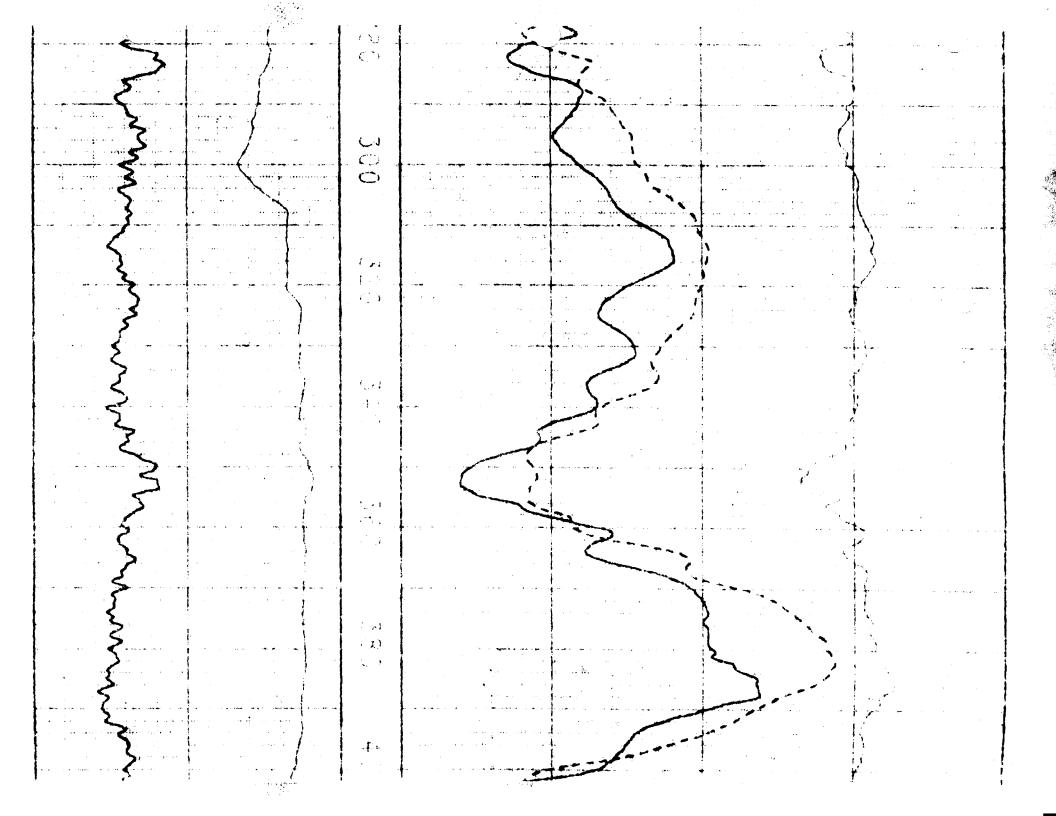
 LOCATION: Osborne Property
 ELEVATION: 3560.24 Surface

 DRILLER: Talon Drilling
 DATE DRILLED: May 21, 2001
 DATE COMPLETED: May 31, 2001

 WATER DEPTH: 493'
 LOGGER: Chado/Hagan
 COMPLETION DEPTH: 792 feet

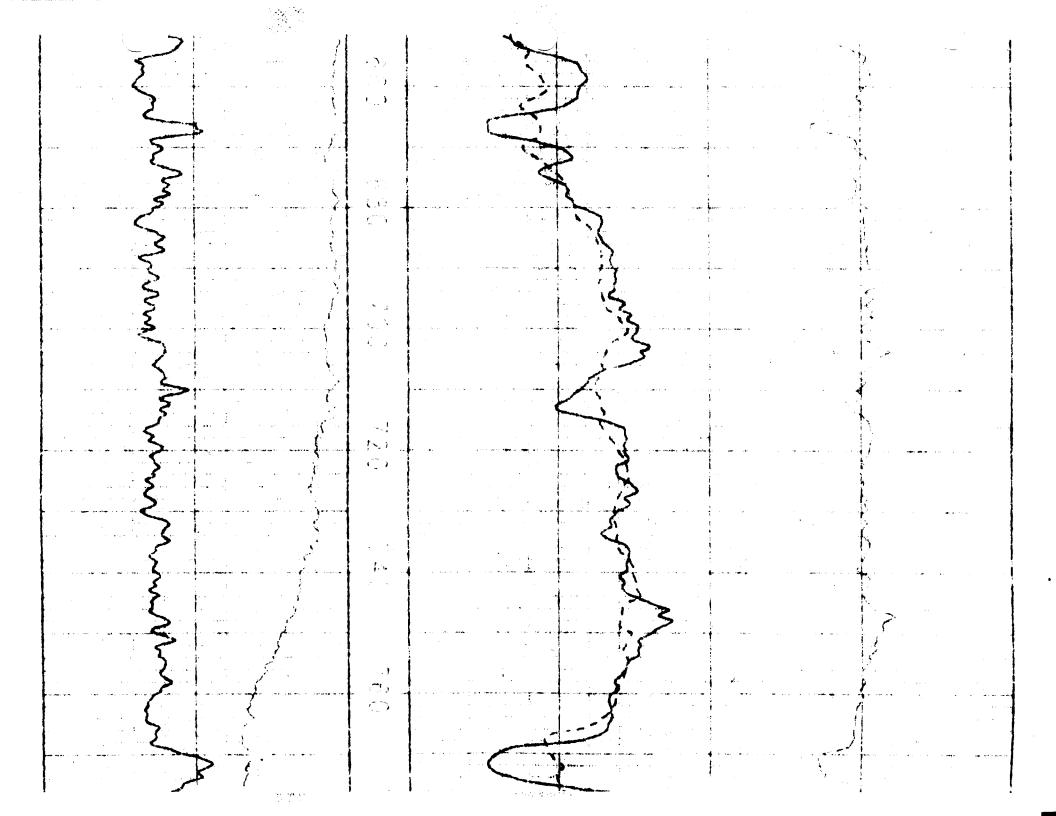
UUL	OG				ser Colorida: 804 (303) 278-01.	
			an an an an an an an an an an an an an a			•
ELEC		IC LO	3			
	CON	APANY: 13	no Permian			
5	WEL	L: PT:	06-1064			i
ja v	EE	· · · · · · · · · · · · · · · · · · ·	nter Flort			
ton TY:C			COUNTY	·	NC	
Permion 61064 54 Hont 54 Hont COUNTY:Car son	STA	ATE: Y		• • • • • • • • • • •		
COM: Llano Permion WELL: PTX06 - 1.064 FLD: Pantex Flont ST: TX COUNTY:C	LOCA	ATION:			OTHER SERVICES	S:
	ł					· •
NEL VIEL		SEC	WP RGE			
PERMANENT D			ELEVATION:	.A		
		-	D.O. FT ABOVE PE			
LOG NEAS. FR			ingen in tripterγndrifterte tile			
DRILL NEAS. F				1	L	
DATE ACOUR	<u></u>	Mcy 31, 2001	1:			
RUN NUMBER		Electric	Notural Game			
DEPTH-DRILL	ER	790				
DEPTH-LOGG	the state of the s	790		Ţ		
BTWLOGGED IN	TERVAL	7 59 '	785			
TOP LOGGED IN		Contraction of the local division of the loc	24			
RECORDED BY		T. Stoctz		+		
WITNESSED B	¥.	J. Chado		+		
FLUDLEVEL		NA				
FLUD TYPE		Woter				
Rm at TEMP		NA NA				
TIME SINCE C		20EA 2078				
PROBE TYPE,	and the second second second second second second second second second second second second second second secon	MGX 11 11 44				
LOGGING SPE		10 ft/min				
A.S.D.E.		TIA .				
SANPLE INTE	RVAL	<u>C.1</u>				
	1 N T T 18-	1				i

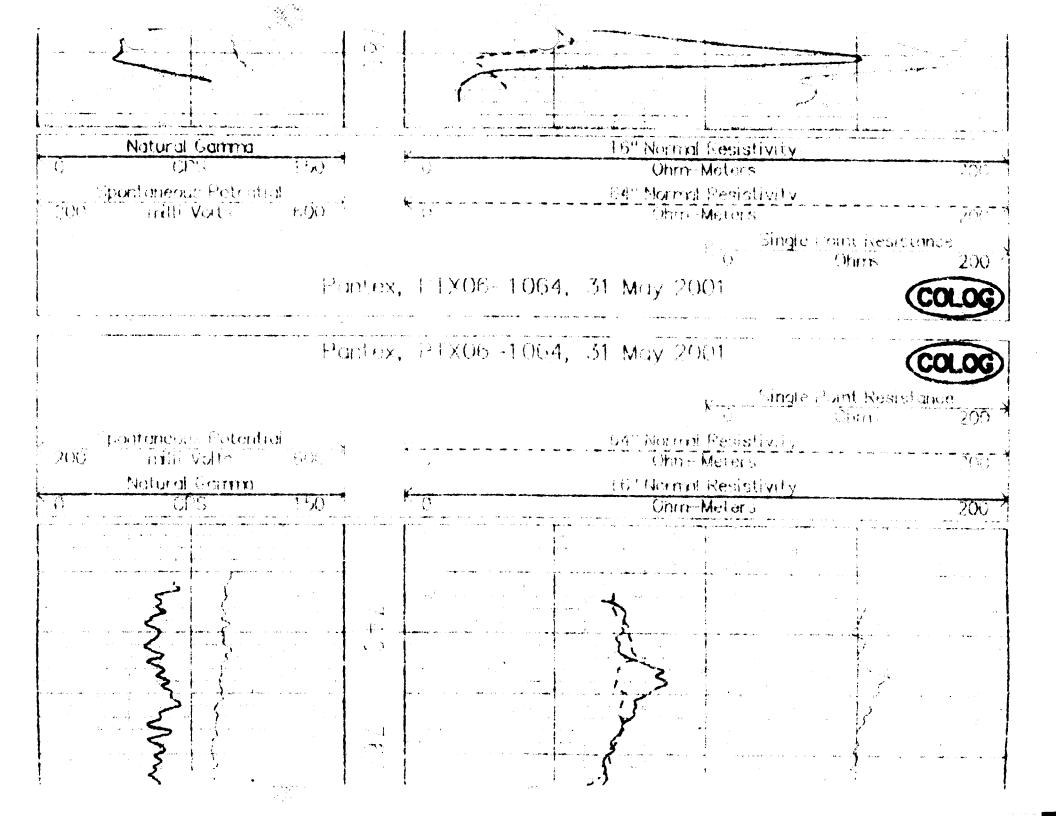
•

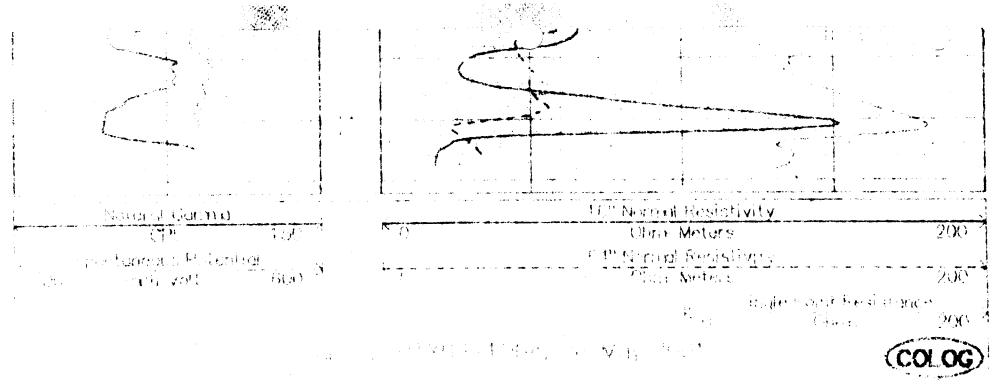

Spontaneous Potential 841 Normal Resistancy 200 milli Volta 600 Natural Gamma 9 Natural Gamma 9								and the second sec
III 3/4" G 260" 8 5/3" G 200" ///8" 260" III III 10" 8 5/3" G 200" COMMENTS: COMMENTS: COMMENTS: COMMENTS: COMMENTS: NA - NOT AVAILABLE, N/A - NOT APPLICABLE COMMENTS: COMMENTS: Digit AL FILES: 1064 ept. 1064 pp. clec.odp Commentations Commentations Commentationus Platential Commentations Commentations Commentations 200 mill Volta Commentations Commentations Commentations Volta of Commentations CC3 150" Commentations Commentations	فتوادعه ويستورين وموادوني والمتراد		nan antia distingun anti-	······································				° ∼ ×
///8" 200" 10 CQMMENTS: COMMENTS: NA - NOT AVAILABLE, N/A - NOT APPLICABLE DIGITAL FILES: 1064 eet. 1064 plp. clec.hdp Contraceous Potential Contraceous Potential 200 Songle Para reastrong Digital Files: 1064 eet. 1064 plp. clec.hdp Contraceous Potential Songle Para reastrong 200 Songle Para reastrong 201 Songle Para reastrong 202 Songle Para reastrong 203 Songle Para reastrong 204 Songle Para reastrong 205 Songle Para reastron	أكراك بالجام والمعروا والمتكرية والمحاجرة والمحاجرة			and a star when the second second second second second second second second second second second second second	Statements - State August - State - August	Real courses and a second second second second second second second second second second second second second s		
CQMMENTS: NA - NOT AVAILABLE, N/A - NOT APPLICABLE DIGITAL FILES: T064.edt, 1064 ptp, clec.hdp Captors, cr1X05 1064, 31 May (2001) Captors, cr1X05 1064, 31	and the second second second second second second second second second second second second second second second	an e na 🗰 🍕 agradad e l'anter e la subsectión d	المراجعة المتحج والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والم			s (<mark>St</mark> erner versen vers	260	·····
NA - NOT AVAILABLE, N/A - NOT APPLICABLE DIGITAL FILES: 1061.001, 1064 ptp. clec.ndp Canters, ar TX/06, 1064, 31 May 2001 Constanceous Patental 200 milli Volta, 000 4 Norma Resistance Natural Carrens C. CPS, 150 6 Sol Norma Resistance C. CPS, 150 6 C. State Resistance C. CPS, 150 6 C. State Resistance C. State	/ //8"	260'		· · · · · · · · · · · · · · · · · · ·			•	
NA - NOT AVAILABLE, N/A - NOT APPLICABLE DIGITAL FILES: 1064.ebt. 1064 pip. elecindp Cuptors, a TNOG 1064, 51 May 2001 Comple Plant ve instance 200 milli Volta 600 4 Natural Carriero Natural Carriero 0 CPS 150 6 Comple Plant ve instance 200 milli Volta 600 4 Comple Plant ve instance 200 Milli Volta 6 Comple Plant ve instance 200 Milli Volta 6 Comple Plant ve instance 200 Milli Volta 6 Comple Plant ve instance 200 Milli Volta 7 Comple Plant		,	a contration of the second sec	a second a second second second second second second second second second second second second second second s	••• •	ang ang ang ang ang ang ang ang ang ang	· · · · · · · · · · · · · · · · · · ·	
Pantoz, PTXOS 1064, 31 May 2001 Pantoz, PTXOS 1064, 31 May 2001 Songle Point Versistonor O Obins Songle Point Versistonor O Obins Sol Normer Resistrary Obins Meters Natural Gamma O CPS 155 O Obin Meters O Obin Meters	COMMENTS:			СОМ	MENTS:			
Cantox, PTX06 1064, 31 May 2001 Cantox, PTX06 1064, 31 May 2001 Songle Point Veristonor O Obino Songle Point Veristonor O Obino Songle Point Veristonor O Obino Songle Point Veristonor O Obino Natural Carroni Natural Carroni CPS 150 O Obino Natural Carroni CPS 150 O Obino Natural Carroni CPS 150 O Obino CPS 150 Obino CPS 150 Obino Ob								
PiciTAL FILES: 1064.eo1, 1064.pip. elec.hdp Cantox, ETXOS 1064, 31 May 2001 Songle Point Veristonor O Obino Songle Point Veristonor O Obino Sol Normal Resistories O San-Meters Natural Carrier Natural Carrier O CPS 150 O Obino O Obino								
PiciTAL FILES: 1064.eo1, 1064.pip. elec.hdp Cantox, ETXOS 1064, 31 May 2001 Songle Point Veristonor O Obino Songle Point Veristonor O Obino Sol Normal Resistrary Obino Meters Natural Carron CPS 150 O Obino Obino Maters O Obino								
Cantor, PTXO6 1064, 31 May 2001 Cantor, PTXO6 1064, 31 May 2001 Songle Point Veristonor O Obino 200 mill Volta 600 4 70 Obin-Meters Natural Carmon 157 Normal Resistority CPS 159 0 Obin Meters								
Contex, ETXO6 1064, 31 May 2001 Single Point Resistance Contaneous Potential 200 milli Volta 600 2 50 Natural Carmon 0 CPS 150 0 200 150 Ohn Meters 200 Ohn Meters		۱						
Spontaneous Potential 84 Normal Resistancy 200 mill Volta 600 Natural Gamma 16" Normal Resistancy 0 CPS 150	ý.			NBLE.	44 - 1 - 12 - 1	e Service de la companya de la companya de la companya de la companya de la companya de la companya de la company Service de la companya de la companya de la companya de la companya de la companya de la companya de la companya		.
Spontaneous Potential 84 Normal Resistancy 200 mill Volta 600 Natural Gamma 16" Normal Resistancy 0 CPS 150	ý.		4.plp. clec.hdp		31 Mc			
Spontaneous Potential 84 Normal Resistancy 200 mill Volta 600 Natural Gamma 75" Normal Resistancy 0 0 0 0	9		4.plp. clec.hdp		31 Me			COLOG
200 mill Volta 600 0 Natural Gamma 15" Normal Resistanty 0 0 0 Open Meters 7	9		4.plp. clec.hdp		JI Me			
0 CPS 150 0 Ohm Meters 7	SIGITAL FILF	S: 1061.ept.106	App <u>e</u> clechdp Cantex,			ki sa shi	Chin to	
	Sponte	S: 1061.ept.106	App <u>e</u> clechdp Cantex,	PTX06 1064,		Normy Resister	Chin to	
	200	<u>s: 1061.eo1, 106</u> <u>meous Potential</u> milli Volta itui al Garrino	App <u>e</u> clechdp Cantex,	PTX06 1064,	<u>ğn</u>	Norme Resister Tours Meters Normal Resister	Citing: E-y:	200 200
	200 No	<u>s: 1061.eo1, 106</u> <u>meous Potential</u> milli Volta itui al Garrino	App <u>e</u> clechdp Cantex,	PTX06 1064,	<u>ğn</u>	Norme Resister Tours Meters Normal Resister	Citing: E-y:	COLOG istance 200 200
	200 No	<u>s: 1061.eo1, 106</u> <u>meous Potential</u> milli Volta itui al Garrino	4.ptp. elec.hdp Clantick. 600 - 2	PTX06 1064,	<u>ğn</u>	Norme Resister Tours Meters Normal Resister	Citing: E-y:	200 200

÷. •• a and a second second second second second second second second second second second second second second second 5.3 **()**) 00 · · · · · • • • • . . . 1.71 in an an an . . **. . . .** . . . • • $\zeta_{\rm c}$ $\gamma_{\rm c}$: 1. 1 ₹<u>...</u> 1...**b**

 \sim)


1. j ï CAL . . (* J 5. 6 3 1 · ____ 1 ---- $f' \rightarrow f$ 4:5 (2)1× 1-< 3.2 $\mathcal{O}(\mathcal{I})$


. المعادين والمعور and the state



(XX) (C)

005 47+ CO 11 121 **7**71 4.10 ζ_{0} ζ_{0} ζ_{0} 4 (\mathbb{T}) . . $C \rightarrow$ • \mathbb{C}^{+} ÷., i $\langle \cdot \rangle$ <)**``**, **1**.... (

. . .

10 A 10

eviati	on Surve	y for:	Layne GeoScie Llano Permi		Total Depth:	Field: Pantex Plant 778.00			Date: Probe Ty	Page 1 06/23/2001	SLP, ns
ell:	PTX06-10	64		19975-94-52-2211-		hills his by					
th	Inclination	Bearing	ClosureLength	ClosureDist.	ClosureDepth	Northing	Easting	TrueDepth	Dist.Sum	NorthSum	EastSu
(teet)	(degrees)	(degrees)	(line ft.)	(horiz. ft.)	(vertical ft.)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet
0	1.0	208	0	0.00	0.00	0.00	0.00			0.00	0
25	1.0	50	25	0.42	25.00	0.27	0.32	25.00		0.27	(
50	1.1	318	25	0.48	25.00	0.36	-0.32	49.99	0.63	0.63	
75	1.0	30	25	0.44	25.00	0.38	0.22	74.99	1.03	1.00	
100	1.0	43	25	0.41	25.00	0.30	0.28	99.98	1.40	1.31	
125	0.9	339	25	0.41	25.00	0.38	-0.15	124.98	1.73	1.69	(
150	0.9	54	25	0.41	25.00	0.24	0.33	149.98	2.05	1.93	(
175	1.0	185	25	0.44	25.00	-0.43	-0.04	174.97	1.63	1.49	(
200	0.9	348	25	0.39	25.00	0.38	-0.08	199.97	1.96	1.88	
225	1.0	345	25	0.44	25.00	0.42	-0.11	224.97	2.34	2.30	
250	1.0	356	25	0.44	25.00	0.44	-0.03	249.96	2.77	2.73	(
275	0.8	185	25	0.33	25.00	-0.33	-0.03	274.96	2.44	2.41	(
300	0.7	185	25	0.28	25.00	-0.28	-0.02	299.96	2.16	2.13	(
325	0.9	326	25	0.37	25.00	0.31	-0.21	324.96	2.44	2.43	
350	0.8	330	25	0.35	25.00	0.30	-0.17	349.95	2.74	2.74	-
375	0.8	15	25	0.35	25.00	0.34	0.09	374.95	3.07	3.07	(
400	0.9	358	25	0.37	25.00	0.37	-0.01	399.95	3.44	3.44	(
425	0.9	335	25	0.39	25.00	0.36	-0.17	424.95	3.80	3.80	-(
450	0.9	320	25	0.39	25.00	0.30	-0.25	449.94	4.12	4.10	-(
475	0.9	350	25	0.37	25.00	0.37	-0.06	474.94	4.49	4.47	-(
500	1.0	330	25	0.42	25.00	0.37	-0.21	499.94	4.87	4.83	-(
525	1.0	320	25	0.44	25.00	0.34	-0.28	524.93	5.25	5.17	-(
550	0.8	332	25	0.35	25.00	0.31	-0.16	549.93	5.58	5.48	-
575	0.9	305	25	0.39	25.00	0.23	-0.32	574.93	5.87	5.70	-
600	1.2	273	25	0.52	24.99	0.03	-0.52	599.92	6.05	5.73	-
625	1.0	292	25	0.44	25.00	0.16	-0.40	624.92	6.34	5.89	-7
650	1.0	264	25	0.44	25.00	-0.05	-0.43	649.91	6.47	5.85	-2
675	0.9	308	25	0.38	25.00	0.23	-0.30	674.91	6.81	6.08	-
700	1.0	346	25	0.44	25.00	0.42	-0.11	699.91	7.23	6.50	-3
725	0.9	185	25	0.37	25.00	-0.37	-0.03	724.90	6.92	6.13	-3
750	1.8	173	25	0.76	24.99	-0.76	0.09	749.89	6.21	5.38	-3
775	0.4	33	25	0.15	25.00	0.13	0.08	774.89	6.28	5.50	-:
115	0.1				and the second second second second second second second second second second second second second second second			Totals:			
								True Depth	DistSum	NorthSum	EastS
								774.89	6.28	5.50	-

												}	_
Attention Own Confidentiality on reverse side	Privilege No		P.O. Box 121	57 Austin, Ti 1 Email addres	ell Driller/Pun exas 78711 Toll free (800 ss: water.wo	np Insta (512) 4)) 803-9 ell@lia	aller Prog 463-7880 9202 cense.st	gram) FAX (5	512) 463-8616	and and and	filed with owner wit	the dopar the dopar hin 60 da	tment
					WELL R			-			<u>.</u>		5
1) OWNER				L IDENTI	FICATION		D LOC	ATION	DATA				
Name	s Departn	ient of E	Address P.O. E	Box 30020		City Ama	rillo			State Texas		Zip 79120-	0020
2) WELL LO	OCATION	ł											
County			Physical Address		<u></u>	City				State		Zip	
Carson			F.M. 2373 &	U.S. Hwy.	60	Panh	andle		··	Texas		79068	······
3) Type of W	'ork		Lat.			Long	L		,l	Grid#0		!	
New Well	🗖 Deep	ening	4) Proposed	Use (check)	Monit	tor 🗖	Environ	mental So	oil Boring 🔲 I	Domestic	5)		NŤ
Reconditionin PTX-06-106 4			Industrial	-				• •	De-watering es D No	Testwell		x	
6) Drilling D				ameter of H					thod (check)		-1		
, e				From (ft)	To (ft			-					
Started_	05/18/	01	Dia. (in)					-	Mud Rotary	Bored			
			12.75	0	270	[_] _	Air Ha	mmer [Cable Tool	Jetted			
Completed _	05/31/	01	8.875	270	792		Other	Dual F	Rotary Meth	od			
F	To (ft)	Descrip	tion and color	of formatio	n material) Borel	nole Co	mpletion	🛛 Open H	$\log \square$	Straigh	t Wall
From (ft) 0	<u>10(11)</u> 5		ish Brown Cla		in material				d 🛛 Grave	•			
5	100		Brown Sandy						ve the interval f			791	fi.
100	100		ish Orange Si						Pipe, and V				
100	265		h Orange Fin		 			New	Steel, Plastic,	etc.		ing (ft)	Gage
265	280		range Sand	<u>, only</u> only			Dia. (in.)	Or Used	Perf., Slotted, Screen Mfg., i	etc. f commercial	From	То	Casing Screen
203	310		ish Orange C	avev Sand			8.875	N	Steel Riser		0	270	0.250
310	425		h Orange Fine				4.25	N	Stainless S	teel Riser	0	440	0.125
425	440		ish Black Fine				4.25	N	Stainless St	teel Screen	440	790	0.125
440	450	Grayis	h Orange Fine	e sand			4.25	N	Stainless S	teel Riser	790	791	0.125
450	455	Yellow	ish Brown Sa	nd		9) Ceme	nting E					
455	625		h Orange Fine				Cementi	ng from _		270 ft		-	34
625	710		ish Orange Fi		Sand			-	<u> </u>			ks used	
			Well Owner's copy						rout Pump/		ine		
13) Plugged		-	gged within 48						uanah Giln			·····	
Casing left in we		7	nent/Bentonite pla					• •	stem field or oth		d contami	nation	ft.
From (ft)	To (ft)	Fror	n (ft)	To (ft)	Sacks used		lethod of	verificati	ion of above dis				
		1			<u></u>	1	0) Surf	ace Co	mpletion				
		1							e Slab Installed				
14) Typepum	ıp						•		e Sleeve Installe	d			
Turbine	• 🗆 Jet		Submers	ible 🛛	Cylinder		Ditless .	•					
Other					_				native Procedure	Used			
Depth to pump b		er, jet, etc.,		ft.			1) Wat			_	0.0 10 4 10		
15) Water Te		_							ft. below		<u>06/01/0</u>	1	
Typetest □ : Yield: 7	Pump 🛛 B gpm with	ailer 20	Jetted Estim ft. drawdown af	-	hrs.	A	rtesian F	low	gpm	. Date/		/	
16) Water Q	<u> </u>					1	2) Pack	kers		Туре		Depth	
Did you knowing	gly penetrate		which contain und			Ī	lone						
1	lf yes, did yo	u submit a	REPORT OF UN			\vdash				·			
Type of water				rata		.							
hs a chemical a				Quarah C	ilmore 7	Lalon	Drilling	T Inc	1	ic. No. 545	19WI		
Address P.C			type or print)	Quanan G		Amari		5, IIIC.		e Texas		79114	
	<u>, bux 20:</u>			07/1	6/01				1010		_ <u></u> /		
Signature Lice	nsed Driller.	Pump Los	- taller		ate	Signat		Ap	prentice			Date	
						the second second second second second second second second second second second second second second second s							

٢

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

Section 32.005 of the Texas Water Code, concerning confidential information in the Reporting of Well Logs, reads as follows:

"Every licensed driller drilling, deepening, or otherwise altering a water well within this State shall make and keep a legible and accurate well log in accordance with the department rule on forms prescribed by the department. Not later than the 60th day after the completion or cessation of drilling, deepening, or otherwise altering the well, the licensed driller shall deliver or transmit by certified mail a copy of the well log to the department and to the owner of the well or the person for whom the well was drilled. Each copy of a well log, other than a department copy, must include the name, mailing address, and telephone number of the department. The well log shall be recorded at the time of drilling, and must show the depth, thickness, and character of the strata penetrated, the location of water-bearing strata, the depth, size, and character of casing installed, and any other information required by department rule. The department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner or person for whom the well was drilled.

The last sentence specifies the means whereby you may, if you wish, assure that logs of your wells will be kept confidential.

From (ft.)	To (ft.)	Description and color of formation material
710	782	Yellowish Brown Coarse to
		Medium Sand
782	792	Dense Red Clay
	<u>`</u>	
		· · · · · · · · · · · · · · · · · · ·
	· · · · ·	

aka: <none>

Contractor: Layne Christensen Contract #: Contractor's Project #: 3615 Drilled date: 05/01/01 – 05/08/01

OPTIX #:

Last Update: 6/1/2004 (previously had only cover sheet; added missing well record)

Standard Included Documents

(Others may also be included)

Drilling/Boring Log

___Draft

___Final

__Installation Log/Diagram

Lithologic Logs

___Draft Visual Classification of Soils (handwritten)

_X_Final Visual Classification of Soils (computerized)

Geophysical Logs

____Neutron

___Gamma

___e-Log

___Bond Log

____Deviation Log

___State Well Report

Burning Grounds So Project Number:	3615		east Corner of Plant) Client:	BWXT Pantez	x
Geologist:		Fahringer/R. Rupp	Northing: 3773360.30	Easting: 6434	
Drilling Contractor:	Layne Chi		Total Depth of Borehole:	805' BGS	
Dates Drilled:	05/01/01		Depth to Water:	501.6' BTOC	08/07/01
Borehole Type:		H 8" Mud Rotary	Well Type:		ell, 4" Type 316 SS
Ground Elevation:	3533.88'	1 0 Wild Rotary	TOC Elevation:	3536.85'	en, i Type 510 Be
Completion Depth (Ft.)	Lithology VISCS	0-3' SILT, clayey, sandy,	Description		Sample Number
	CL.	slightly plastic, soft, damp 15-25' CLAY, sandy, 60%	dy, reddish yellow (7.5YR 6/ , very fine grain sand 6 clay, 40% sand, reddish yel ite (7.5YR 8/2), very fine gra	low	
30-	CL	brown (7.5YR 6/3), very f	AND, clayey, 50/50 clay/san ine grain sand, loose, damp		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(7.5YR 6/6), low plasticity	% sand, 30% clay, reddish ye y, very fine grained, dense, du % sand, 20% clay, trace silt, ine grained, loose, dry	у	
	CL	(7.5YR 5/6), very fine grain nodules, slightly damp	6 clay, 20% sand, strong brow ined sand, medium stiff angu	lar clay	
	SC	7/3), very fine grained, loo	y, 80% sand, 20% clay, pink ose, damp y, 60% sand, 30% silt, 10% o		
70-	SM	(5YR 7/4), trace small ang			
80-			OCK, pinkish white (7.5YR 8 nore developed at 80'; compe		
90-	00 000	88-100' SAND, with calic	he, pinkish white (7.5YR 8/2	2)	

Burning Grounds Sol			neast Corner of Plant)	DUVTP	Amarillo, Tex
Project Number:	3615		Client:	BWXT Pantex	
		Fahringer/R. Rupp	Northing: 3773360.30	Easting: 6434	03.70
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	805' BGS	00/07/01
Dates Drilled:		- 05/08/01	Depth to Water:	501.6' BTOC	
Borehole Type:		H 8" Mud Rotary	Well Type:		ll, 4" Type 316 SS
Ground Elevation:	3533.88'		TOC Elevation:	3536.85'	
Completion Depth (Ft.)	Lithology USCS		Description		Sample Number
	99.9 99.9.9 99.9.9 99.9.9 99.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	loose, slightly damp, very diameter 110-115' SAND, silty, pin slightly damp 115-120' SAND, silty, pin rounded, loose, slightly da 120-125' SAND, slightly pink (7.5YR 8/3), loose, s 125-130' SAND, silty, loo nodes dropping out 130-145' SAND, silty, pin	nk (7.5YR 8/3), very fine gra silty, with caliche nodes to 1 nk ($\overline{5YR}$ 7/3), very fine grain nk ($\overline{7.5YR}$ 8/3), very fine gra amp to dry, silt dropping out silty with 20% hard caliche r lightly damp ose, damp to slightly moist, c nk ($\overline{7.5YR}$ 7/3), very fine gra lightly moist, decreasing silt	/4"	PTX06-1068-2-01 HE/VOC
	SP	grain, poorly graded, loos 150-160' SAND, slightly grain, 10% fine grain, poor 160-180' SAND, pink (7. 10-15% medium grain, an damp, increase in mafic m	silty, pink (7.5YR 7/3), very orly graded, loose, slightly da 5YR 7/4), very fine to fine gr gular to subangular, loose, sl	fine	PTX06-1068-2-01 HE/VOC
	00 000 000 000 000 000 000 000 000 000	fine grain, subrounded, lo caliche nodules to 1/2" dia 190-200' SAND, silty, rea	ose, very slightly damp, angu	llar	

Burning Grounds Soi			east Corner of Plant) Client:		Amarillo, Texa	
Project Number:	3615		BWXT Pantex			
Geologist:		Fahringer/R. RuppNorthing: 3773360.30Easting: 64istensenTotal Depth of Borehole:805' BGS			5.70	
Drilling Contractor:	Layne Ch		805' BGS			
Dates Drilled:		- 05/08/01	Depth to Water:	501.6' BTOC 0		
Borehole Type:		H 8" Mud Rotary	Well Type:	-	, 4" Type 316 SS	
Ground Elevation:	3533.88'		TOC Elevation:	3536.85'		
Depth (Ft.) Depth	Lithology USCS		Description		Sample Number	
-210-	9: 0: 0 0: 0: 0 0: 0: 0 0: 0: 0 0: 0: 0 0: 0 0: 0 0: 0 0: 0 0: 0 0 0: 0 0 0 0	with mafic material, loose	nk (7.5YR 7/3), very fine gra		PTX06-1068-2-02 HE/VOC	
	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	with medium plastic clay, 223-230' CLAY, sandy, li medium plastic (ropes who slightly moist to moist 230-240' SAND, brown (' with clay balls, loose, moi		st 74), stiff, 1 sand	PTX06-1068-2-02 HE/VOC/Permeab	
	CL CL	gravel to 1 1/2" diameter (grain sand, dense, moist 244-247' SAND, clayey, I grain, medium dense, mois 247-257' CLAY, silty, pir zone material Conductor Casing cemente	nk (7.5YR 7/4), stiff, dry, find	medium edium e grain	PTX06-1068-2-02 HE/VOC	
-270-	CL					
S.M. STOLL	<u>I/////</u>	PORATION			Page 3	

Project Number:	ds Soil Gas 3615	;		east Corner of Client:	*	BWXT		Amarillo, Tex
Geologist:			Fahringer/R. Rupp	Northing: 2	3773360 30		643403.7	0
Drilling Contrac			istensen		of Borehole:	805' BG		~
Dates Drilled:			- 05/08/01	Depth to Wa				7/01
Borehole Type:			I 8" Mud Rotary	Well Type:				" Type 316 SS
Ground Elevatio				TOC Elevati	on.	3536.85	-	1)pe 210 22
Completion	Depth (Ft.) Lithology	USCS]	Description			Sample	Sample Number
	-310 -310 -320 -320 -320 -330 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -	CL	309-340' SAND, clayey, s very fine grain, well sorted			, fine to		
	-340 -350 -350 -350 -350 -350 -350 -350 -35	ML	340-350' SILT, clayey, sar very fine grain sandstone,			, some		
		CL	350-360' CLAY, caliche, j fine grain subangular quart			very		
	- 370 - 0.00 - 0	• • • • • •	360-375' SAND, clayey, v very fine grain, rounded, q grain fragments, clay dropp	uartzose, calic	he as medium			
	-380	SP SLT STN SP	 375-380' SAND, with cali fine grain, some medium g quartzose 380-385' CALICHE ROC 10YR 7/1), hard 385-400' SAND, with cali 6/4), very fine to fine grain graded, quartzose, trace bradepth 	K, white to lig che, light yello , subrounded t	lar to angular, ht gray (10YR owish brown (1 o rounded, poo	8/1 - 0YR orly		

Burning Grounds Soil Gas		rantex Plant (North	east Corner of Plant)			marillo, Tex
\$	3615		Client:	BWXT Pan		
		Fahringer/R. Rupp	Northing: 3773360.30	Easting: 643403.70		
-	Layne Chr		Total Depth of Borehole:	805' BGS	a 00/07	/01
		- 05/08/01	Depth to Water:	501.6' BTO		
		H 8" Mud Rotary	Well Type:	Monitoring	well, 4"	Type 316 SS
Ground Elevation: 3	3533.88'		TOC Elevation:	3536.85'		
Completion Debth (Ft.)	USCS]	Description		Sample	Sample Number
	SN 6666666666.	(10YR 6/2), very fine to m subrounded, graded, dense @ 460' SAND, silty as ab	ove, light gray (10YR 7/2)		Sa	
		@ 490' increasing brown of	clay			
S.M. STOLLER		PORATION				Page 5

Burning Grounds Soil		i antes i fant (1001 th	east Corner of Plant)	DWVT D		narillo, Tex
Project Number:	3615		Client:	BWXT Pan		
		Fahringer/R. Rupp	Northing: 3773360.30	Easting: 64	3403.70	
Drilling Contractor:	Layne Ch		Total Depth of Borehole:	805' BGS	0.00/07	/01
Dates Drilled:		- 05/08/01	Depth to Water:	501.6' BTO		
Borehole Type:		H 8" Mud Rotary	Well Type:	Monitoring	Well, 4"	Type 316 SS
Ground Elevation:	3533.88'		TOC Elevation:	3536.85'		
Completion Debth (F.)	Lithology USCS		Description		Sample	Sample Number
		fine grain subangular sand Water Level at 501.6 feet I 522-528' SAND, clayey, f angular 528-535' CLAY, sandy, g very coarse sand, subangu 535-567' GRAVEL, sandy fragments, angular to subr above 567-577' GRAVEL, very flattened peagravel 577-580' GRAVEL, peage 580-597' GRAVEL, partic	BTOC on August 7, 2001 fine to coarse grain, subround ravelly, yellowish brown (10	led to YR 5/8), lithic rom		
- 590-			y, multi-colored, fine to very	coarse	_	
	\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim	I				

Burning Grounds Soi Project Number:	3615		<u>`````````````````````````````````````</u>	east Corner of Plant) Client:	BWXT Pant		marillo, Tex	
Geologist:			Fahringer/R. Rupp	Northing: 3773360.30	Easting: 64			
Drilling Contractor:			ristensen	Total Depth of Borehole		JH03.70		
Dates Drilled:			- 05/08/01	Depth to Water:		BTOC 08/07/01		
Borehole Type:			H 8" Mud Rotary	Well Type:	Monitoring V			
Ground Elevation:	3533.		1.8 Wild Rolary	TOC Elevation:	3536.85'	v en, 4	1 ype 510 32	
		.00		TOC Lievation.	5550.85			
Completion Lt. Debth	Lithology	USCS]	Description		Sample	Sample Number	
-610-		GW	sand and gravel, subround					
-620-		SW	617-645' SAND, fine to v	ery coarse sand as above w	ith trace			
-650-		SC	645-657' SAND, clayey, s 40%	and as above with signification	ant clay to			
-660-		CL	657-677' CLAY, sandy, g	ravelly				
		SC	677-680' SAND, gravelly, sand; Transition Zone abou 680-697' SAND, coarse to to rounded, less gravel wit	ut 680' o fine grained, poorly sorted	/			
		SP	697 702' SAND medium	to fine grained, well sorte	d			

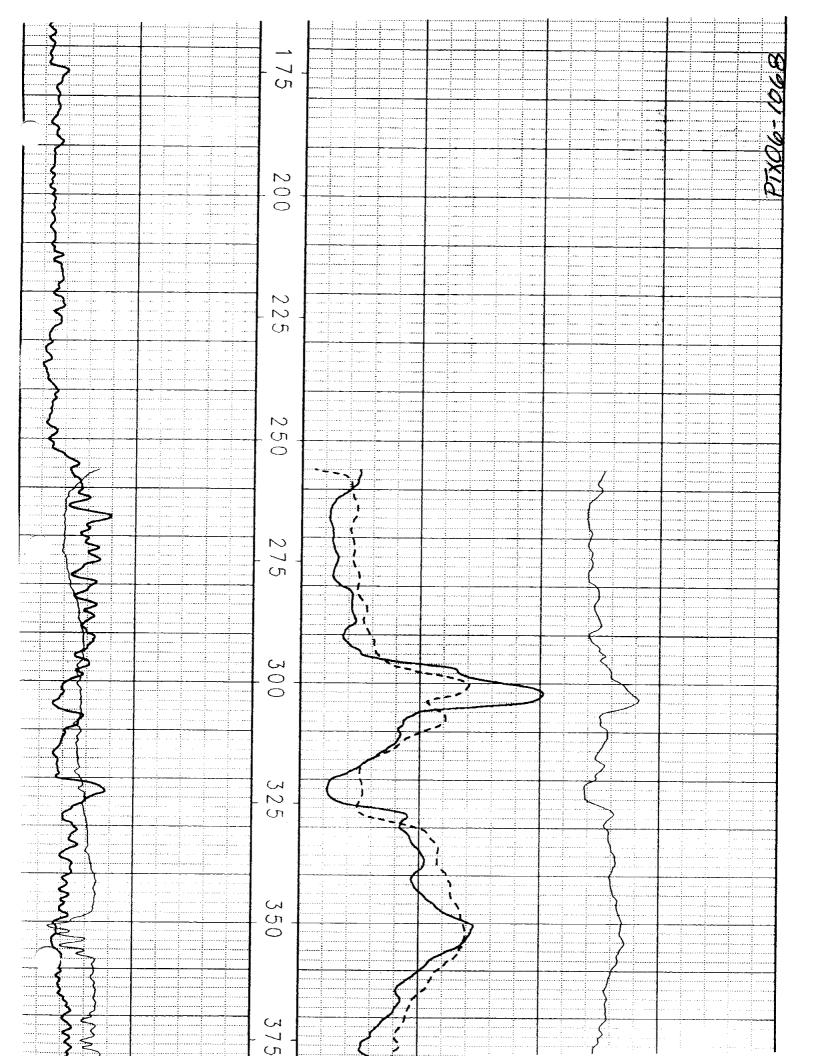
Burning Grounds Soi Project Number:	3615		Pantex Plant (North	Client:	,	BWXT I		marillo, Tex
Geologist:		11/P	Fahringer/R. Rupp		3773360.30		643403.70	
Drilling Contractor:			ristensen		th of Borehole:	805' BGS		
Dates Drilled:			- 05/08/01	Depth to V			, TOC 08/07	//01
Borehole Type:			H 8" Mud Rotary	Well Type				Type 316 SS
Ground Elevation:	3533.		1 0 Wild Rolary	TOC Eleva		3536.85'	ing wen, 4	1 ypc 510 5c
Depth (Ft.)	Lithology	USCS]	Description			Sample	Sample Number
-710-		CL	moderately well rounded 702-730' CLAY, gravelly some interbedding after 72 730-760' SAND/GRAVE	.0' L, clayey, sil	ty, 65% coarse s			
-740-		GC	gravels mixed with 25% cl 745-760' interbedding of g					
		CL	760-781' CLAY, some fin some white clays at 777-78		mixed in as inte	rbeds,		
-780-		CL CL CL	781-785' CLAY, light red return on cuttings, some th brown and thick 785-796' CLAY, medium light gray caliche and red to 796-805' CLAY, red (2.5)	in sand layer plastic, stiff prown siltsto	rs, drilling fluid to very stiff, min ne	is light 		
S.M. STOLL		_						Page 8

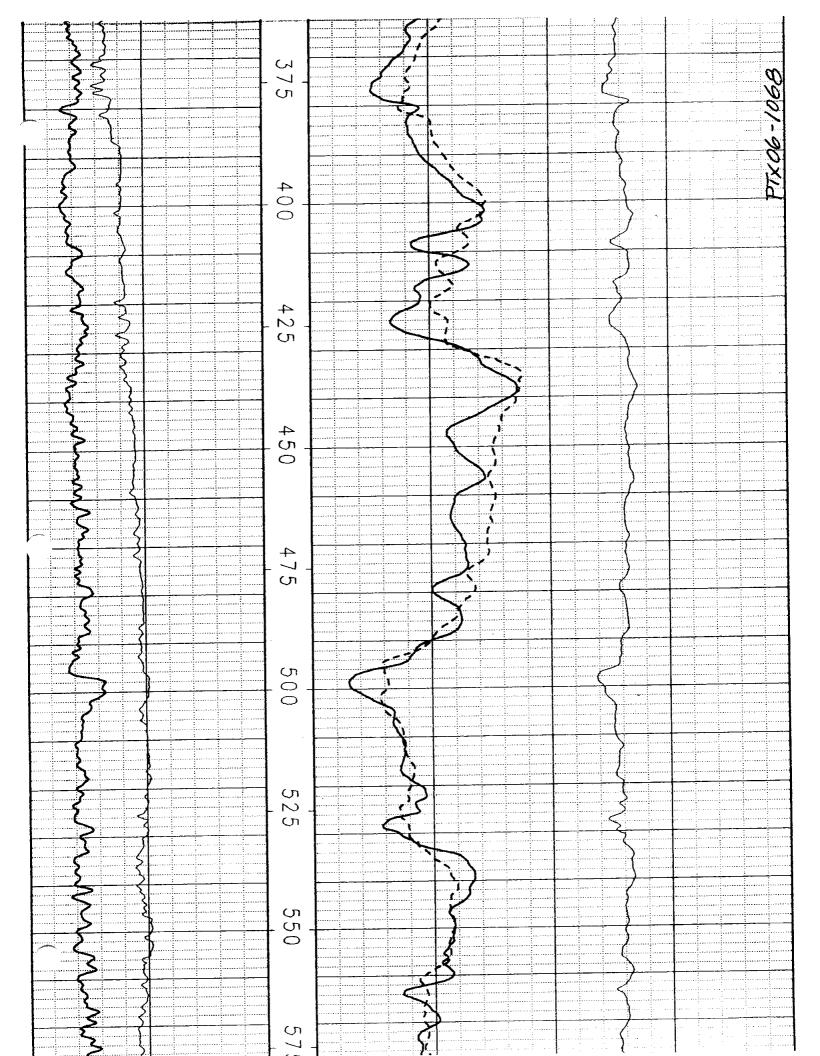
							·11 /T
Burning Grounds So			Pantex Plant (North	east Corner of Plant)			marillo, Texas
Project Number:	3615			Client:	BWXT P		
Geologist:			Fahringer/R. Rupp	Northing: 3773360.30		643403.70)
Drilling Contractor:			ristensen	Total Depth of Borehole:	805' BGS		- /0 /
Dates Drilled:			- 05/08/01	Depth to Water:		FOC 08/07	
Borehole Type:			H 8" Mud Rotary	Well Type:		ng Well, 4"	Type 316 SS
Ground Elevation:	3533	.88'	Ι	TOC Elevation:	3536.85'		
Completion (1) Hdo 	Lithology	P USCS	 very stiff to very hard, very minutes/ft. from 798-802') turning red Total Depth of Borehole & Fine Grain Zone 247-295' Red Beds 796' BGS Well Completion Details: Borehole Diameter: 11" from surface to 253' 8" from 253' to 805' 8 5/8" steel conductor casi Total Depth of Well 804' 4-inch, Schedule 10, Type 10-Slot Screen 457' Blank (+3-454') 300' Screen (454-754') 20' Blank (754-774') 25' Screen (774-799') 5' Sump (799-804') 22' Cement seal (0-22') 403' Volclay bentonite gro 11' Bentonite seal (425-43) 325' Filter pack, 10/20 Colo 9' Bentonite seal (761-770') 35' Filter pack, 10/20 Colo Surface Completion: 	BGS ng cemented from surface to 316, Stainless Steel Casing a ut (22-425') 6') lorado Silica Sand (436-761') y rado Silica Sand (770-805') vith four bollards and 10-incl	253' and	Sample	Sample Number
S.M. STOLL	ER C	OR	PORATION				Page 9

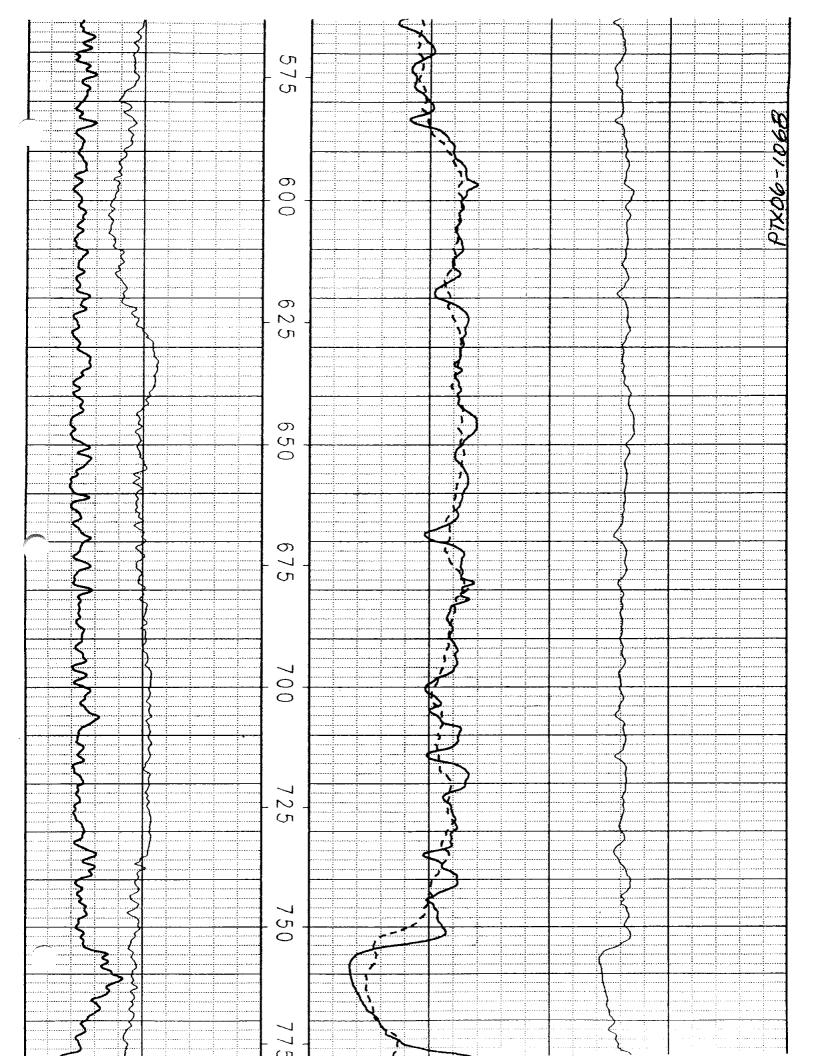
SOURCE SIZE,	SAMPLE INTERVAL	A.S.D.E.	LOGGING SPEED	MODULE TYPE, S/N	PROBE TYPE, S/N	TIME SINCE CIRC.	Rm at TEMP	FLUID TYPE	FLUID LEVEL	WI TNESSED BY	RECORDED BY	TOP LOGGED INTERVAL	BTM LOGGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	LOG TYPE	RUN NUMBER	DATE ACQUIRED	DRILL MEAS. FROM:	LOG MEAS. FROM: GL	PERMANENT DATUM: GL	E Contraction of the second se	TX C	-106 Plan OUNT	t Y:Car			GAMM.	UULUG	
	rL 0.5'	NA	15 ft/min	/N MGX 11 11 44	N 2PEA, 2078	NA	NA	Woter	NA	P. Fohringer	T, Staatz	RAVY CL	RVAL 804'	805'	805'	GAMMA-ELECTRI¢		May 15, 2001	N: GL	: GL 0.0 FT ABOVE PERM. DATUM	JM: GL ELEVATION: NA	SEC TWP RGE	LOCATION: OTHER SERVICES:	STATE: TX COUNTY: Carson	FIELD: Pantex Plant	WELL: PTX06-1068	COMPANY: S.M. Stoller	GAMMA-ELECTRIC		COLOG Division of Layne Christensen Company

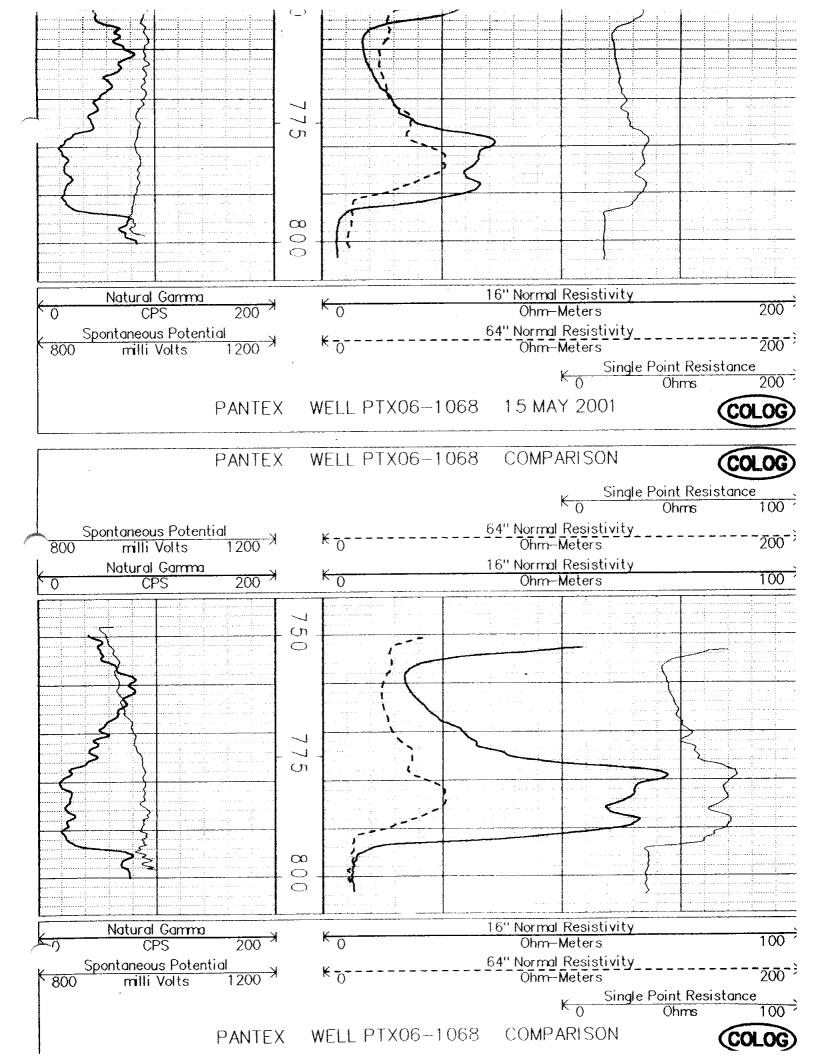
BOREHOLE RE	CORD		CASING RECORD						
BIT SIZE	FROM	TO	SIZE/WGT	FROM	TO				
12 3/4"	GL	253'	8 5/8"	-1'	253'				
7 5/8"	253'	TD							
COMMENTS:	· ·	- -	COMMENTS:						
	VAILABLE. N/	A - NOT APPLICABLE							

λ - NOT AVAILABLE, N/A - NOT APPLICABLE

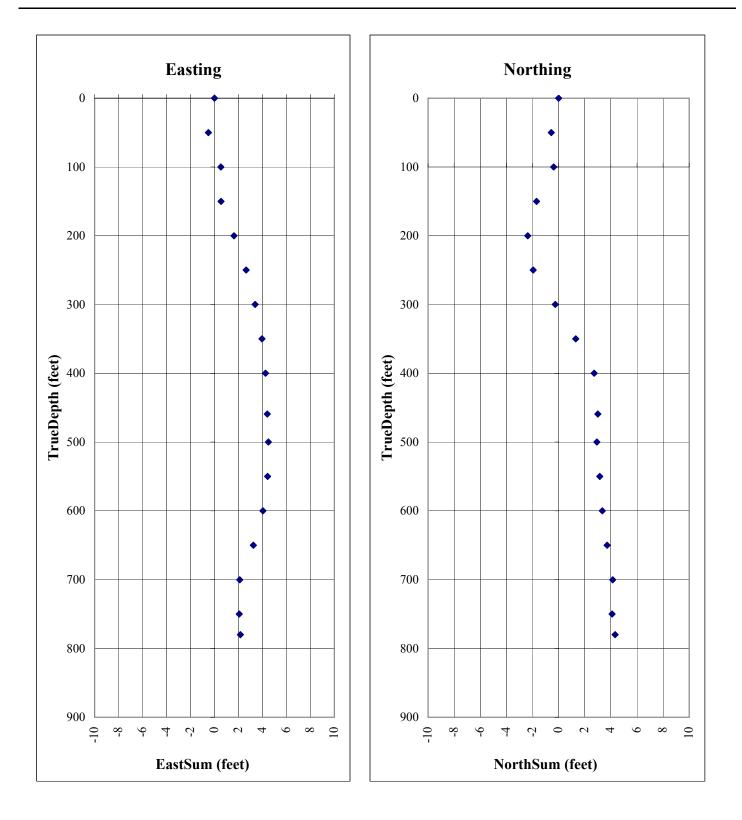

DIGITAL FILES: 1068.eb3, 1068.eb2, 1068.hdp

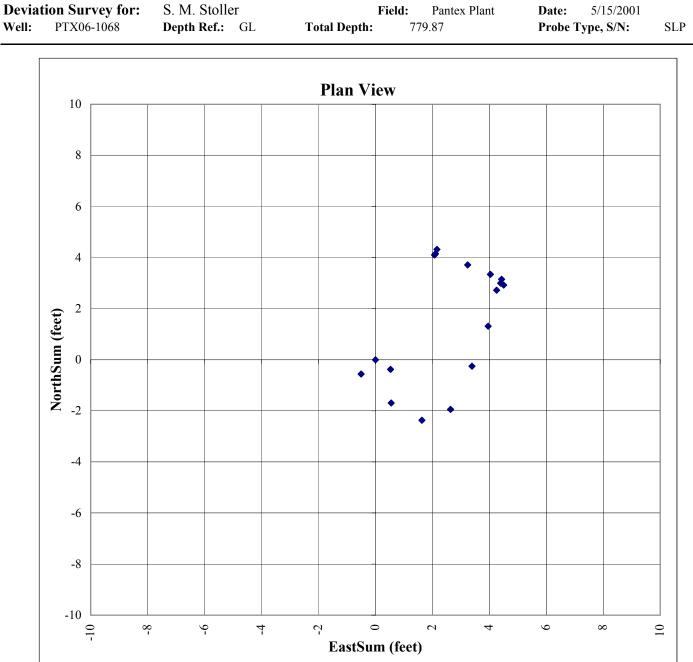

> WELL PTX06-1068 15 MAY 2001 PANTEX




Single Point Resistance K_

	Y 2001 COLOG
	K Single Point Resistance 0 Ohms 200
	Resistivity Meters 200
Natural Gamma 16'' Norma 0 CPS 200 X 0 Ohm-	Resistivity Meters 200
3	
$\sum_{n \in \mathbb{N}} $	
σ	
2	
Z	· · · · · · · · · · · · · · · · · · ·
$\sum_{i=1}^{n}$	
<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	
5	




COLOG Division of Lavne GeoScie e Ii

COL	OG Divisio	on of Lay	ne GeoSciences	s, Inc.						Page	1 of 3
Deviatio	on Survey	for:	S. M. Stoller			Field:	Pantex P	lant	Date:	5/15/2001	
	PTX06-106		Depth Ref.:	GL	Total Depth:	779.	.87		Probe Typ	pe, S/N:	SLP
Depth (feet)	Inclination (degrees)	Bearing (degrees)	ClosureLength (line ft.)	ClosureDist. (horiz. ft.)	ClosureDepth (vertical ft.)	Northing (feet)	Easting (feet)	TrueDepth (feet)	Dist.Sum (feet)	NorthSum (feet)	EastSum (feet)
0.00	0.87	297	0.00	0.00		0.00	0.00	0.00		0.00	0.0
50.01	0.86	222	50.01	0.75	50.00	-0.56	-0.50	50.00		-0.56	-0.5
100.05	1.20	80	50.04	1.05	50.03	0.18	1.03	100.03	0.65	-0.38	0.5
150.01	1.51	179	49.96	1.32	49.94	-1.32	0.02	149.98	1.78	-1.69	0.5
200.10	1.46	122	50.09	1.28	50.07	-0.68	1.08	200.05	2.88	-2.37	1.6
250.01	1.25	67	49.91	1.09	49.90	0.43	1.00	249.95	3.28	-1.94	2.6
300.05	2.12	24	50.04	1.85	50.01	1.69	0.75	299.95	3.40	-0.25	3.3
350.01	1.91	20	49.96	1.67	49.93	1.56	0.57	349.89	4.17	1.31	3.9
400.02	1.65	12	50.01	1.44	49.99	1.41	0.30	399.88	5.05	2.72	4.2
459.33	0.30	27	59.31	0.31	59.31	0.28	0.14	459.18	5.32	3.00	4.4
500.07	0.18	125	40.74	0.13	40.74	-0.07	0.10	499.92	5.37	2.92	4.5
550.03	0.27	342	49.96	0.24	49.96	0.22	-0.07	549.88	5.44	3.15	4.4
600.03	0.50	296	50.00	0.44	50.00	0.19	-0.39	599.88	5.24	3.34	4.0
650.02	1.01	295	49.99	0.88	49.98	0.37	-0.80	649.86	4.93	3.71	3.2
700.45	1.38	291	50.43	1.21	50.42	0.44	-1.13	700.28	4.65	4.15	2.1
750.04	0.07	213	49.59	0.06	49.59	-0.05	-0.03	749.87	4.59	4.10	2.0
780.04	0.46	21	30.00	0.24	30.00	0.22	0.09	779.87	4.83	4.32	2.1
Definiti	one							779.87	4.83	4.32	2.1
Bearing = . ClosureDis	Azimuth Deg stance = Hor	izontal Fee	Magnetic North (t Between Each S ween Each Interv	Station							
	= North/South (Closure Dis		nt of Horizontal I earing)	Distance Betwo	een Each Station	(Negative =	South				
	East/West Co (Closure Dis		f Horizontal Dista earing)	ance Between	Each Station (Ne	egative = We	est				
ſrueDepth	n = Vertical I	Depth from	the Surface to Th	is Station							
DistanceSu	um = Horizon	ntal Distanc	e from Wellhead	to this Statior							
	= North/Sou Running Sur	-	nent of Horizontal	Distance from	n the Wellhead to	o This Statio	n (Negativ	e = South			
	East/West C Running Sur		of Horizontal Dis	stance from the	e Wellhead to Th	is Station (N	legative =	West			

COLOG	Division	of Layne	GeoSciences, Inc.	
-------	----------	----------	-------------------	--

Deviat	tion Survey for:	S. M. Stoller	Field: Pantex Plant	Date: 5/15/2001	
Well:	PTX06-1068	Depth Ref.: GL	Total Depth: 779.87	Probe Type, S/N:	SLP

Sheet2

north	depth
0.000	0.000
-0.558	50.004
-0.376	100.033
-1.692	149.976
-2.368	200.050
-1.943	249.948
-0.252	299.954
1.313	349.886
2.721	399.875
2.998	459.184
2.925	499.924
3.148	549.884
3.340	599.882
3.712	649.864
4.147	700.279
4.097	749.869
4.321	779.868
	$\begin{array}{c} 0.000\\ -0.558\\ -0.376\\ -1.692\\ -2.368\\ -1.943\\ -0.252\\ 1.313\\ 2.721\\ 2.998\\ 2.925\\ 3.148\\ 3.340\\ 3.712\\ 4.147\\ 4.097 \end{array}$

aka:

Associated with: SWMU 113 (near bldg 11-36); Pantex Multiple Operable Units

Contractor: S.M. Stoller Contract #: <number/ID> Contractor's Project #: 3641 Drilled date: 05/06/01 – 05/18/01 Drilling Contractor: Layne Christensen

OPTIX #: <if known> Last Update: 9/28/04 (add Lith Log)

Standard Included Documents

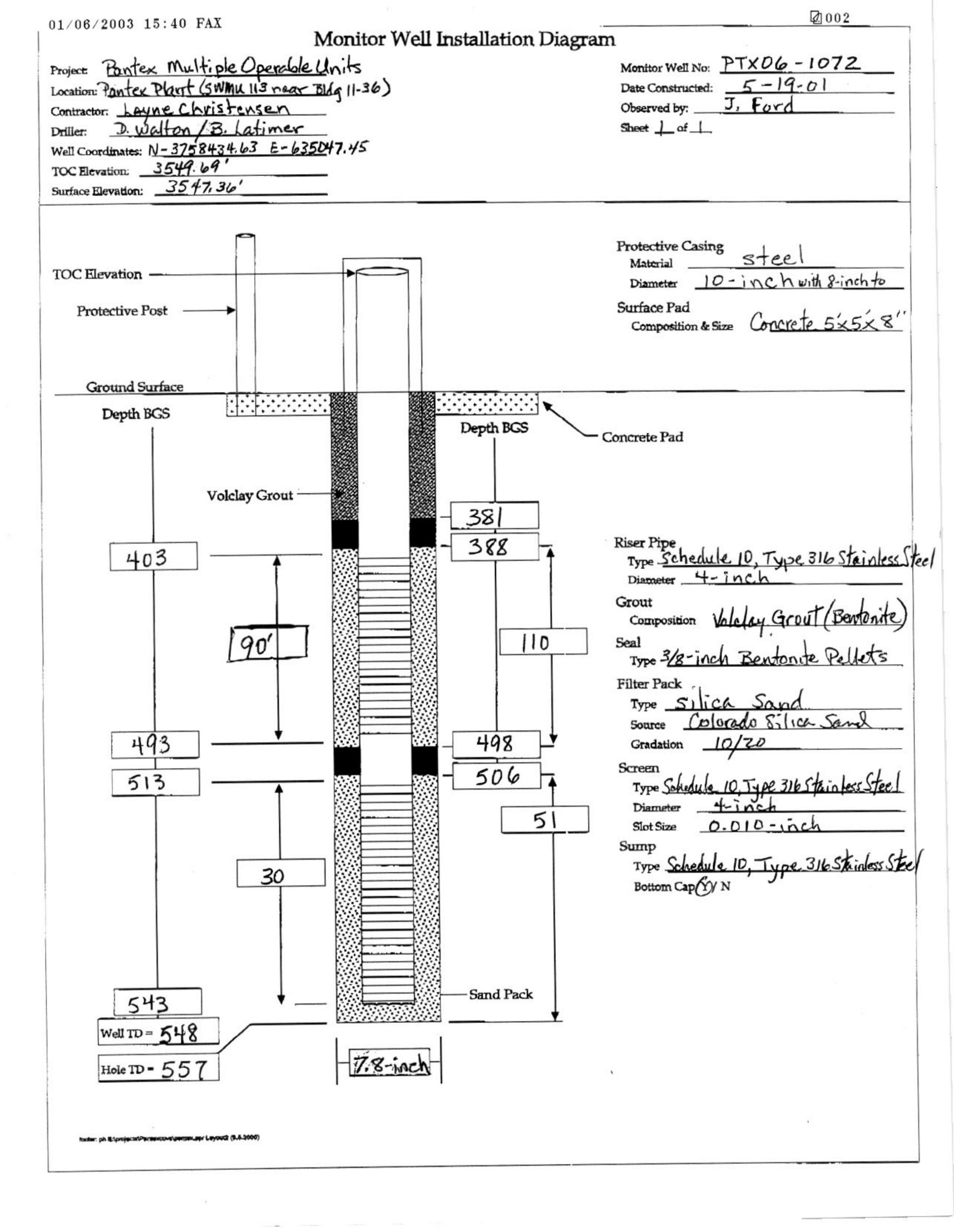
(Others may also be included)

Drilling/Boring Log

____ Draft

____ Final

X Draft Installation Log/Diagram (handwritten/drawn) ____ Final Installation Log/Diagram (computerized)


Lithologic Logs

_ Draft Visual Classification of Soils (handwritten)

- _X_ Final Visual Classification of Soils (computerized)
- **Geophysical Logs**
 - ____ Neutron
 - ____ Gamma
 - ____ Compensated Density

____ e-Log

- ____ Bond Log
- ____ Deviation Log
- ___State Well Report
- ____State Plugging Report

Pantex Multip	:	3641			Client:	BWXT Pant	ex	
Geologist:	•		nkm	an / T. Hall / J. Ford	Northing: 3758434.63	Easting: 635		
Drilling Contra	ctor:			ristensen	Total Depth of Borehole:			
Dates Drilled:				- 05/18/01	Depth to Water:	404.3' BGS	06/06/0)1
Borehole Type:				H 7 7/8" Mud Rotary	Well Type:	Monitoring V		
Ground Elevation		3547.		1 7 770 Wild Rotary	TOC Elevation:	3549.69'	ven, i i	Stamess Ste
Completion	Depth (Ft.)	Lithology	USCS]	Description		Sample	Sample Number
			ML	0-5' TOPSOIL, dry.				
	5 — 10 — 15 —		CL	moderately dense, slightly				
	20			15-40' CLAY, sandy, redd fine grain, moderately dens	lish yellow (7.5YR 6/6), sa se, dry.	nd is very		
	30		CL					
	40		CL	40-50' CLAY, sandy, sligh loose, dry to slightly damp	htly silty, light brown (7.5 Y)	<u>7R 6/4),</u>	-	
		4 4 9 4 1 4 4 9 4 4	SM	50-55' SAND, silty, clayed	y, pink (7.5YR 7/4), moder	ately		
	60		SM	55-70' SAND, silty, clayer very fine grain, moderately	y, reddish yellow (7.5YR 6 7 loose, dry.	$\overline{(6)}$, sand is	-	
	65			70-73' SAND claver site	y, reddish yellow (7.5YR 7	/6)		
	75		SC CAP RX	moderately dense, slightly 73-81' CALICHE, caprocl 8/2) to white (7.5YR 8/1).	damp. k, silty, sandy, pinkish whit			
	85		ML	Most competent and dense 81-90' SILT, slightly sand grain, loose, slightly damp	y, pink (7.5YR 7/3), sand v	very fine		
	90		ML	moderately dense, slightly 95-100' SILT, sandy (40%	$\overline{(7.5YR 6/4)}$, increase		
옷을 가슴을			ML	in very fine grain sand, trac	ce CaCO3, moderately loos	se, damp		

Pantex Multiple Opera	ble Units	Pantex Plant (SWMU	113 near Bldg. 11-36)		A	marillo, Texa
Project Number:	3641		Client:	BWXT Pan		
Geologist:	S. Brink	man / T. Hall / J. Ford	Northing: 3758434.63	Easting: 63	5047.45	
Drilling Contractor:	Layne C	hristensen	Total Depth of Borehole:	557' BGS		
Dates Drilled:	05/06/01	- 05/18/01	Depth to Water:	404.3' BGS	06/06/0)1
Borehole Type:	12" ARC	CH 7 7/8" Mud Rotary	Well Type:	Monitoring	Well, 4"	Stainless Stee
Ground Elevation:	3547.36		TOC Elevation:	3549.69'		
Depth (Ft.) Depth (Ft.)	Lithology		Description		Sample	Sample Number
	SM	fine grain, poorly graded, Increased silt @ 105-110'	kish white (5YR 8/2), very f loose, very damp to slightly 1	noist.		
-115	SF	subrounded, poorly graded	5YR 7/3), very fine to fine gr I, loose, damp.	ain,		
	SF	dense caliche nodules, ang	5YR 7/3), very fine to fine gr ular, loose, damp.	ain,	_	
	SN	130-140' SAND, silty, pir fine grain, some caliche no	-			
-145	SF	rounded, poorly graded, lo	5YR 7/3), fine grain, subrour ose, damp to moist.	ided to		
	SF	150-160' SAND, as above	e, subrounded, moist.		_	
	SF	grain, poorly graded, loose	e brown ($\overline{10YR}$ $\overline{7/4}$), very fir e, damp to moist, some calich			
	SM	graded, loose, damp, some		-		
	SF	graded, loose, damp, some	yellow (7.5YR 6/6), fine grai caliche nodules.	n, poorly		
	SF	grain, subrounded, poorly	yellow (7.5YR 6/6), fine to n graded, loose, moist. silty, very pale brown (10YR		_	
195	SF	very fine to fine grain, poo		/.+,,		

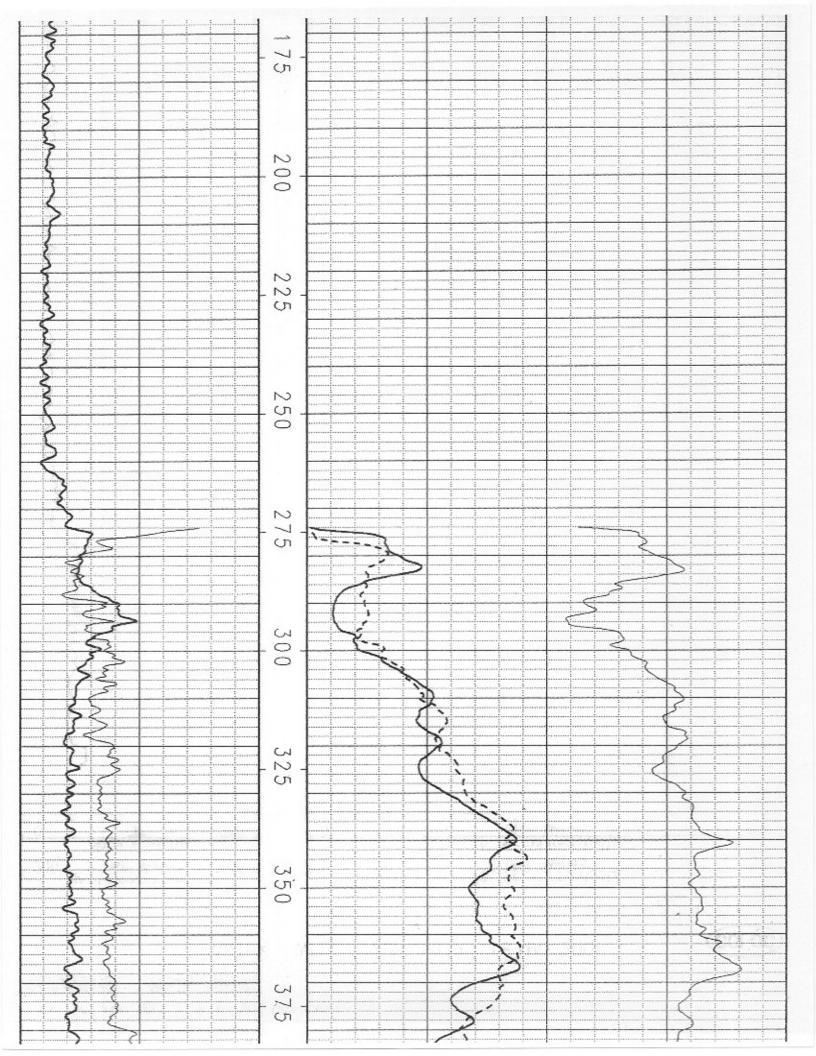
S:\WELLOG\Pantex MOU #3641\PTX06-1072.wld

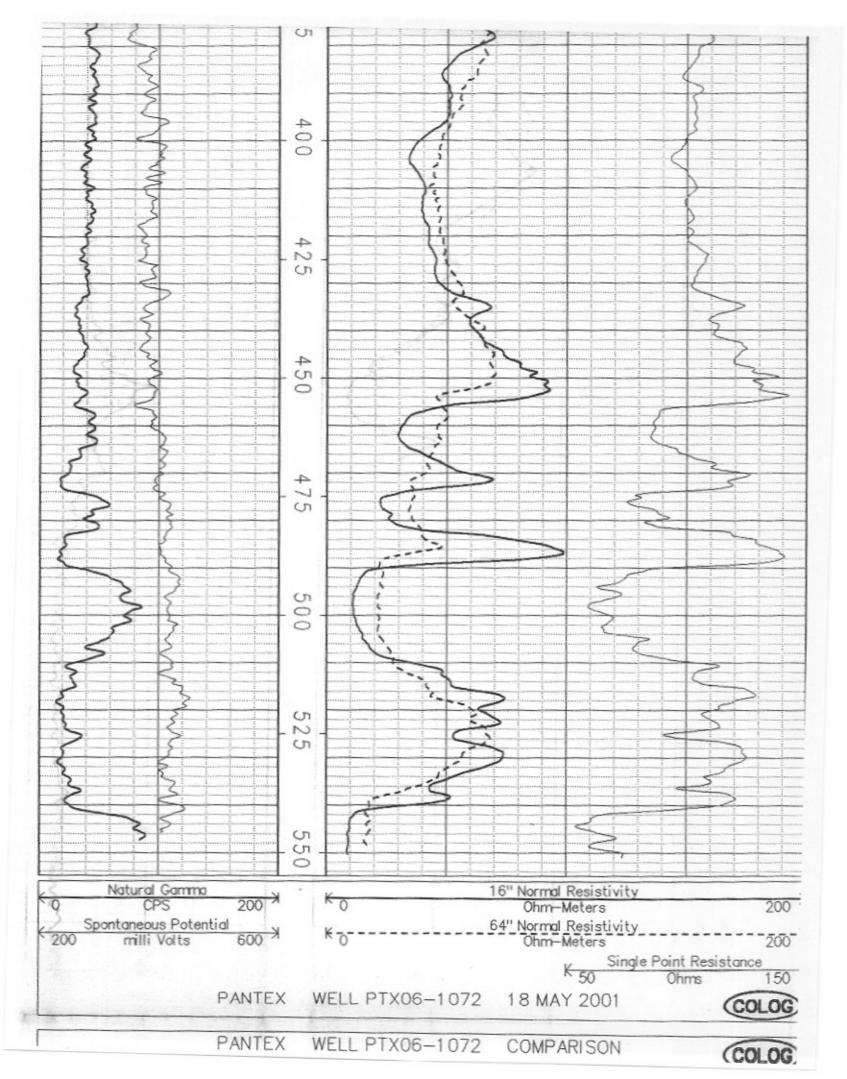
Pantex Project			3641			Client:	BWXT Pante	ex	
Geologi		-		inkm	an / T. Hall / J. Ford	Northing: 3758434.63	Easting: 635		
	Contrac	ctor:			ristensen	Total Depth of Borehole:	-		
Dates D					- 05/18/01	Depth to Water:	404.3' BGS	06/06/0)1
	le Type:				H 7 7/8" Mud Rotary	Well Type:	Monitoring W		
Ground	Elevatio	on:	3547	.36'		TOC Elevation:	3549.69'		
Completion Debth (Lt) Debth (Lt)		Lithology	USCS	J	Description		Sample	Sample Number	
		305		CL/ ML					
		-310-		SC	308-320' SAND, clayey, s reddish brown (5YR 5/3), f		4) to		
		320			320-330' SAND, silty, clay	yey, light brown (7.5YR 6/	4), fine		
		325		SC					
		335		SC	330-340' SAND, clayey, s (5YR 6/3), fine grain, well		rown		
		-340 	<u> </u>		340-360' SAND, clayey, tt 6/3), 60% fine grain, grade		rown (5YR		
		350		SC					
		355			360-380' SAND, silty, cla	vev trace small gravel red	dish brown	-	
		365			(5YR 6/4).	, . , , daee bilan gruvel, let			
		370		SM					
		380		SC	380-390' SAND, clayey, li grain.	ight reddish brown (5YR 6,	/4), fine		
		390		SC	390-450' SAND, clayey, li (5YR 7/4), fine grain.	ight reddish brown (5YR 6,	(4) to pink		
			///						

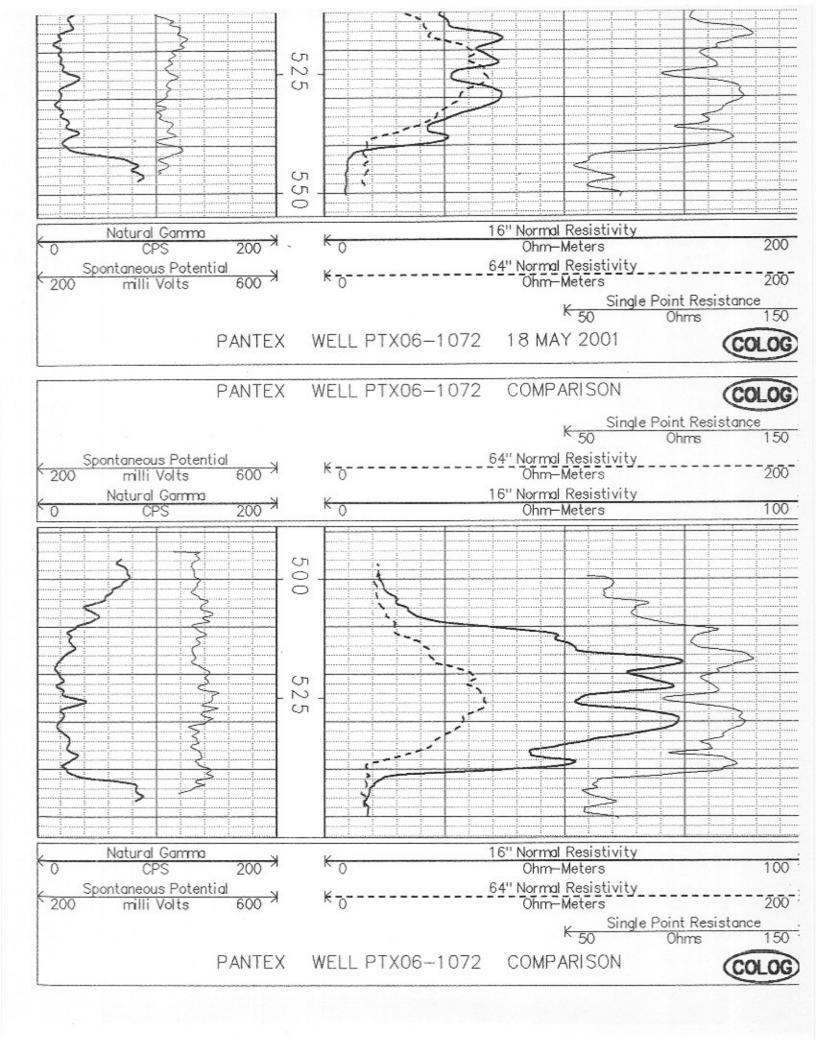
Pantex Multip		3641			Client:	dg. 11-36)	BWXT		marillo, Tex
Geologist:			nkm	an / T. Hall / J. Ford		3758434.63		635047.45	
Drilling Contra	ctor:			ristensen	-	h of Borehole:	557' BGS		
Dates Drilled:				- 05/18/01					01
Borehole Type:				H 7 7/8" Mud Rotary	Well Type				Stainless Ste
Ground Elevati	on:	3547.	36'		TOC Eleva	ation:	3549.69'		
Completion	Depth (Ft.)	Lithology	USCS]	Description	n		Sample	Sample Number
	405 410 415 420 425 430 435 440 445 450 455		SC	450-480' SAND, clayey, 5 (5YR 6/4), a bit harder.	% small gra	vel, light reddish	brown		
	460 465 470 475 480 485		SC	480-483' CLAY, sandy, da 5/6), hard. 483-491' SAND, gravelly,					
	490		SW	483-491 [°] SAND, gravelly, 7/2 -7/3), medium to coars small (1/4") gravel. 491-497 [°] CLAY, yellowis	e grain sand,	rounded pebble	s to		
	495		CL	plasticity.					
		11/1/	CH	497-512' CLAY, as above	except red (2	2.3 I K 4/6), more	e plastic.		

Project Number: Geologist: Drilling Contract Dates Drilled: Borehole Type: Ground Elevation		· 1 / / 7 1 1 / 7 7	Client:	BWXT Pantex			
Drilling Contract Dates Drilled: Borehole Type:	S. Br		1				
Dates Drilled: Borehole Type:	_	inkman / T. Hall / J. For		•	45		
Borehole Type:		e Christensen	Total Depth of Borehold				
• •		5/01 - 05/18/01	Depth to Water:	404.3' BGS 06/0			
Ground Elevation		ARCH 7 7/8" Mud Rota	• • • • • •	Monitoring Well, 4	I" Stainless Ste		
	n: 3547	.36'	TOC Elevation:	3549.69'	<u> </u>		
Completion	Depth (Ft.) Lithology	USCS	Description	Sample	Sample Number		
	-505 -510 -515 -520 -525 -530	SW to coarse grain wi	very pale brown to gray (10YR 7/3 h interbedded thin clay beds @ 52 '6), medium to high plasticity, har	20, 525, and			
	-535 -540 -545 -550 -555 -560 -565 -570 -575 -580 -585 -590 -595	 SW (5YR 8/1-7/1). 540-550' CLAY, (2.5YR 4/8 - 5/8) above), hard layer cuttings. CL 550-554' CLAY, s med. to cse. angul 554-557' CLAY, s med. to cse. angul 554-557' CLAY, s med. to cse. angul cH 554-557' CLAY, s Very stiff high pla Total Depth of Boc Fine Grain Zone 2 Geophysical log i Well Completion Borehole Diamete Conductor casing Total Depth of W 4-inch, Type 316 5' sump (543-548 90' screen (403-49 9' Backfill (548-5 bentonite seal (49) 	62' based on lithology notes adicates top of Permian redbeds at Details: r: 12" to 273', 8" 273-557' set with cement to 273' ell 548' tainless steel casing and 10-slot sc 0, 30' screen (513-543'), 20' blank (3'), 406' of blank (+3-403') 37'), 42' 10/20 CSS filter pack (506 8-506'), 110' 10/20 CSS filter pack (81-388'), 378' Volclay bentonite g	from (tstone in (asticity, om above). R 3/6 - 3/4), throughout. 540' BGS creen (493-513'), 5-548'), 8' ((388-498'),			

SOURCE SIZE, S/N	A.S.D.E.	LOGGING SPEED	MODULE TYPE, S/N	PROBE TYPE, S/N	TIME SINCE CIRC.	Rm at TEMP	FLUID TYPE	FLUID LEVEL	WITNESSED BY	RECORDED BY	TOP LOGGED INTERVAL	BTM LOGGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	LOG TYPE	RUN NUMBER	DATE ACQUIRED	DRILL MEAS. FROM:	LOG MEAS. FROM: GL	PERMANENT DATUM: GL	COM: S.M. WELL: PTX FLD: Pant ST: TX	tex f	1072 Plant		rson		GAMN	UNE	
S/N none		D 12 ft/min	S/N MGX II 1144	S/N 2PEA, 2078	RC. NA	NA	Water	NA	John Ford	T. Stootz	TERVAL GL	TERVAL 551'	R 552'	3R 557	GAMMA-ELECTRI¢	1	D May 18, 2001	ROM: GL	DM: GL 0.0 FT ABOVE PERM. DATUM	ATUM: GL ELEVATION: NA	SEC TWP RGE		STATE: TX COUNTY: Carson	FIELD: Pantex Plant	WELL: PTX06-1072	COMPANY: S.M. Stoller	GAMMA-ELECTRIC	PHONE: (303) 279-0171 F	COLOG Division of Layne Christensen Company
																					DEVIATION	ATUED CEDMARC.	9					Golden Colorado 80401 FAX: (303) 278-01 35	tensen Company
BOR	THO	IF	RFC	208	D	_		_		_		_	_		_	_		T	CAS	ING	RECORD	-	_	-			-		
BIT	-	_			_	NOS	1	-	-		TO)	-	-	-	-	-	1	-	E/W		FRO	M	-		T	0		
10 5	_				GL	-					-	74'					-	_	85	_		-2"	-			_	74'		
77/					27	74'		_		_	TC)		_		_		-											-
CON	IME	NT	S:			-												-	CO	MME	NTS:								


NA - NOT AVAILABLE, N/A - NOT APPLICABLE


DIGITAL FILES: 1062A.eb1, 1062.hdp


PANTEX WELL PTX06-1072 18 MAY 2001

COLOG Division of Layne GeoSciences, Inc. **Deviation Survey for:** S. M. Stoller Field: Pantex Plant Date: Depth Ref.: GL Well: PTX06-1072 **Total Depth:** Probe Type, S/N: 517.68

Depth	Inclination	Bearing	ClosureLength	ClosureDist.	ClosureDepth	Northing	Easting	TrueDepth	Dist.Sum	NorthSum	EastSum
(feet)	(degrees)	(degrees)	(line ft.)	(horiz. ft.)	(vertical ft.)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
0.00	0.84	290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
52.39	1.04	231	52.39	0.95	52.38	-0.60	-0.74	52.38	0.95	-0.60	-0.74
100.02	1.21	131	47.63	1.01	47.62	-0.66	0.76	100.00	1.26	-1.26	0.02
150.08	1.33	42	50.06	1.16	50.05	0.86	0.78	150.05	0.89	-0.39	0.80
200.02	1.26	94	49.94	1.10	49.93	-0.08	1.10	199.98	1.95	-0.47	1.89
250.33	1.04	15	50.31	0.91	50.30	0.88	0.24	250.28	2.17	0.41	2.13
300.05	1.27	73	49.72	1.10	49.71	0.32	1.05	299.98	3.27	0.73	3.18
350.12	1.24	45	50.07	1.08	50.06	0.77	0.77	350.04	4.22	1.50	3.95
400.75	1.54	18	50.63	1.36	50.61	1.29	0.42	400.65	5.19	2.79	4.37
450.05	1.71	9	49.30	1.47	49.28	1.45	0.23	449.93	6.26	4.25	4.60
500.14	2.02	353	50.09	1.77	50.06	1.75	-0.22	499.99	7.43	6.00	4.38
517.83	0.96	27	17.69	0.30	17.69	0.26	0.13	517.68	7.72	6.26	4.52
								True Depth	DistSum	NorthSum	EastSum
								517.68	7.72	6.26	4.52

Page 1 of 1

SLP

5/18/2001

Definitions
Bearing = Azimuth Degrees from Magnetic North (Raw Data)
ClosureDistance = Horizontal Feet Between Each Station
ClosureDepth = Vertical Feet Between Each Interval
Northing = North/South Component of Horizontal Distance Between Each Station (Negative = South) (Closure Dist.) x cos(Bearing)
Easting = East/West Component of Horizontal Distance Between Each Station (Negative = West) (Closure Dist.) x sin(Bearing)
TrueDepth = Vertical Depth from the Surface to This Station
DistanceSum = Horizontal Distance from Wellhead to this Station
NorthSum = North/South Component of Horizontal Distance from the Wellhead to This Station (Negative = South) Running Sum of Northing
EastSum = East/West Component of Horizontal Distance from the Wellhead to This Station (Negative = West) Running Sum of Easting

Sheet2

			Example	equations:		
Stoller's raw	/ data		=B5-B4	=C5-C4	=SQRT(B5 [^]	2+C5^2)
east	north	depth				
0.000	0.000	0.000	Calculatio	ons by PX	GIS	
-0.739	-0.598	52.381	-0.74	-0.60	0.951	
0.020	-1.258	100.001	0.76	-0.66	1.258	
0.798	-0.395	150.047	0.78	0.86	0.890	
1.893	-0.471	199.975	1.10	-0.08	1.951	
2.129	0.411	250.277	0.24	0.88	2.169	
3.183	0.733	299.985	1.05	0.32	3.266	
3.949	1.499	350.043	0.77	0.77	4.224	
4.370	2.793	400.655	0.42	1.29	5.186	
4.600	4.246	449.933	0.23	1.45	6.260	
4.385	5.999	499.992	-0.22	1.75	7.430	
4.519	6.263	517.679	0.13	0.26	7.723	

Contractor:

Contract #:

OPTIX #:

Included Documents

Drilling Log
Draft
Final
Installation Log
Lithologic Logs
Draft
Final
Geophysical Logs
Neutron
Gamma
e-log
Bond Log
Deviation log

____State Well Report

7/11/02

APEX SURVEYING & MAPPING, Inc.

Phone (806) 353-7231 Fax (806) 353-7232

1619 S KENTUCKY B-202 AMARILLO, TX 79102-2202

May 15, 2002

Llano Permian Environmental Attn: Clay Wright 921 N. Bivins Street Amarillo, Texas 79107

Re: Coordinates for new monitor wells at the USDOE Pantex Plant, Carson County, Texas

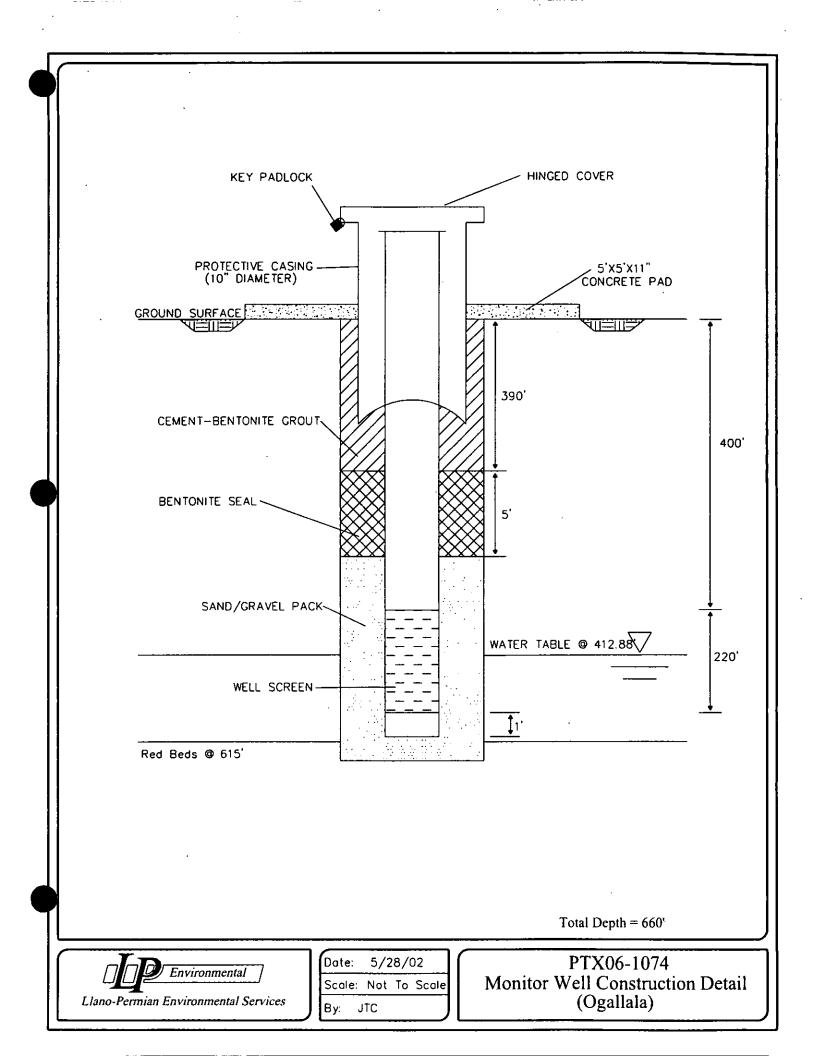
	Name	Northing	Easting	Elevation	Description
	PTX-06-1074	3,765,626.52	620,994.02	3573.36' 3576.20' 3573.2'	Brass Cap Top Casing Ground
)	PTX-06-1075	3,753,624.01	630,512.54	3544.25' 3546.52' 3544.0'	Brass Cap Top Casing Ground

 3525.68'
 Brass Cap

 3528.34'
 Top Casing

 3525.5'
 Ground

Coordinates and elevations are relative to Pantex NAD83 - NAVD88 Control network as established by "Kelley and Associates".


The undersigned does hereby certify that this survey was made upon the ground the 14th Day of May, 2002, by myself or others under my direct supervision and is true and correct. The undersigned further certifies that this survey meets or exceeds the required 1 foot horizontal and vertical accuracies, as set forth by Llano Permian Environmental specifications.

637,327.32

- Marine - M	
CURT MCPHERSON	
REGISTERED PROFESSIONAL LAND SURVEYOR REG. NO. 5275 AMARILLO, TEXAS	
DATE: <i>3/13/02</i>	

202-179-1.wps

MONITORING WELL LOG WELL NO. PTX06-1074

DESCRIPTION

Light brown 5yr5/6 silty clay, some sand, very fine grained,

Moderate yellowish brown 10yr5/4 silty clay, some sand, very

Pale yellowish brown 10yr6/2 sandy, silty clay, very fine grained, poorly sorted, dry Light brown 5yr5/6 clayey silt, some sand, very fine grained,

Grayish orange 10yr7/4 clayey silty sand, very fine grained, well sorted, dry, subangular to subrounded Grayish orange 10yr7/4 silty sand, very fine grained, well

Moderate yellowish brown 10yr5/4 clayey silty sand, very fine grained, well sorted, dry, subangular to subrounded, some

Moderate yellowish brown 10yr5/4 clayey sand, very fine to fine grained, dry, subangular, some caliche nodules

Grayish orange 10yr2/4 sand, fine to medium grained, dry,

Dark yellowish orange 10yr6/6 silty sand, very fine to fine

Moderate yellowish brown 10yr5/4 clayey silty sand, very fine

LOCATION: Approximately 0.25-I	Mile North of West Gate, Pantex Plant
DRILLER: THF Drilling	DATE DRILLED: March 26, 2002
WATER DEPTH: 412.88'	LOGGER: Clay Wright

poorly sorted, dry

well sorted, dry

caliche nodules

subangular

subangular to subrounded grains

sorted, dry, subangular to subrounded

grained, subangular, well sorted

fine grained, poorly sorted, dry

Well Construction

Diagram Samplei Soil Graphic

DEPTH (ft.)

0

15

30

45

60

75

90

PROJECT NO .: PTX0030GA ELEVATION: 3573.2 Surface DATE COMPLETED: April 10, 2002 COMPLETION DEPTH: 660 feet

PROTECTIVE

COVER TYPE: 10" dia.

steel upright locking

SURFACE COMPLETION:

Type:	Concrete	
Size:	5'x5'x11"	
Total D	Depth of Concrete:	10'

GROUT:

Type:	Portland	8% Bentonite	
Total T	hickness:	390	

CASING:

Diameter:	er: <u>4" Stainless Steel</u>	
Length:	402	
Stick Up:	2'	

SEAL

Туре:	Bentonite Chip		
Quantity:	14 bags		
Total Thick	ness:5'		

SCREEN

Туре:	Stainless Steel
Diameter:	4"
Slot Size:	0.010
Screened Ir	terval(s): 400'-620'

COMMENTS

105

PAGE 1 of 7

LLANO-PERMIAN ENVIRONMENTAL SERVICES

MONITORING WELL LOG WELL NO. PTX06-1074

DESCRIPTION

Moderate yellowish brown 10yr5/4 clayey sand, very fine to

Dark yellowish orange 10yr6/6 clayey sand, fine to coarse

Moderate yellowish brown 10yr5/4 clayey sand, fine to medium

Moderate brown 5yr4/4 silty sand, very fine to medium grained, moderately sorted, subangular to subrounded, dry

Grayish orange 10yr7/4 silty sand, very fine to medium grained,

Dark yellowish brown 10yr6/6 silty clayey sand, very fine to medium grained, poorly sorted, dry, subangular to subrounded

to medium grained, dry, subangular, poorly sorted

medium grained, dry, subangular, poorly sorted

grained, poorly sorted, subangular, dry

grained, dry, subangular, poorly sorted

moderately sorted, subangular, slightly damp

PROJECT: Assessment of the Ogallala Aquifer Sentinel Wells		
LOCATION: Approximately 0.25-M	lile North of West Gate, Pantex Plant	
DRILLER: THF Drilling	DATE DRILLED: March 26, 2002	
WATER DEPTH: 412.88'	LOGGER: Clay Wright	

PROJECT NO .: PTX0030GA ELEVATION: 3573.2 Surface DATE COMPLETED: April 10, 2002 COMPLETION DEPTH: 660 feet

PROTECTIVE

COVER TYPE: 10" dia.

steel upright locking

SURFACE COMPLETION:

Туре:	Concrete	
Size:	5'x5'x11"	
Total Dept	h of Concrete:	10'

GROUT:

Type:	Portland	8%	Bentonite
Total T	hickness:		390

CASING:

Diameter:	4" Stainless Steel		
Length:	402		
Stick Up:	2'		

SEAL

Type: Ben	Bentonite Chip		
Quantity:	14 bags		
Total Thickness:	5'		

SCREEN

Type:	Stainless Steel
Diameter:	4"
Slot Size:	0.010
Screened In	terval(s): 400'-620'

COMMENTS

Figure

DEPTH (ft.)

120

135

150

165

180

195

210

Construction

Well

Diagram Sampler Soil Graphic

dry

LLANO-PERMIAN ENVIRONMENTAL SERVICES

MONITORING WELL LOG

WELL NO. PTX06-1074

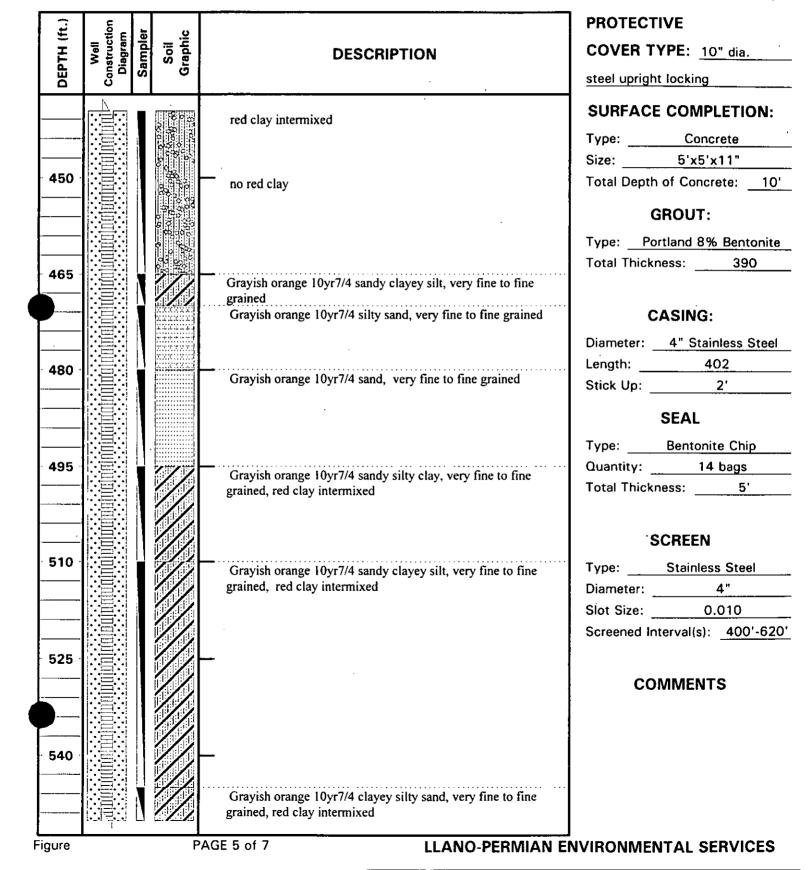
PROJECT: Assessment of the Ogallala Aquifer Sentinel Wells PROJECT NO.: PTX0030GA LOCATION: Approximately 0.25-Mile North of West Gate, Pantex Plant ELEVATION: 3573.2 Surface DRILLER: THF Drilling DATE DRILLED: March 26, 2002 DATE COMPLETED: April 10, 2002 WATER DEPTH: 412.88' LOGGER: Clay Wright COMPLETION DEPTH: 660 feet

PROTECTIVE Well Construction DEPTH (ft.) Soil Graphic Sampler Diagram COVER TYPE: 10" dia. DESCRIPTION steel upright locking SURFACE COMPLETION: Type: Concrete 225 very fine to fine grained Size: 5'x5'x11" Total Depth of Concrete: 10' very fine grained **GROUT:** Type: Portland 8% Bentonite 240 Total Thickness: 390 Very pale orange 10yr8/2 silty sand, very fine to medium grained poorly sorted subangular, dry CASING: Very pale orange 10yr8/2 sandy silt, very fine to medium grained poorly sorted subangular, dry Diameter: <u>4" Stainless Steel</u> 255 Length: _____402 Stick Up: _____ 2' Grayish orange 10yr7/4 sand, med to very coarse grained, poorly sorted, subangular to angular Dark yellowish orange 10yr6/6 clayey silty sand, very fine to SEAL fine grained, subangular to subrounded 270 Type: _____ Bentonite Chip _____ Very pale orange 10yr8/2 sandy silt, very fine to fine grained, well sorted, subangular to subrounded Quantity: 14 bags Total Thickness: 5' Grayish orange 10yr7/4 sandy silt, very fine to fine grained, well sorted, subangular to subrounded 285 SCREEN Type: Stainless Steel Grayish orange 10yr7/4 clayey sandy silt, very fine grained, Diameter: 4" well sorted, subrounded Slot Size: 0.010 Screened Interval(s): 400'-620' 300 COMMENTS 315

Figure

MONITORING WELL LOG

•

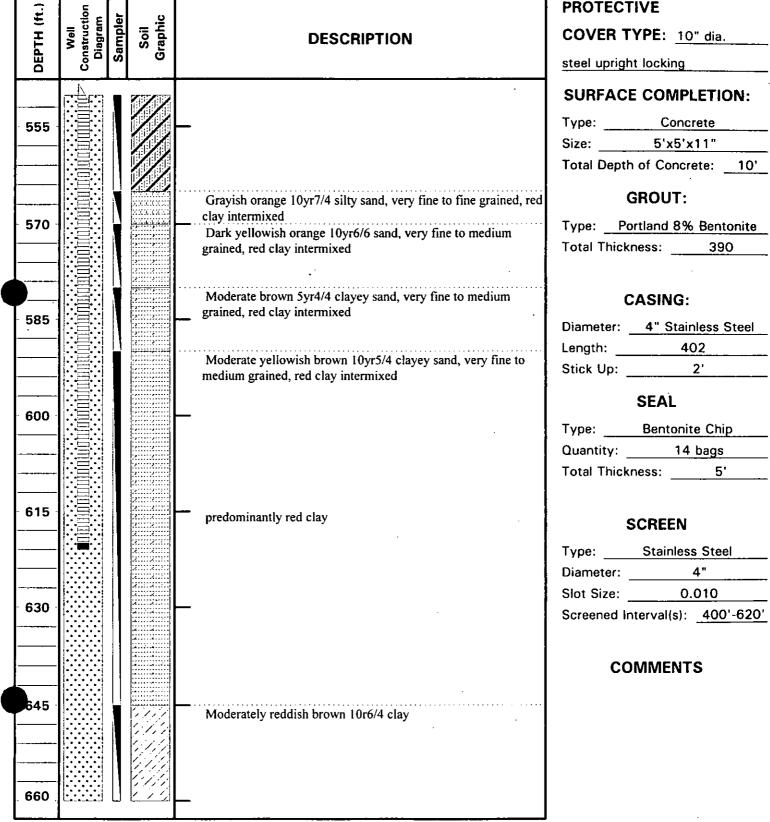


.

PRO	JECT: Ass	essment o	f the Ogallala Aquifer Sentinel Wells	ROJECT NO.: PTX0030GA
			ly 0.25-Mile North of West Gate, Pantex Plant E	
			DATE DRILLED: <u>March 26, 2002</u> D	
			LOGGER: Clay Wright C	
DEPTH (ft.)	Weil Construction Diagram Sampler	Soil Graphic	DESCRIPTION	PROTECTIVE COVER TYPE: <u>10" dia.</u> steel upright locking
330				SURFACE COMPLETION: Type: Concrete Size: 5'x5'x11" Total Depth of Concrete: 10' GROUT: Type: Portland 8% Bentonite Total Thickness: 390
375 390			Grayish orange 10yr7/4 clayey sandy silt, very fine to medium grained, subangular intermixed red clay Grayish orange 10yr7/4 clayey silty sand, very fine to medium grained, subangular, intermittent caliche nodules	CASING: Diameter: <u>4" Stainless Steel</u> Length: <u>402</u> Stick Up: <u>2'</u> SEAL
405			clayey sandy silt - Pale yellowish orange 10yr8/6 sandy silt, very fine to medium grained, subangular	Type: <u>Stainless Steel</u> Diameter: <u>4"</u> Slot Size: <u>0.010</u> Screened Interval(s): <u>400'-620'</u>
420		2010 10 10 10 10 10 10 10 10 10 10 10 10	- Grayish orange 10yr7/4 silty sand, very fine to medium grained subangular	COMMENTS

MONITORING WELL LOG

PROJECT: Assessment of the Ogallala Aquifer Sentinel Wells		PROJECT NO.: PTX0030GA
LOCATION: Approximately 0.25	Mile North of West Gate, Pantex Plant	ELEVATION: 3573.2 Surface
DRILLER: THF Drilling	DATE DRILLED: March 26, 2002	DATE COMPLETED: April 10, 2002
WATER DEPTH: <u>412.88'</u>	LOGGER: Clay Wright	COMPLETION DEPTH: 660 feet



MONITORING WELL LOG

WELL NO. PTX06-1074

PROJECT: Assessment of the Oga	Ilala Aquifer Sentinel Wells
LOCATION: Approximately 0.25-N	lile North of West Gate, Pantex Plant
DRILLER: THF Drilling	DATE DRILLED: March 26, 2002
WATER DEPTH: 412.88'	LOGGER: Clay Wright

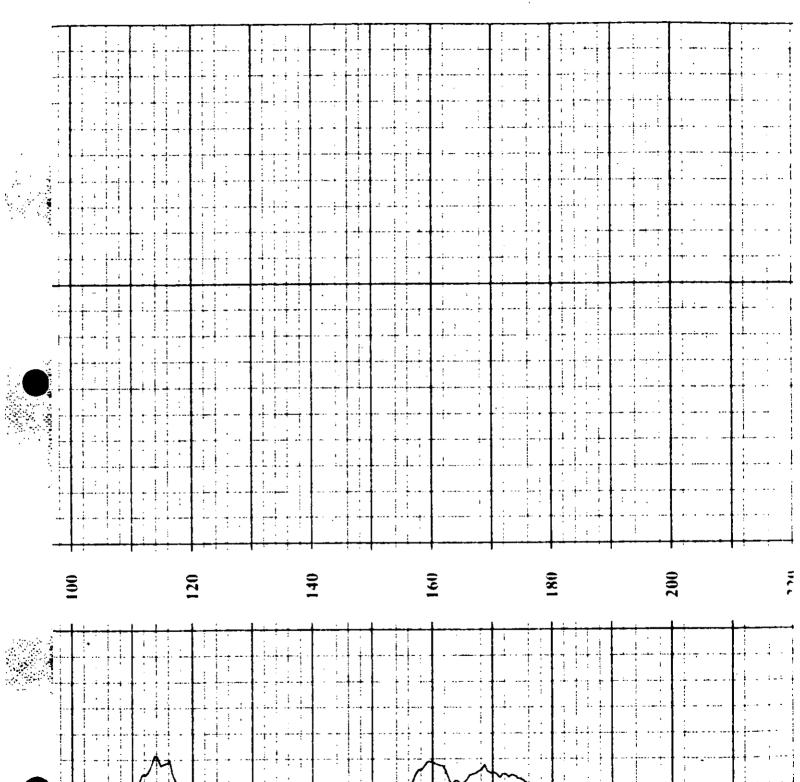
PROJECT NO.: <u>PTX0030GA</u> ELEVATION: <u>3573.2 Surface</u> DATE COMPLETED: <u>April 10, 2002</u> COMPLETION DEPTH: 660 feet

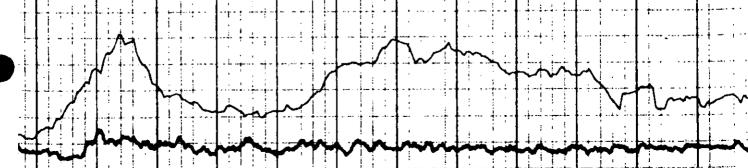
Figure

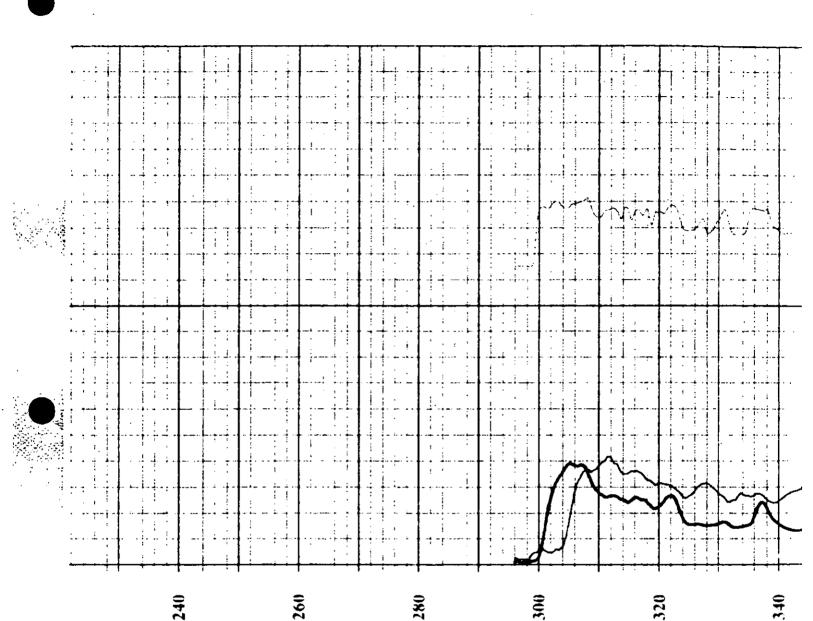
 PROJECT:
 Assessment of the Ogallala Aquifer Sentinel Wells
 PROJECT NO.: PTX0030GA

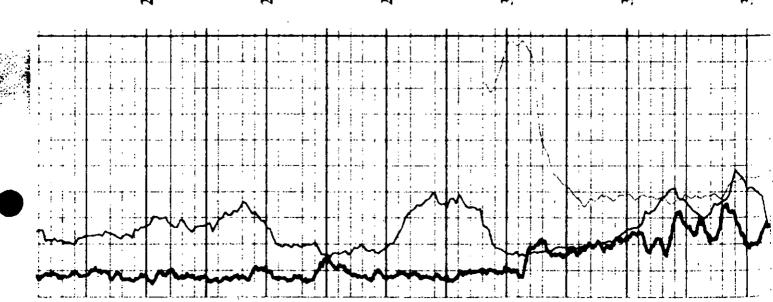
 LOCATION:
 Approximately 0.25-Mile North of West Gate, Pantex Plant
 ELEVATION: 3573.2 Surface

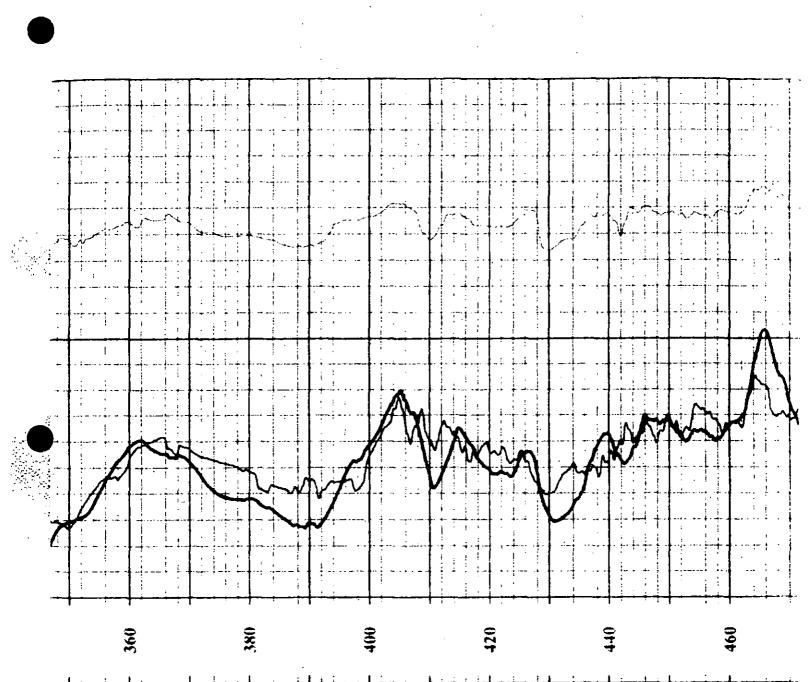
 DRILLER:
 THF Drilling
 DATE DRILLED:
 March 26, 2002
 DATE COMPLETED:
 April 10, 2002


 WATER DEPTH:
 412.88'
 LOGGER:
 Clay Wright
 COMPLETION DEPTH:
 660 feet

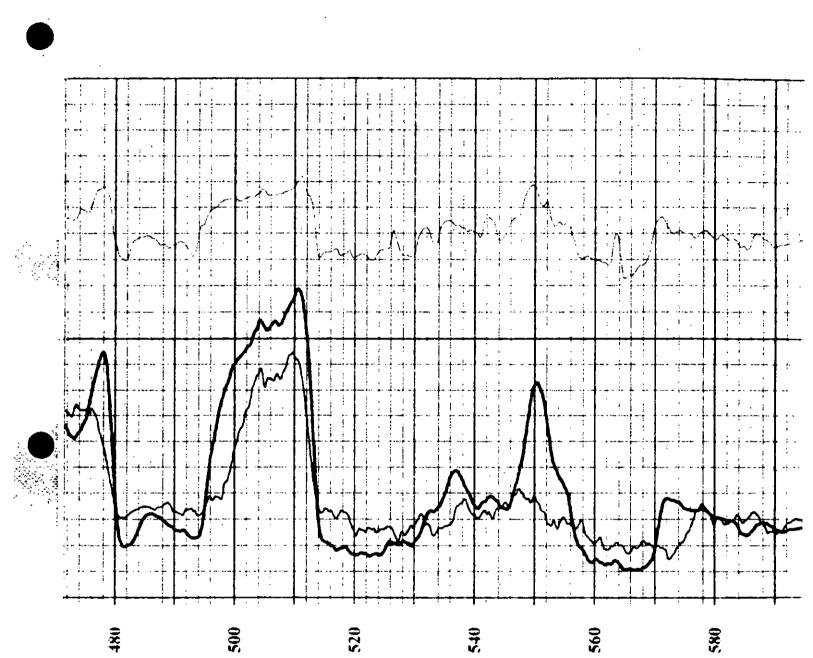

DEPTH (ft.)	Well Construction Diagram	Sampler	Soil Graphic	DESCRIPTION	PROTECTIVE COVER TYPE: <u>10" dia.</u>
DEI	Co Co	S	9		steel upright locking
				Bottom of Hole - 660'	SURFACE COMPLETION:
					Type: <u>Concrete</u>
					Size: 5'x5'x11"
					Total Depth of Concrete: 10'
· 675 ·					GROUT:
					Type:
					Total Thickness: 390
690 -					
					CASING:
· .					Diameter: <u>4" Stainless Steel</u>
					Length: 402
705					Stick Up:2'
					SEAL
					Type: <u>Bentonite Chip</u>
					Quantity:14 bags
720					Total Thickness: 5'
					SCREEN
				•	Type: <u>Stainless Steel</u>
735					Diameter: 4"
					Slot Size: 0.010
					Screened Interval(s): 400'-620'
750					COMMENTS
[
765					1
Figure	L		F	AGE 7 of 7	

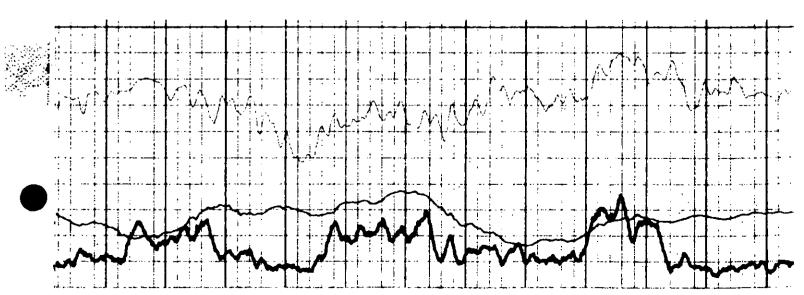

Con		COI	log d	ivision (of Layn	e Chris	tensen Compa
COL	1	17301 West Colfax. Suite 265, Golden Colorado 80401 Office 303.279.0171, Fax 303.278.0135					
	COMPAN	Y Llan	o Permi:	an Enviror	mental		·····
	WELL	PTN	06-1074				
			x Plant				
=	FIELD						
Llane Permian PTX06-1074 Pantey Plant Carson TX	COUNTR	<u>Y USA</u>			<u> </u>	TATE	lexas
Liano Pernu PTX06-1074 Pantev Plan Carson TX	LOCATION						OTHER SERVICES
PTX06-1 PTX06-1 Pantex F Carson TX	Amarílio, Lexas	5					
CO WELL FLD CTY STE	SEC NA		/P NA	514 ¹	E NA		
	5EX (87)	1 1	P NA	KG	FN/N		
		••••			5 K A	. 1	
PERMANENT DATU	UM GROUND LEV	'El		ELEVATIO	DN NA		
	GT GROUND LEV		.0 AI	ELEVATIO BOVE PERM			
OG MEAS, FROM	GT	0	. 0 Al				
JOG MEAS, FROM DRILLING MEAS, F	GT ROM GROUND	0 Level		BOVE PERN	AINAN'E DA	ATUM	
JOG MEAS, FROM DRILLING MEAS, F DATE ACQUIRED	GT	0 Level	.0 Al	BOVE PERN		ATUM	
LOG MEAS, FROM DRILLING MEAS, F DATE ACQUIRED REN SUMBER	G I (ROM - GROUND 	0 LEVEL 12	10 April	BOVE PFRN 2002	iinan'i Da 3 May 2	2002	
JOG MEAS, FROM DRILLING MEAS, F DATE ACQUIRED REN SUMBER 1764 LYPE	G I ROM GROUND 10 April 200 1 Natural Gan	0 LEVEL 12		BOVE PFRN 2002	AINAN'E DA	2002	
OG MEAS, FROM DRILLING MEAS, F DATE ACQUIRED REN NUMBER 176G TYPE 96: PTH-DRILLER	G I (ROM - GROUND 	0 LEVEL 12	10 April	BOVE PFRN 2002	iinan'i Da 3 May 2	2002	
DRILLING MEAS. FROM DRILLING MEAS. F DATE ACQUIRED REN SUMBER DREN TO PE DEPTH-DRILLER DEPTH-LOGGER	G I ROM GROUND 10 April 200 1 Natural Gan 650 ft 651 ft	0 LEVEL 12	10 April	BOVE PFRN 2002	iinan'i Da 3 May 2	2002	
DG MEAS, FROM DRILLING MEAS, F DATE ACQUIRED RENSUMBER DEPTH-DRILLER DEPTH-DRILLER DEPTH-LOGGER BTM LOGGED INTER	G I ROM GROUND 10 April 200 1 Natural Gan 650 ft 651 ft RVAL 648 ft RVAL 648 ft RVAL 0.0 ft	0 LEVEL 12	10 April 1 Electric	BOVE PFRN 2002	tiNANT ()/ 3 May 2 Deviati 623 ti 2 fi	ATUM 2002 Ion Log	
LOG MEAS. FROM DRILLING MEAS. F DATE ACQUIRED REN SUMBER DEPTH-DRILLER DEPTH-LOGGER BTM LOGGED IN TER RECORDED BY	G I (ROM GROUND 10 April 200 1 Natural Gan 650 ft 651 ft RVAL 648 ft RVAL 648 ft RVAL 0.0 ft M. Whitney	0 [E V]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	10 April 1 Electric 651 ft	BOVE PFRN 2002	tiNANT D 3 May 2 Deviati 623 ti 2 ti N. Day	ATUM 2002 ion Log	
OG MEAS. FROM DRILLING MEAS. F DATE ACQUIRED REN NUMBER DEPTH-DRILLER DEPTH-LOGGER BTM LOGGED INTER FOP LOGGED INTER RECORDED BY	G I ROM GROUND 10 April 200 1 Natural Gan 650 ft 651 ft RVAL 648 ft RVAL 648 ft RVAL 6.0 ft M. Whitney Clay Wright	0 [{ { V }]]]2]]]]]]]	10 April 1 Electric 651 ft 296 ft	BOVE PERM	AINANT DA 3 May 2 Deviati 623 fi 2 fi N. Day Clay W	ATUM 2002 ion Log	
OG MEAS. FROM DRILLING MEAS. F DATE ACQUIRED REN SUMBER DEPTH-DRILLER DEPTH-DRILLER DEPTH-LOGGER BTM LOGGED INTER RECORDED BY MILNESSED BY PROBE TYPE, S/N	GT ROM GROUND 10 April 200 1 Natural Gan 650 ft 651 ft RVAL 648 ft RVAL 648 ft RVAL 648 ft Clay Wright 2PGA, 2275	0 [{ { V }]]]2]]]]]]]	10 April 1 <u>Electric</u> 651 ft 296 ft 2PFA. 3	BOV E PFRM 2002 Log	a May 2 Deviati 623 fi 2 fi N. Dav Clay W 2PDA	ATUM 2002 Ion Log is fright	
OG MEAS. FROM DRILLING MEAS. F DATE ACQUIRED REN SUMBER DEPTH-DRILLER DEPTH-LOGGER BTM LOGGED IN TEI FUP LOGGED IN TEI RECORDED BY WIINESSED BY PROBE TYPE, S/N LOGGING SPEED	G I ROM GROUND 10 April 200 1 Natural Gam 650 ft 651 ft RVAL 648 ft RVAL 648 ft RVAL 0.0 ft M. Whitney Clay Wright 2PGA, 2272 17 ft/min	0 [{ { V }]]]2]]]]]]]	10 April 1 Electric 651 ft 296 ft	BOV E PFRM 2002 Log	AINANT D 3 May 2 Deviati 623 th 2 th N. Dav Clay W 2PDA 20 fcm	ATUM 2002 Ion Log is fright	
OG MEAS. FROM DATE ACQUIRED RENSUMBER DATE ACQUIRED RENSUMBER DEPTH-DRILLER DEPTH-DRILLER DEPTH-LOGGER BTM LOGGED IN TEL RECORDED BY MILNESSED BY PROBE TYPE, S/N LOGGING SPEED A.S.D.E.	G I ROM GROUND 10 April 200 1 Natural Gan 650 ft 651 ft RVAL 648 ft RVAL 648 ft RVAL 0.0 ft M. Whitney Clay Wright 2PGA, 2279 17 ft/min 0.1 ft	0 [{ { V }]]]2]]]]]]]	10 April 1 Electric 651 ft 296 ft 296 ft 2PFA. 1 17 ft/mi	BOV E PFRM 2002 Log	AINANT DA 3 May 2 Deviati 623 fi 2 fi N. Dav Clay W 2PDA 20 fem 0.5 fi	ATUM 2002 Ion Log is fright	
OG MEAS. FROM DRILLING MEAS. F DATE ACQUIRED RENSUMBER DEPTH-DRILLER DEPTH-DRILLER DEPTH-LOGGER BTM LOGGED IN FEF RECORDED BY WIINESSED BY PROBE TYPE, S/N LOGGING SPEED A.S.D.E. SAMPLE INTERVAL	G I ROM GROUND 10 April 200 1 Natural Gam 650 ft 651 ft RVAL 648 ft RVAL 648 ft RVAL 0.0 ft M. Whitney Clay Wright 2PGA, 2279 17 ft/min 0.1 ft 0.1 ft	0 [{ { V }]]]2]]]]]]]	10 April 1 <u>Electric</u> 651 ft 296 ft 2PFA. 3	BOVE PERM 2002 Log 2529 n	AINANT D 3 May 2 Deviati 623 th 2 th N. Dav Clay W 2PDA 20 fcm	ATUM 2002 Ion Log is fright	
ACG MEAS. FROM DRILLING MEAS. F DATE ACQUIRED REN NUMBER DEPTH-DRILLER DEPTH-DRILLER DEPTH-LOGGER BTM LOGGED IN FER RECORDED BY PROBE TYPE, S/N LOGGING SPEED A.S.B.E. SAMPLE INTERVAL HOREHOLE RECOI	G I ROM GROUND 10 April 200 1 Natural Gam 650 ft 651 ft RVAL 648 ft RVAL 648 ft RVAL 0.0 ft M. Whitney Clay Wright 2PGA, 2279 17 ft/min 0.1 ft 0.1 ft	0 [{ { V }]]]2]]]]]]]	10 April 1 Electric 651 ft 296 ft 296 ft 2PFA. 1 17 ft/mi	BOVE PERM 2002 Log 2529 n	tiNANT D 3 May 2 Deviati 623 ti 2 ft N. Dav Clay W 2PDA 20 fcm 0.5 ft 0.5 ft	ATUM 2002 Ion Log is fright	1
PERMANENT DATO LOG MEAS, FROM DRILLING MEAS, F DRILLING MEAS, F DATE ACQUIRED RENSTMBER DEPTH-DRILLER DEPTH-DRILLER DEPTH-DRILLER DEPTH-LOGGED INTER BTM LOGGED INTER FROM LOGGED INTER RECORDED BY WIINESSED BY PROBE TYPE, S/N LOGGING SPEED A.S.D.E. SAMPLE INTERVAL HOREHOLE RECOI RENNO BIT 10.8751	G I (ROM GROUND 10 April 200 1 Natural Gam 650 ft 651 ft RVAL 648 ft RVAL 648 ft RVAL 648 ft QAL 0.0 ft M. Whitney Clay Wright 2PGA, 2279 17 ft/min 0.1 ft 0.1 ft 0.1 ft. RD	0 (E V) 1)2 1ma	10 April 1 Flectric 651 ft 296 ft 296 ft 2PFA, 3 17 ft/mi 0,1 ft	BOVE PERM 2002 Log 2529 n CASING	4iNANT 0/ 3 May 2 Deviati 623 fi 2 fi N. Dav Clay W 2PDA 20 fem 0.5 fi 0.5 fi 0.5 fi	ATU:M 2002 ion Log is fright in	1 FO . 300 I-t.

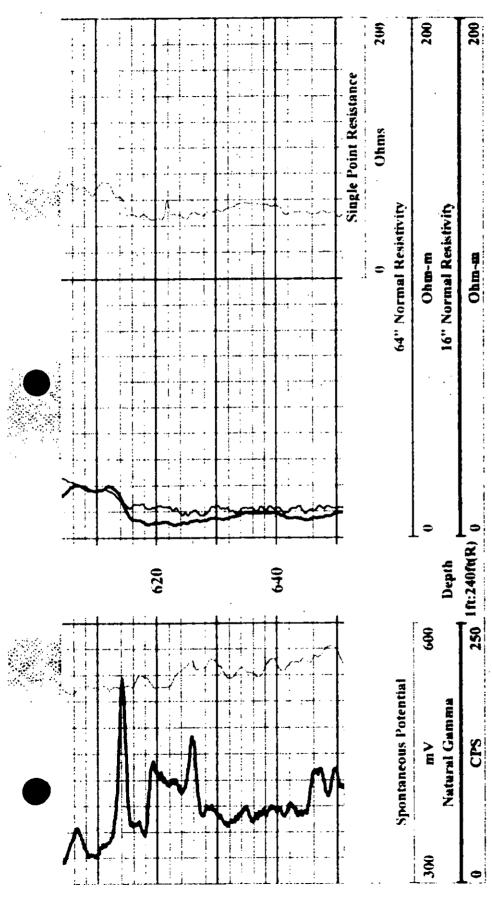

•


CPS 250 1ft: 2401(US) 0 0.0m-m 200 0 Incluation 0 0 0 0 200 0 Incluation 0 0 0 0 200 0 Incluation 0 0 0 0 0 200 0 Incluation 10 0		Natural Gamma]	Depth		16" Normal Resistivity	
600 0 0 0 0 0 0 0 0 0 m m m single Point Resistance 0 0 0 m m m single Point Resistance 0 0 0 m m m single Point Resistance 0 0 0 0 m m single Point Resistance 0 0 0 0 0 m m single Point Resistance 0 0 0 0 m m single Point Resistance 0 0 0 0 0 m m single Point Resistance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	CPS	132			()hai-m	204
Inclination Inclinatio Inclination Inclination Inclination Inclination Inclina	ļ	Spontaeous Potential	•	Ŧ		64" Normal Resistivity	
	90	mV Inclination	600	-			
		1	ur,			1	
	m						
	C	······································	+ + + + + + + + + + + + + + + + + + +				
	-			₽ -+-			
	2		· ·		· · · ·		4 7
	1			20 +			
	~						
	N						
	Y.			}− : -			
	**		-	•			
	~	· · · · · · · · · · · · · · · · · · ·	+	+ 9			
				- +			
	~			+ . 09			· · · · · · · · · · · · · · · · · · ·
			-	<u>.</u>			
			- + - +	1			· 4.
				₹			
	- :						
				-+-+- \$2			
				1 			
				₩			









.

PTX06-1075

Contractor:

Contract #:

OPTIX #:

Included Documents

___Drilling Log ___Draft ____Final

Installation Log

_Lithologic Logs Draft ____Final

____Geophysical Logs

____Neutron

____Gamma

___e-log

Bond Log Deviation log

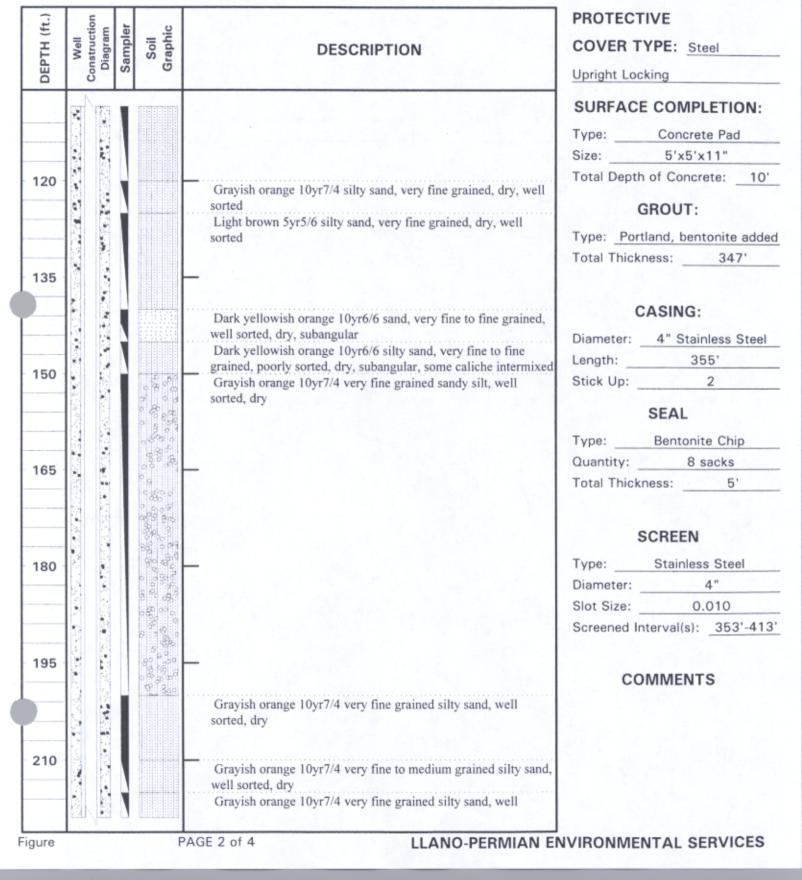
____State Well Report

LOCATION: Pantex Plant, Zone 10 South DRILLER: THF Drilling DATE DRILLED: 4/19/02

WATER DEPTH: 355.28 LOGGER: Clay Wright

PROJECT NO .: PTX0030GA ELEVATION: 3544.25 Brass DATE COMPLETED: 5/5/02 COMPLETION DEPTH: 415 feet

DEPTH (ft.)	Well Construction Diagram	Sampler	Soil Graphic	DESCRIPTION	PROTECTIVE COVER TYPE: <u>Steel</u> Upright Locking		
0				Light brown 5yr5/6 sandy clay, very fine grained, well sorted, dry	SURFACE COMPLETION: Type: Concrete Pad Size: 5'x5'x11"		
15				Moderate brown 5yr4/4 sandy clay, very fine grained, well sorted, dry Moderate brown 5yr4/4 sandy silty clay, very fine grained, well sorted, dry, caliche nodules	Total Depth of Concrete: <u>10'</u> GROUT: Type: <u>Portland, bentonite addec</u> Total Thickness: <u>347'</u>		
30			H)H	Light brown 5yr5/6 silty clay, dry, some caliche Moderate brown 5yr4/4 sandy silty clay, well sorted, very fine grained, dry Light brown 5yr6/4 silty clay, well sorted, dry some caliche intermixed	CASING: Diameter: <u>4" Stainless Steel</u> Length: <u>355'</u> Stick Up: <u>2</u>		
45				Light brown 5yr6/4 silty sand, very fine grained, well sorted, dry Light brown 5yr5/6 silty clay, very fine grained, dry, well sorted	SEAL Type: Bentonite Chip Quantity: 8 sacks Total Thickness: 5'		
60			0 0	Light brown 5yr5/4 sandy silt, very fine grained, dry, well sorted, caliche nodules	SCREEN		
75			20,23,4,85,94,85,94 20,23,4,85,94,95 20,23,4,4,5,9,5,9,5		Type: <u>Stainless Steel</u> Diameter: <u>4</u> " Slot Size: <u>0.010</u> Screened Interval(s): <u>353'-413</u>		
90			10,00,000 10,00,000 10,0000 10,0000 10,0000 10,0000 10,0000 10,0000 10,0000 10,0000 10,0000 10,0000 10,0000 10,0000 10,0000 10,00000000	some clay Light brown 5yr5/6 silty sand, very fine grained, dry, well sorted, some caliche nodules Light brown 5yr6/4 silty sand, very fine grained, dry, well	COMMENTS		
105				sorted	VVIRONMENTAL SERVICES		

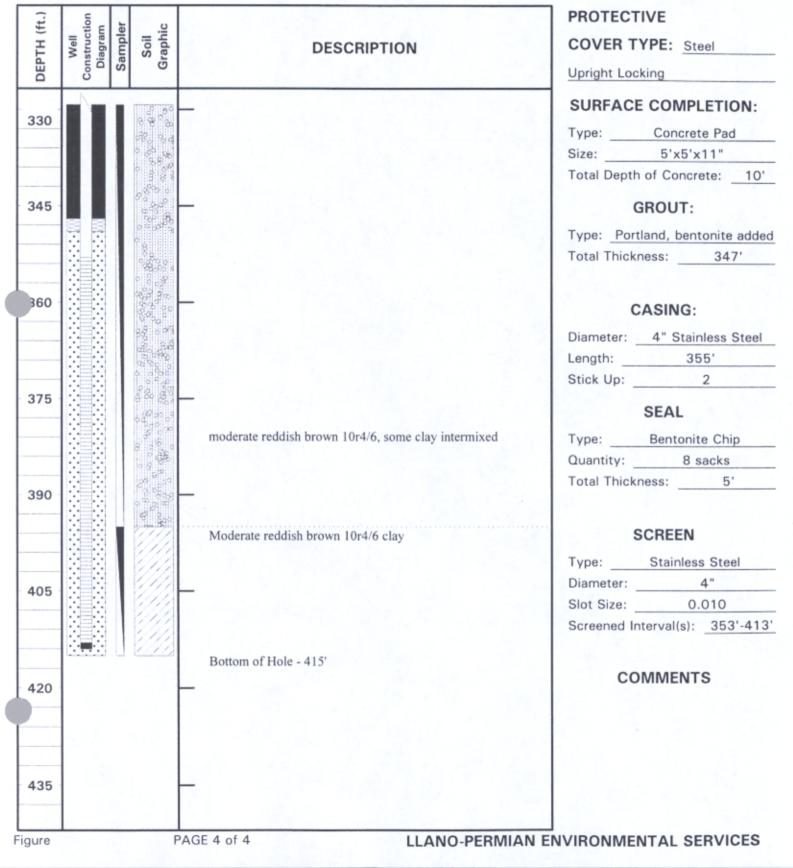

MONITORING WELL LOG

 PROJECT:
 Assessment of the Ogallala Aquifer Sentinel Wells
 PROJECT NO.: PTX0030GA

 LOCATION:
 Pantex Plant, Zone 10 South
 ELEVATION: 3544.25 Brass

 DRILLER:
 THF Drilling
 DATE DRILLED: 4/19/02
 DATE COMPLETED: 5/5/02

 WATER DEPTH:
 355.28
 LOGGER:
 Clay Wright
 COMPLETION DEPTH: 415 feet

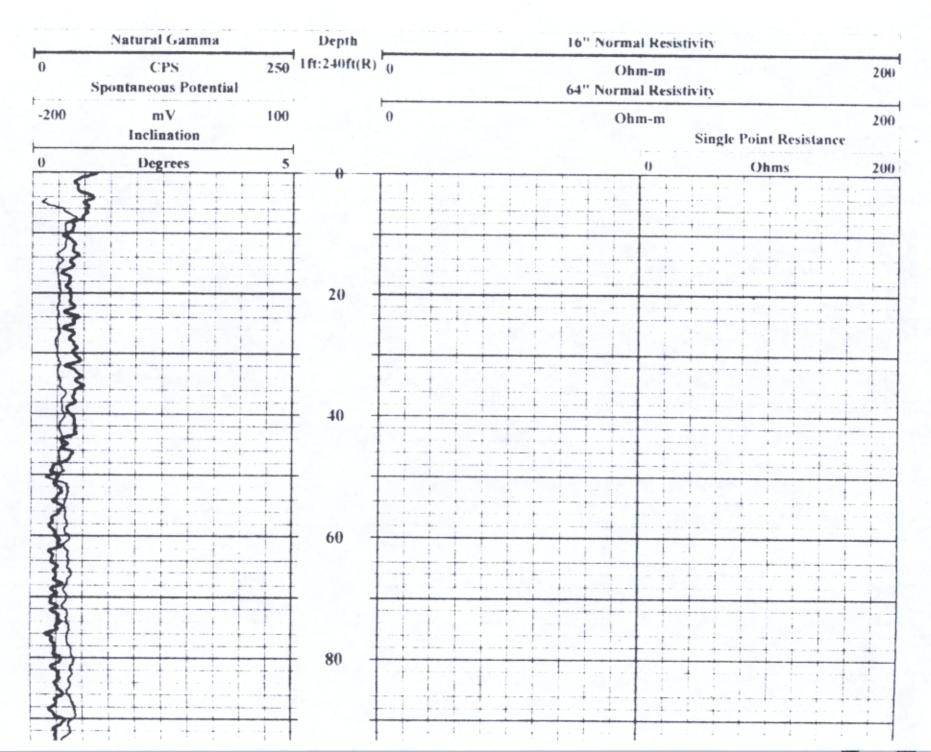


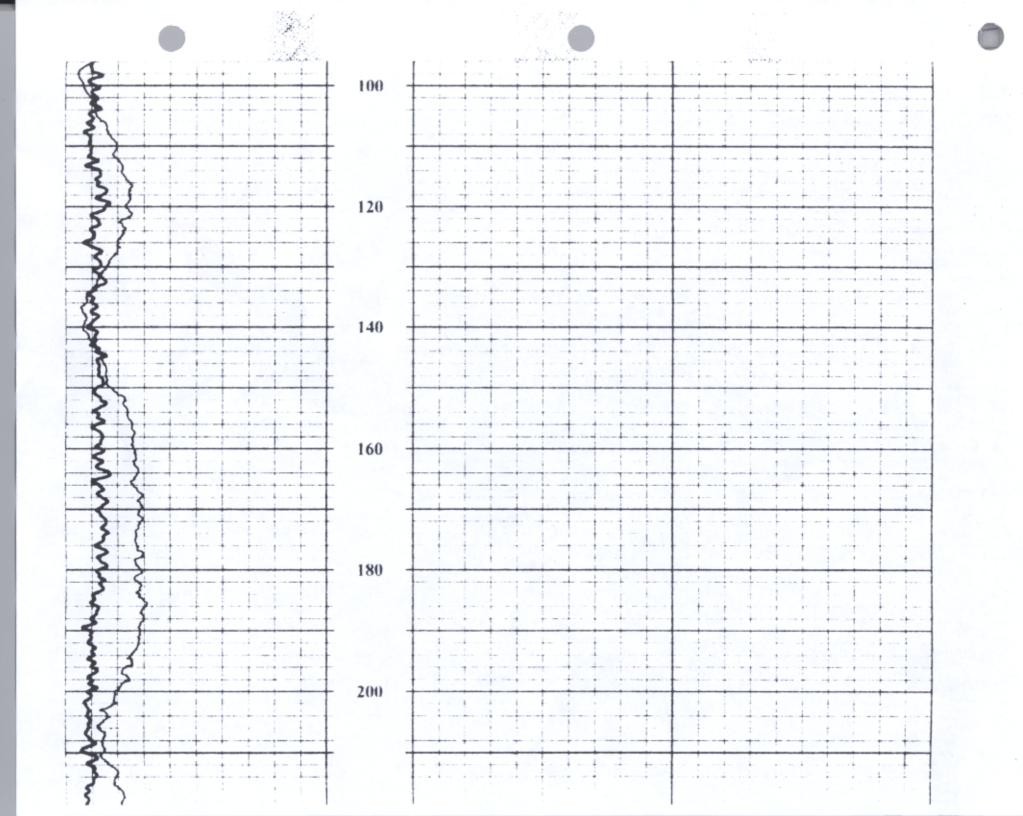
PROJECT: Assessment of the Ogallala Aquifer Sentinel Wells PROJECT NO .: PTX0030GA LOCATION: Pantex Plant, Zone 10 South ELEVATION: 3544.25 Brass DRILLER: THF Drilling DATE DRILLED: 4/19/02 DATE COMPLETED: 5/5/02 WATER DEPTH: 355.28 LOGGER: Clay Wright COMPLETION DEPTH: 415 feet

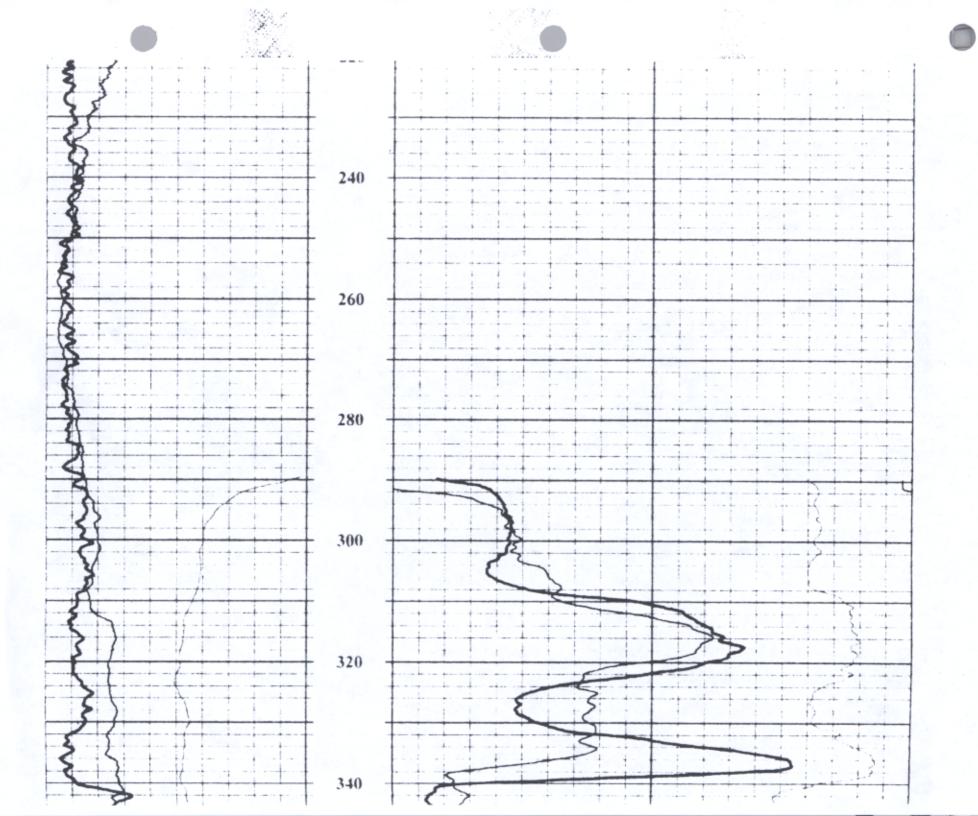
DEPTH (ft.)	Well Construction Diagram Sampler	Soil Graphic	DESCRIPTION	PROTECTIVE COVER TYPE: <u>Steel</u> Upright Locking		
225			sorted, dry Grayish orange 10yr7/4 very fine to medium grained silty sand, poorly sorted, dry, subangular to angular	SURFACE COMPLETION: Type: Concrete Pad Size: 5'x5'x11" Total Depth of Concrete: 10'		
240		2000	Moderate yellowish brown 10yr5/4 fine to coarse grained silty sand, poorly sorted, some caliche nodules Grayish orange 10yr7/4 very fine to very coarse grained silty	GROUT: Type: <u>Portland, bentonite added</u> Total Thickness: <u>347'</u>		
255			sand, well sorted, dry Moderate yellowish brown 10yr5/4 very fine to coarse grained silty sand, poorly sorted, some gravel intermixed Very pale orange 10yr8/2 fine to coarse grained sand, poorly sorted, subangular to angular, dry	CASING: Diameter: <u>4" Stainless Steel</u> Length: <u>355'</u> Stick Up: <u>2</u>		
270			Very pale orange 10yr8/2 fine to medium grained sand, poorly sorted, subangular to subrounded, dry	SEAL Type: Bentonite Chip Quantity: 8 sacks Total Thickness: 5'		
285		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Grayish orange 10yr7/4 sandy silt, very fine grained, poorly sorted, moist, cemented calcareous nodules	SCREEN		
300			Grayish orange 10yr7/4 sandy silt, very fine to coarse grained, poorly sorted, moist, angular to subangular	Type:Stainless SteelDiameter:4"Slot Size:0.010Screened Interval(s):353'-413'		
315		ૺૺૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	Grayish orange 10yr7/4 sand, very fine to coarse grained, poorly sorted, moist, angular to subangular	COMMENTS		

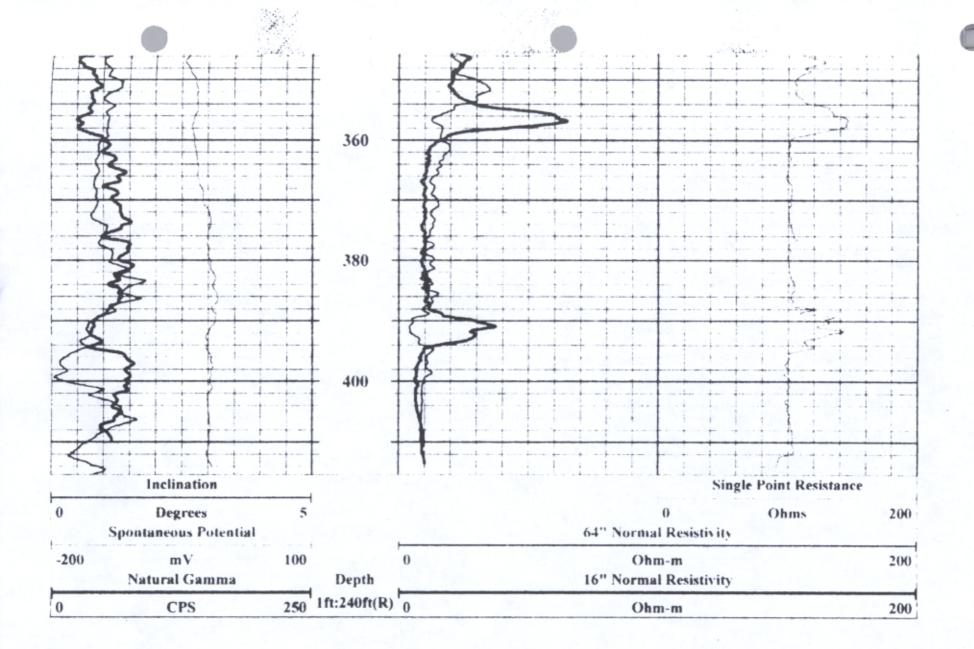
MONITORING WELL LOG

PROJECT:Assessment of the Ogallala Aquifer Sentinel WellsPROJECT NO.:PTX0030GALOCATION:Pantex Plant, Zone 10 SouthELEVATION:3544.25 BrassDRILLER:THF DrillingDATE DRILLED:4/19/02DATE COMPLETED:5/5/02WATER DEPTH:355.28LOGGER:Clay WrightCOMPLETION DEPTH:415 feet


COLOG Division of Layne Christensen Company


17301 West Colfax, Suite 265, Golden Colorado 80401 Office 303.279.0171, Fax 303.278.0135


		0	COMPANY	Llar	no Permi	an Enviro	nmental			
		1	WELL	РГХ	06-1075					
			FIELD	Pante	ex Plant					
ntan nt			COUNTRY	USA			S	ГАТЕ	Texas	
Per]	eld n	L	OCATION						OTHE	R SERVICES
Llano Permian PTX06-1075	Pantev Plant Carson TX	A	Amarillo, Texas							
WELL	FLD CTV STE	si	EC NA	TV	VP NA	RC	E NA			
LOG ME	AS. FROM	G								
DRILLI			GROUND LE).0 A1	BOVE PER	MINANT D	ATUM		
	NG MEAS. I						2 May			
DATE AC	NG MEAS. I		GROUND LE		2 May 2					
DATE AC	NG MEAS. I QUIRED MBER		GROUND LE	EVEL	2 May 2	002	2 May 1	2002		
DATE AC RUNNU LOG TYP	NG MEAS. I QUIRED MBER		GROUND LE 2 May 2002	EVEL		002	2 May 1	2002		
DATE AC RUNNU LOG IVE DEPTH-I	NG MEAS. I CQUIRED MBER PE DRILLER		GROUND LE 2 May 2002 1 Natural Gamm	EVEL	2 May 2	002	2 May 1	2002		
DATE AC RUNNU LOG TYP DEPTH-I DEPTH-I	NG MEAS. I CQUIRED MBER PE DRILLER	FROM	GROUND LE 2 May 2002 1 Natural Gamm 415 ft 416 ft	EVEL	2 May 2	002	2 May 1	2002		
DATE AC RUNNU LOG TYF DEPTH-I DEPTH-I BTM LOO	NG MEAS. I QUIRED MBER PE DRILLER LOGGER	FROM RVAL	GROUND LE 2 May 2002 1 Natural Gamm 415 ft 416 ft 413 ft	EVEL	2 May 2 1 Electric	002	2 May 2 2 Deviati	2002		
DATE AC RUNNU LOG TYF DEPTH-I DEPTH-I BTM LOO TOP LOC	NG MEAS. I QUIRED MBER PE DRILLER LOGGER GGED INTE GGED INTEI	FROM RVAL	GROUND LE 2 May 2002 1 Natural Gamm 415 ft 416 ft 413 ft	EVEL	2 May 2 1 Electric 416 ft	002	2 May 2 Deviati 414 ft	2002		
DATE AC RUNNU LOG TYF DEPTH-I DEPTH-I BTM LOO TOP LOC RECORD	NG MEAS. I QUIRED MBER PE DRILLER OGGER GGED INTE GGED INTE DED BY SED BY	FROM RVAL	GROUND LE 2 May 2002 1 Natural Gamm 415 ft 416 ft 413 ft 0.0 ft N. Davis Clay Wright	EVEL	2 May 2 I Electric 416 ft 292 ft	002	2 May 2 Deviati 414 ft 5 ft	2002		
DATE AC RUNNU LOG TYF DEPTH-I DEPTH-I BTM LOC TOP LOC RECORD WITNES: PROBE 1	NG MEAS. I QUIRED MBER PE DRILLER OGGER GGED INTE GGED INTE DED BY SED BY TYPE, S/N	FROM RVAL	GROUND LE 2 May 2002 1 Natural Gamm 415 ft 416 ft 413 ft 0.0 ft N. Davis Clay Wright RABPF	EVEL	2 May 2 1 Electric 416 ft 292 ft EPF	002 Log	2 May 2 Deviati 414 ft 5 ft 2PDA	2002 on Log		
DATE AC RUNNU LOG TYF DEPTH-I DEPTH-I BTM LOO TOP LOC RECORD WITNESS PROBE 1 LOGGIN	NG MEAS. I QUIRED MBER PE DRILLER OGGER GGED INTE GGED INTE DED BY SED BY	FROM RVAL	GROUND LE 2 May 2002 1 Natural Gamm 415 ft 416 ft 413 ft 0.0 ft N. Davis Clay Wright RABPF 20 ft/min	EVEL	2 May 2 I Electric 416 ft 292 ft	002 Log	2 May 2 2 Deviati 414 ft 5 ft 2PDA 20 ft/m	2002 on Log		
DATE AC RUNNU LOG IYE DEPTH-L DEPTH-L BTM LOC TOP LOC RECORD WIINESS PROBE 1 LOGGIN A.S.D.E.	NG MEAS. I CQUIRED MBER PE DRILLER LOGGER GGED INTE GGED INTE GGED INTE DED BY SED BY SED BY TYPE, S/N G SPEED	RVAL	GROUND LE 2 May 2002 1 Natural Gamm 415 ft 416 ft 413 ft 0.0 ft N. Davis Clay Wright RABPF 20 ft/min 0.1 ft	EVEL	2 May 2 I Electric 416 ft 292 ft EPF 20 ft/mi	002 Log	2 May 2 2 Deviati 414 ft 5 ft 2PDA 20 ft/m 0.5 ft	2002 on Log		
DATE AC RUNNU LOG TYF DEPTH-I DEPTH-I BTM LOO TOP LOC RECORD WITNESS PROBE T LOGGIN A.S.D.E. SAMPLE	NG MEAS. I QUIRED MBER PE DRILLER OGGER GGED INTE GGED INTE GGED INTE DED BY SED BY SED BY TYPE, S/N G SPEED INTERVAL	RVAL.	GROUND LE 2 May 2002 1 Natural Gamm 415 ft 416 ft 413 ft 0.0 ft N. Davis Clay Wright RABPF 20 ft/min	EVEL	2 May 2 1 Electric 416 ft 292 ft EPF	n	2 May 2 2 Deviati 414 ft 5 ft 2PDA 20 ft/m 0.5 ft 1.0 ft	2002 on Log		
DATE AC RUNNU LOG TYF DEPTH-I DEPTH-I BTM LOO TOP LOC RECORD WITNESS PROBE 1 LOGGIN A.S.D.E. SAMPLE BOREHO	NG MEAS. I QUIRED MBER PE DRILLER OGGER GGED INTE GGED INTE GED BY SED BY TYPE, S/N G SPEED INTERVAL OLE RECO	RVAL	GROUND LE 2 May 2002 1 Natural Gamm 415 ft 416 ft 413 ft 0.0 ft N. Davis Clay Wright RABPF 20 ft/min 0.1 ft -0.2 ft	EVEL na	2 May 2 I Electric 416 ft 292 ft EPF 20 ft/mi	n CASING	2 May 2 2 Deviati 414 ft 5 ft 2PDA 20 ft/m 0.5 ft 1.0 ft RECORD	2002 on Log		
DATE AC RUNNU LOG TYF DEPTH-I DEPTH-I BTM LOO TOP LOO RECORD WITNESS PROBE T LOGGIN A.S.D.E. SAMPLE	NG MEAS. I QUIRED MBER PE DRILLER OGGER GGED INTER GGED INTER SED BY SED BY SED BY IVPE, S/N G SPEED INTERVAL OLE RECO BIT	RVAL RVAL RVAL	GROUND LE 2 May 2002 1 Natural Gamm 415 ft 416 ft 413 ft 0.0 ft N. Davis Clay Wright RABPF 20 ft/min 0.1 ft -0.2 ft	TO	2 May 2 I Electric 416 ft 292 ft EPF 20 ft/mi	DO2 Log D CASING SIZE	2 May 2 2 Deviati 414 ft 5 ft 2PDA 20 ft/m 0.5 ft 1.0 ft	2002 on Log in FROM	1	10
DATE AC RUNNU LOG TYF DEPTH-I DEPTH-I BTM LOO TOP LOC RECORD WITNESS PROBE 1 LOGGIN A.S.D.E. SAMPLE BOREHO	NG MEAS. I QUIRED MBER PE DRILLER OGGER GGED INTE GGED INTE GED BY SED BY TYPE, S/N G SPEED INTERVAL OLE RECO	RVAL	GROUND LE 2 May 2002 1 Natural Gamm 415 ft 416 ft 413 ft 0.0 ft N. Davis Clay Wright RABPF 20 ft/min 0.1 ft -0.2 ft	EVEL na	2 May 2 I Electric 416 ft 292 ft EPF 20 ft/mi	n CASING	2 May 2 2 Deviati 414 ft 5 ft 2PDA 20 ft/m 0.5 ft 1.0 ft RECORD	2002 on Log	1	TO 292'


and the same

Sec. Sec.

7/11/02

APEX SURVEYING & MAPPING, Inc.

Phone (806) 353-7231 Fax (806) 353-7232

1619 S KENTUCKY B-202 AMARILLO, TX 79102-2202

May 15, 2002

Llano Permian Environmental Attn: Clay Wright 921 N. Bivins Street Amarillo, Texas 79107

Re: Coordinates for new monitor wells at the USDOE Pantex Plant, Carson County, Texas

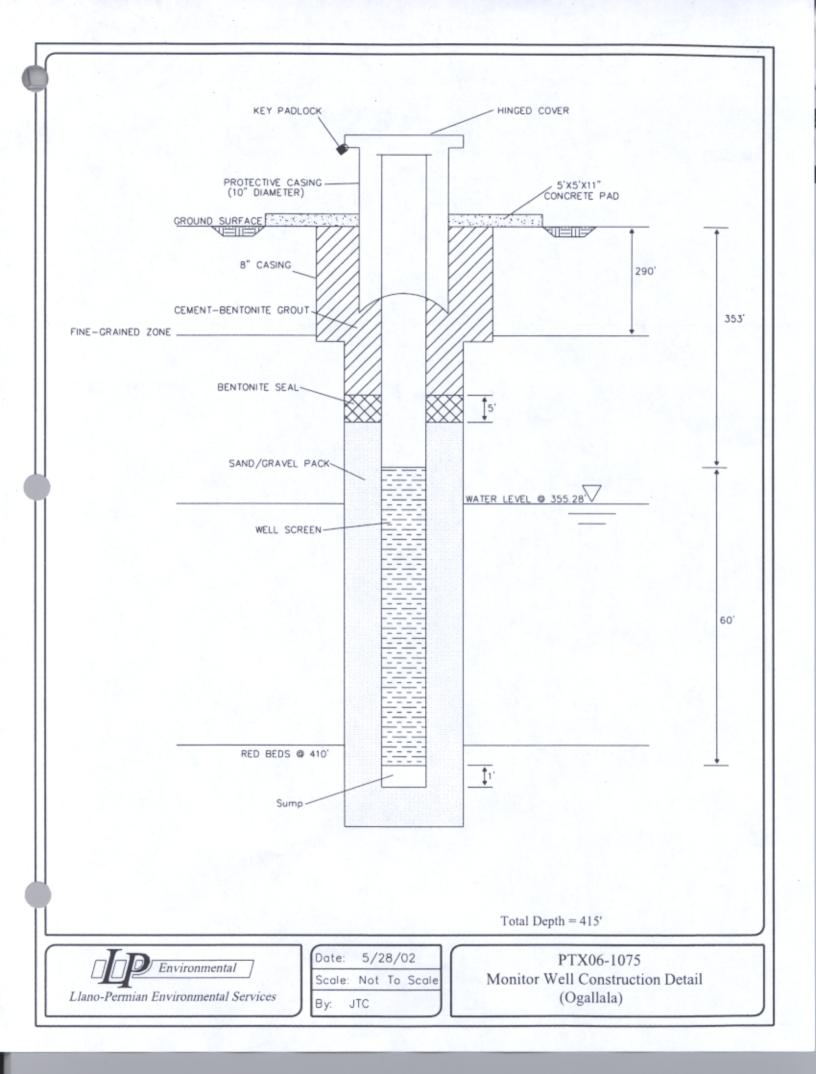
	Name	Northing	Easting	Elevation	Description
	PTX-06-1074	3,765,626.52	620,994.02	3573.36' 3576.20' 3573.2'	Brass Cap Top Casing Ground
)	PTX-06-1075	3,753,624.01	630,512.54	3544.25' 3546.52' 3544.0'	Brass Cap Top Casing Ground

 3525.68'
 Brass Cap

 3528.34'
 Top Casing

 3525.5'
 Ground

Coordinates and elevations are relative to Pantex NAD83 - NAVD88 Control network as established by "Kelley and Associates".


The undersigned does hereby certify that this survey was made upon the ground the 14th Day of May, 2002, by myself or others under my direct supervision and is true and correct. The undersigned further certifies that this survey meets or exceeds the required 1 foot horizontal and vertical accuracies, as set forth by Llano Permian Environmental specifications.

637,327.32

1 Martin Starten Start
CURT MCPHERSON
REGISTERED PROFESSIONAL LAND SURVEYOR REG. NO. 5275 AMARILLO, TEXAS
DATE:

202-179-1.wps

PTX06-1076

Contractor:

Contract #:

OPTIX #:

Included Documents

___Drilling Log ___Draft ____Final

_Installation Log

_X_Lithologic Logs _Draft _X_Final

____Geophysical Logs

____Neutron

____Gamma

___e-log

____Bond Log ____Deviation log

____State Well Report

7/11/02

APEX SURVEYING & MAPPING, Inc.

Phone (806) 353-7231 Fax (806) 353-7232

1619 S KENTUCKY B-202 AMARILLO, TX 79102-2202

May 15, 2002

Llano Permian Environmental Attn: Clay Wright 921 N. Bivins Street Amarillo, Texas 79107

Re: Coordinates for new monitor wells at the USDOE Pantex Plant, Carson County, Texas

	Name	Northing	Easting	Elevation	Description
	PTX-06-1074	3,765,626.52	620,994.02	3573.36' 3576.20' 3573.2'	Brass Cap Top Casing Ground
)	PTX-06-1075	3,753,624.01	630,512.54	3544.25' 3546.52' 3544.0'	Brass Cap Top Casing Ground

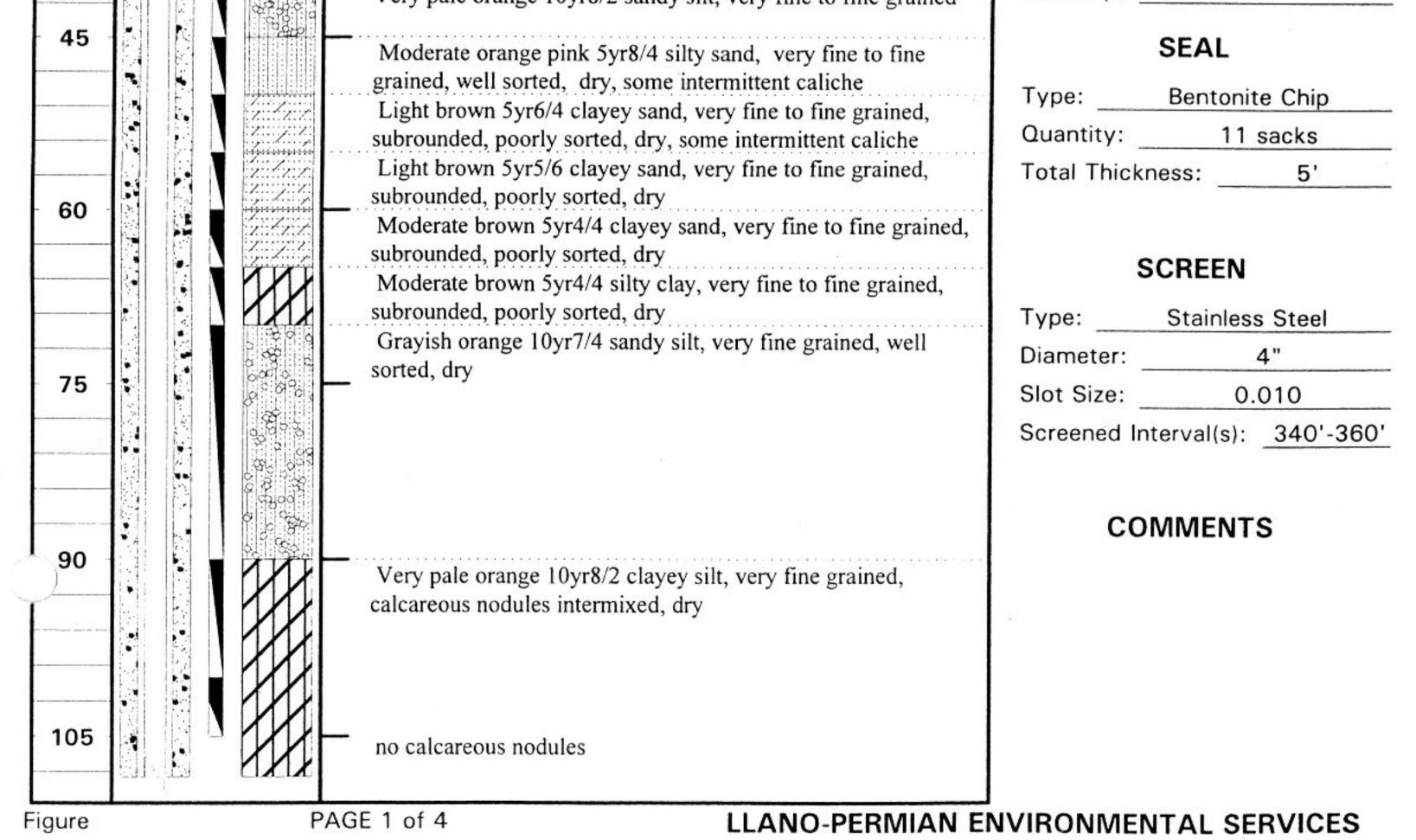
 3525.68'
 Brass Cap

 3528.34'
 Top Casing

 3525.5'
 Ground

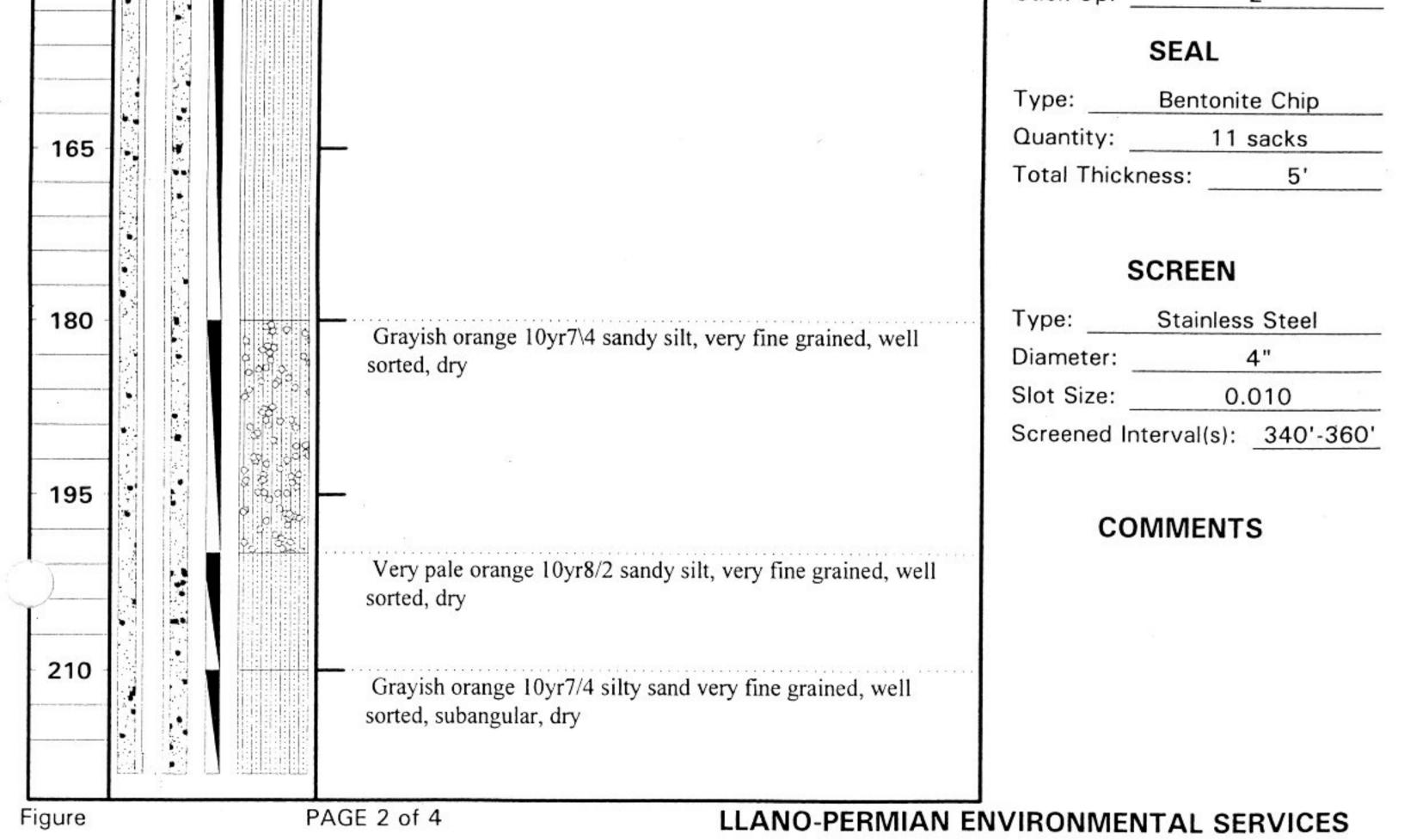
Coordinates and elevations are relative to Pantex NAD83 - NAVD88 Control network as established by "Kelley and Associates".

The undersigned does hereby certify that this survey was made upon the ground the 14th Day of May, 2002, by myself or others under my direct supervision and is true and correct. The undersigned further certifies that this survey meets or exceeds the required 1 foot horizontal and vertical accuracies, as set forth by Llano Permian Environmental specifications.

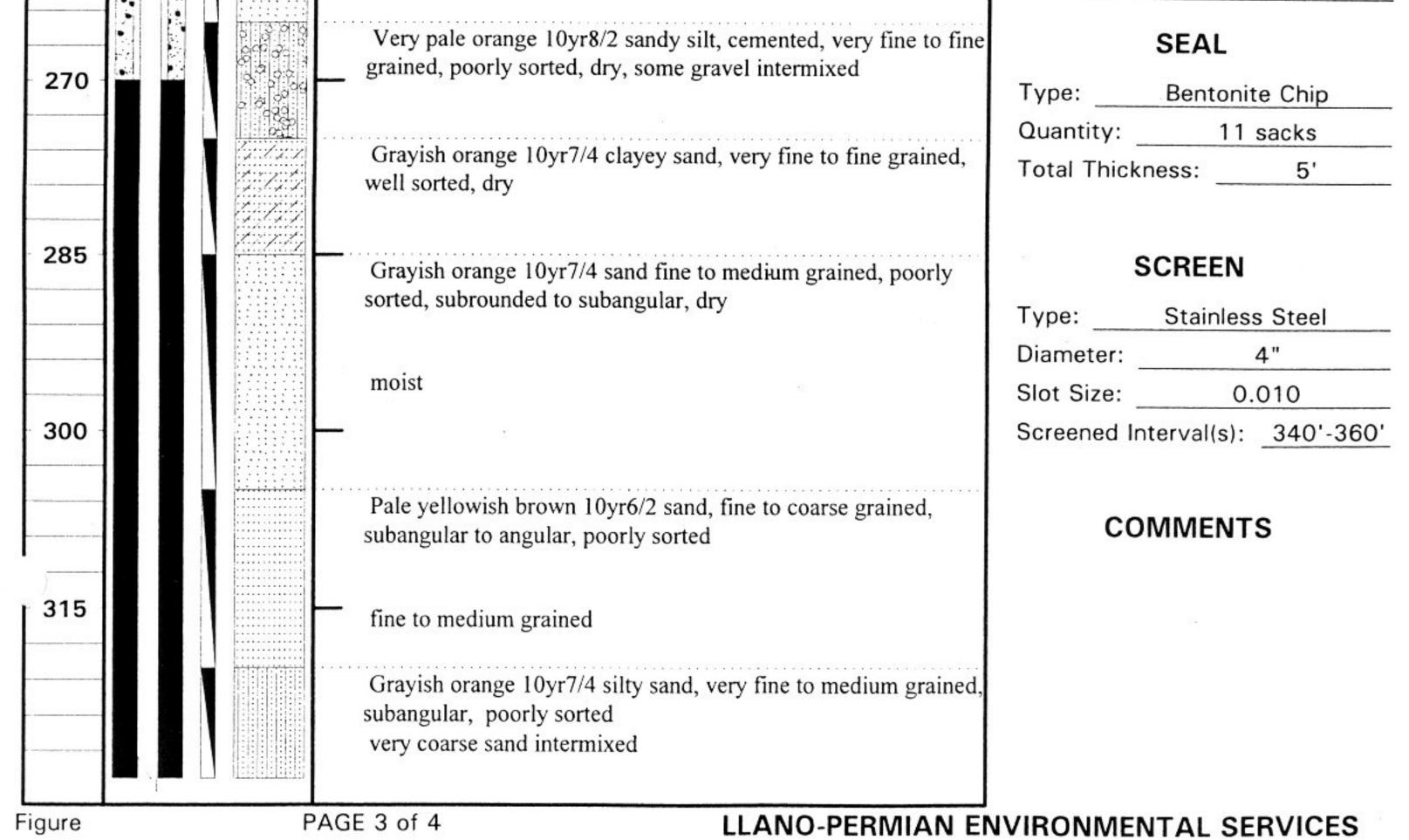

637,327.32

- Marine - M	
CURT MCPHERSON	
REGISTERED PROFESSIONAL LAND SURVEYOR REG. NO. 5275 AMARILLO, TEXAS	
DATE: <i>3/13/02</i>	

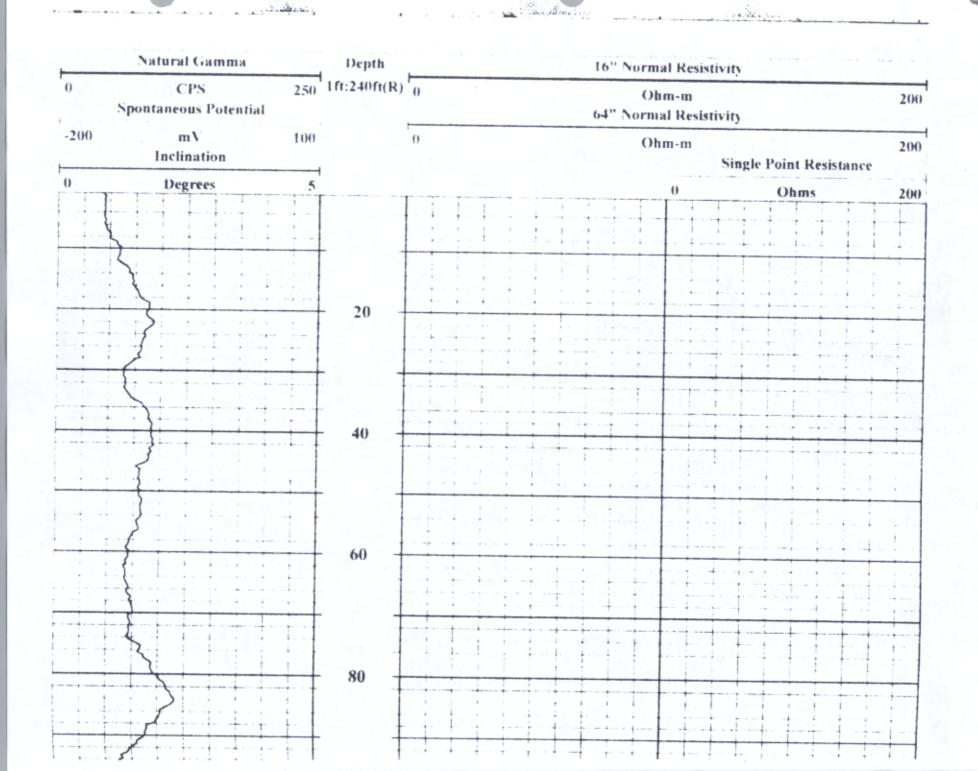
202-179-1.wps

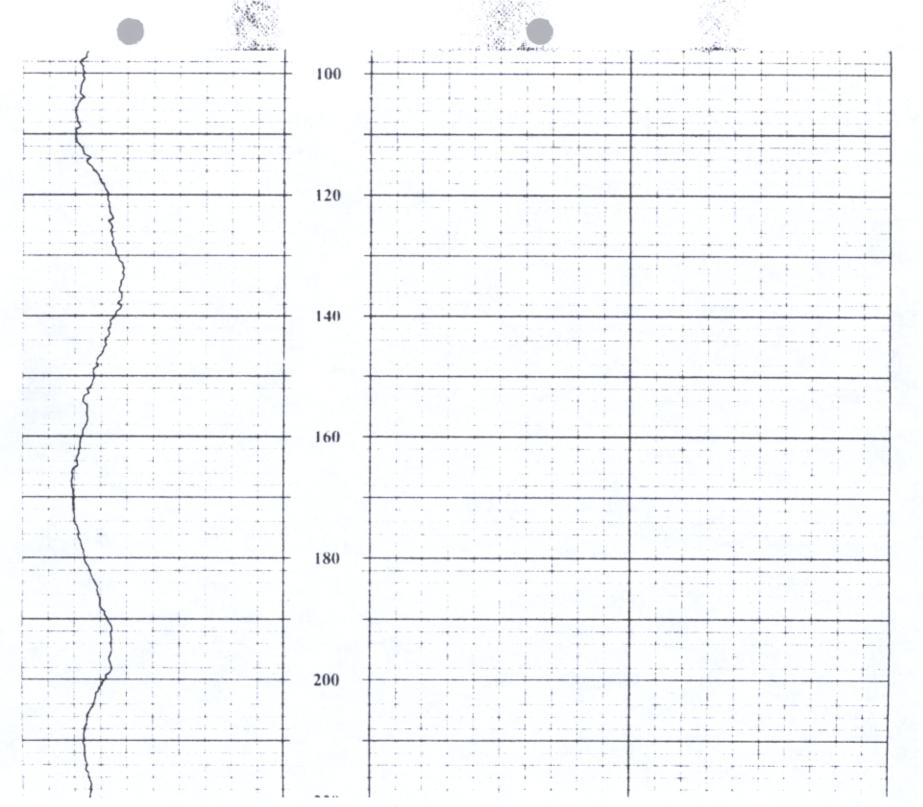

				PROJECT NO.: PTX0030GA
LOC	ATION:	South of	Pantex Plant, Texas Tech Property	ELEVATION: 3525.5 Surface
DRI	LLER: TH	IF Drilling	DATE DRILLED: 3/6/02	DATE COMPLETED: 3/25/02
WA	TER DEPT	TH: 345.4	46' LOGGER: Clay Wright	COMPLETION DEPTH: 371 feet
DEPTH (ft.)	Well Construction Diagram	Sampler Soil Graphic	DESCRIPTION	PROTECTIVE COVER TYPE: <u>Steel</u> Upright locking
- 15			Grayish orange 10yr7/4 silty sand, very fine grained, well sorted, clay nodules intermixed Light brown 5yr6/4 silty clay, some sand, very fine grained, poorly sorted, dry Grayish orange 10yr7/4 silty clay, very fine grained sand	SURFACE COMPLETION: Type: Concrete Pad Size: 5'x5'x11" Total Depth of Concrete: 10' GROUT: Type: Portland, benonite added Total Thickness: 158 packs
30			Very pale orange 10yr 8/2 sandy silt, very fine to fine grained	Total Thickness: 158 sacks CASING: Diameter: 4" Stainless Steel Length: 342' Stick Up: 2'

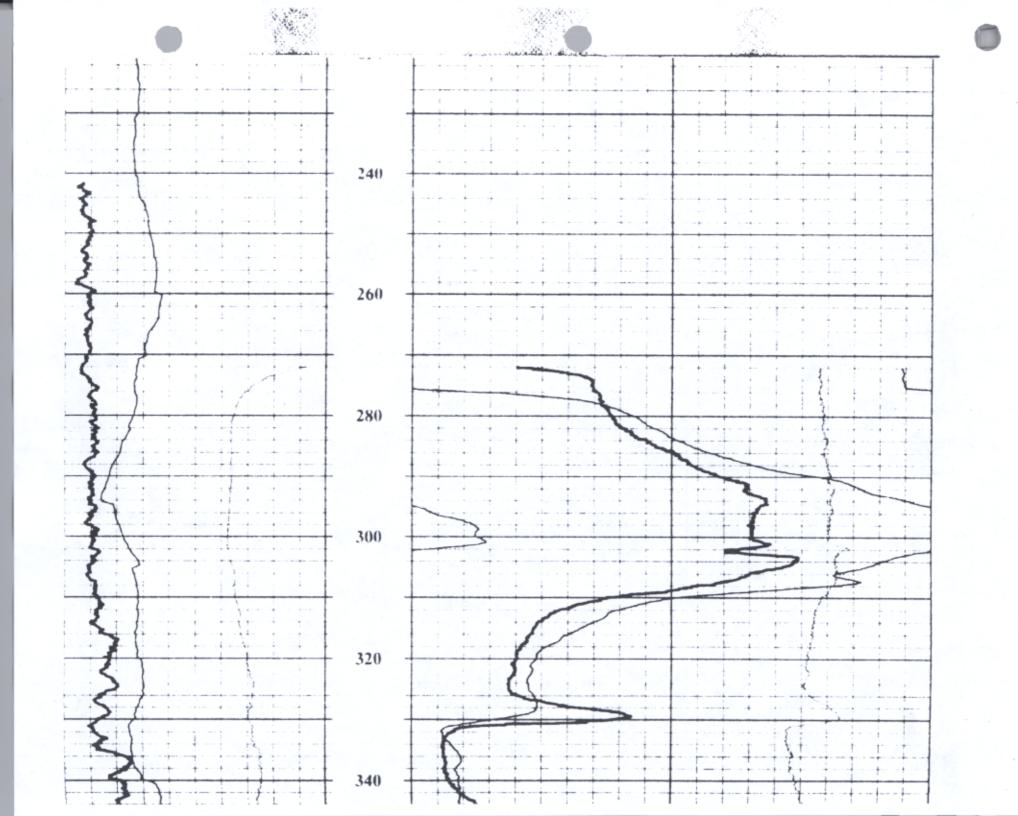
PRC	JECT:	Ass	essmen	t of the Ogallala Aquifer Sentinel Wells	PROJECT NO .: PTX0030GA	
LOC	ATION:	Sc	outh of I	Pantex Plant, Texas Tech Property	ELEVATION: 3525.5 Surface	
DRI	LLER: T	HF	Drilling	DATE DRILLED: 3/6/02	DATE COMPLETED: 3/25/02	
WA	TER DEP	РΤΗ	: 345.4	6' LOGGER: Clay Wright	COMPLETION DEPTH: 371 feet	
DEPTH (ft.)	Well onstruction Diagram	Sampler	Soil Graphic	DESCRIPTION	PROTECTIVE COVER TYPE: Steel	
ä	ပိ	Ű			Upright locking	
330 345				Moderate reddish brown sandy clay 10r4/6, very fine grained Dark yellowish orange 10yr6/6 sandy silty clay, very fine to very coarse grained, poorly sorted, subangular to angular Dark yellowish orange 10yr6/6 sand, very fine to very coarse grained, poorly sorted, subangular to angular	Total Depth of Concrete: 10 GROUT:)'
360				Red Bed	Type: <u>Portland, benonite adde</u> Total Thickness: <u>158 sacks</u> CASING: Diameter: <u>4" Stainless Steel</u>	•
		4	1.11.	Bottom of Hole - 371'	Length: 342' Stick Up: 2'	

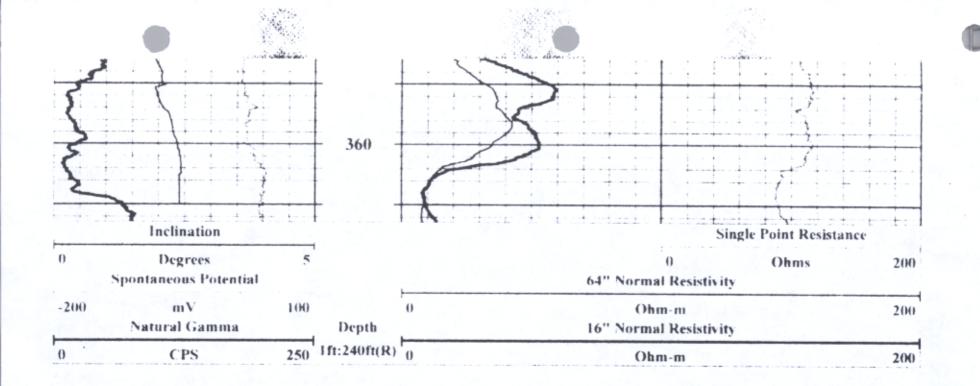


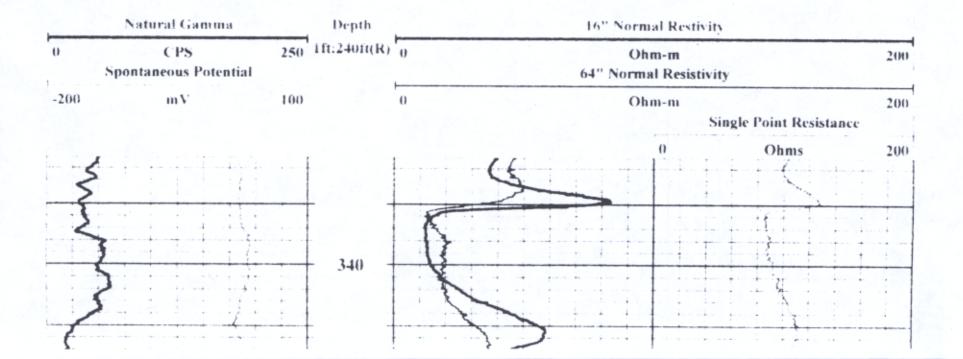
PRC	JECT: A	ssessmen	PROJECT NO .: PTX0030GA	
LOC	ATION:	South of I	Pantex Plant, Texas Tech Property	ELEVATION: 3525.5 Surface
DRI	LLER: TH	F Drilling	DATE COMPLETED: 3/25/02	
WA	TER DEPT	H: <u>345.4</u>	LOGGER: Clay Wright	COMPLETION DEPTH: 371 feet
DEPTH (ft.)	Well Construction Diagram	Sampler Soil Graphic	DESCRIPTION	PROTECTIVE COVER TYPE: <u>Steel</u> Upright locking
120			Dark yellowish orange 10yr6/6 silty sand, very fine grained, subangular, well sorted, dry	SURFACE COMPLETION: Type: Concrete Pad Size: 5'x5'x11" Total Depth of Concrete: 10'
135			Grayish orange 10yr7\4 sandy silt, very fine grained, well sorted, slightly moist Grayish orange 10yr7\4 silty sand, very fine grained, well sorted, subangular, dry	GROUT: Type: Portland, benonite added Total Thickness: 158 sacks CASING: Diameter: 4" Stainless Steel Length: 342' Stick Up: 2'

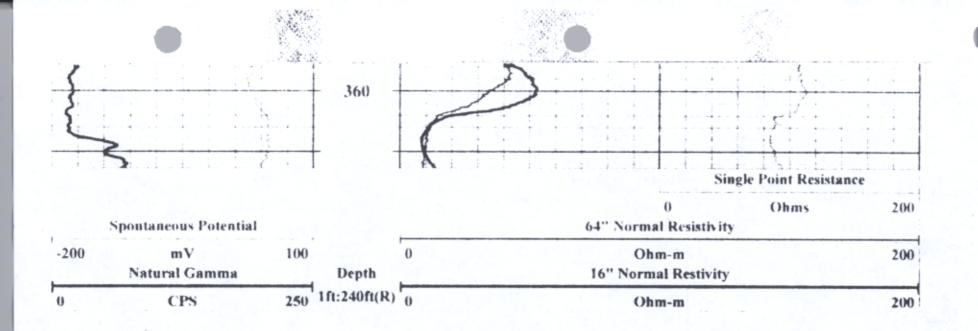


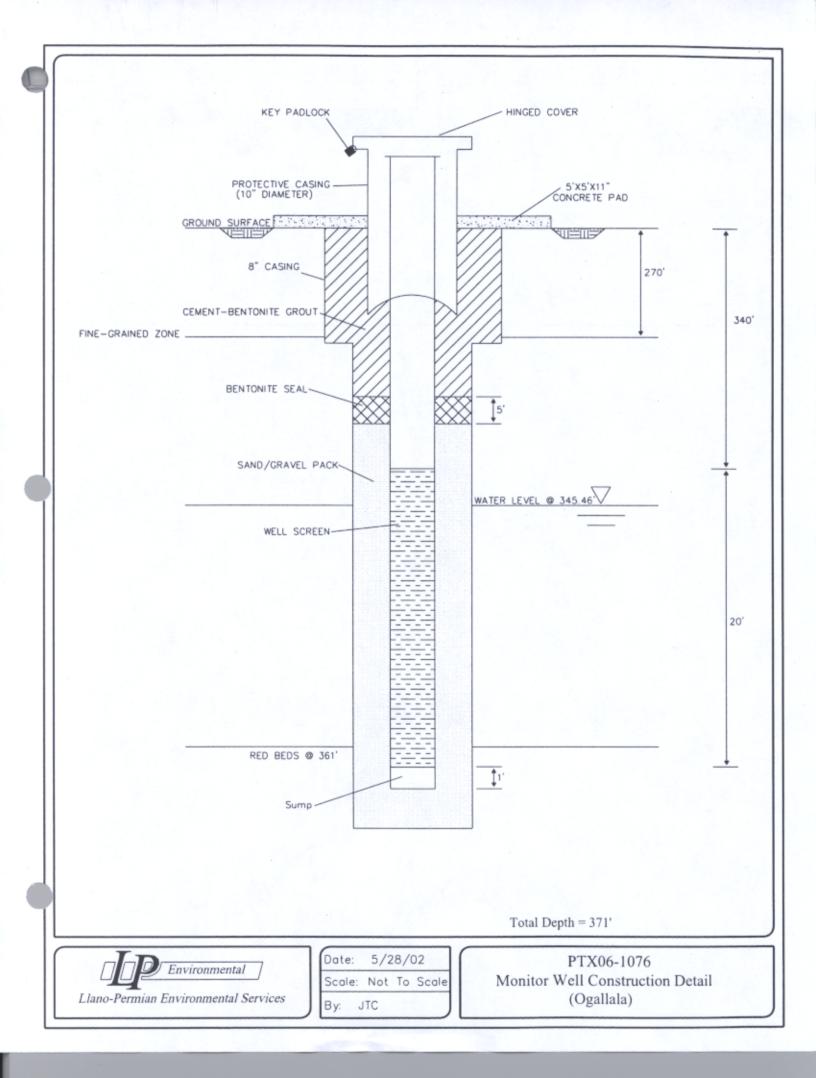

PROJECT: Assessment of the C	PROJECT NO.: PTX0030GA	
LOCATION: South of Pantex Pla	ant, Texas Tech Property	ELEVATION: 3525.5 Surface
DRILLER: THF Drilling	DATE DRILLED: 3/6/02	DATE COMPLETED: 3/25/02
WATER DEPTH: 345.46'	LOGGER: Clay Wright	COMPLETION DEPTH: 371 feet


DEPTH (ft.)	Well Construction Diagram Sampler	Soil Graphic	DESCRIPTION	PROTECTIVE COVER TYPE: <u>Steel</u> Upright locking
225			Grayish orange 10yr7/4 sand, fine to medium grained, well sorted, subangular, dry Grayish orange 10yr7/4 silty sand very fine grained, well sorted, subangular, dry Very pale orange 10yr8/2 sandy silt, very fine grained, well	SURFACE COMPLETION: Type: Concrete Pad Size: 5'x5'x11" Total Depth of Concrete: 10' GROUT:
240			sorted, dry Grayish orange 10yr7/4 sand fine grained, well sorted, subangular, dry Grayish orange 10yr7/4 sand, intermixed gravel, fine grained, well sorted, subangular, dry Grayish orange 10yr7/4 sand fine grained, well sortedsubangular, dry	Type: <u>Portland, benonite added</u> Total Thickness: <u>158 sacks</u> CASING: Diameter: <u>4" Stainless Steel</u> Length: <u>342'</u> Stick Up: 2'




	COL	00			7301 W	est Colfax,	of Layne (Suite 265, Go 9.0171, Fax 30	olden (Colorad	
			COMPANY	Llan	o Permi	nan Envir	onmental			
			WELL		06-1076					
9			FIELD		ex Plant					
mia 7.6	ant	(COUNTRY	USA			STA	ATE	Texas	
Llano Permian PTX)^=1076	antex Plant ISA IX		OCATION						OTHE	RSERVICE
PTX	Pant USA TX	A	marillo, TX							
0 2	E U N	SE	C	TW	/P	RC	E			
PERMA		г <mark>им</mark> G	EC ROUND LEVEI ROUND LEVEI			RC ELEVATE BOVE PER		UN		
PERMA LOG MI DRILLI	NENT DAT	гим G 1 G	ROUND LEVEI	D. IVEL		ELEVATI BOVE PER	ON NA			
PERMA LOG MI DRILLI	NENT DAT EAS. FROM NG MEAS. CQUIRED	гим G 1 G	ROUND LEVEI ROUND LEVEI GROUND LE	D. IVEL	.0 A)	ELEVATI BOVE PER	ON NA MINANT DA D			
PERMA LOG MI DRILLI DATE AG	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER	гим G 1 G	ROUND LEVEI ROUND LEVEI GROUND LE	0. .VEI 2	.0 A)	ELEVATI BOVE PER ch 2002	ON NA MINANT DA D 3 May 200	12		
PERMA LOG MI DRILLI DATE AG RUNNI LOG TY DEPTH-	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER PE DRILLER	гим G 1 G	ROUND LEVEI ROUND LEVEI GROUND LE 23 March 2002 1 Natural Gamm 371 ft.	0. .VEI 2	.0 A)	ELEVATI BOVE PER ch 2002	ON NA MINANE DA D 3 May 200 2	12		
PERMA LOG MI DRILLI DATE AO RUNNT LOG TY DEPTH-	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER PE DRILLER LOGGER	гем G 1 G FROM	ROUND LEVEI ROUND LEVEI GROUND LE 23 March 2002 1 Natural Gamm 371 ft. 372 ft.	0. .VEI 2	.0 Al 23 Marc 1 Electric	ELEVATI BOVE PER ch 2002	ON NA MINANE DA D 3 May 200 2	12		
PERMA LOG MI DRILLI DATE AG RUNNI LOG 1Y DEPTII- DEPTII- BTM LO	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER PE DRILLER LOGGER GGFD INTI	FROM FROM	ROUND LEVEI ROUND LEVEI GROUND LE 23 March 2002 1 Natural Gamm 371 ft. 372 ft. 372 ft.	0. .VEI 2	.0 Al 23 Marc 1 Electric 372 ft.	ELEVATI BOVE PER ch 2002	ON NA MINANE DA D 3 May 200 2	12		
PERMA LOG MI DRILLI DATE AO RUNNT LOG 1Y DEPTH- DEPTH- BTM LO 10P LOO	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER PE DRILLER LOGGER GGED INTE GGED INTE	FROM FROM	ROUND LEVEI ROUND LEVEI GROUND LE 23 March 2002 1 Natural Gamm 371 ft. 372 ft. 372 ft. 240 ft.	0. .VEI 2	.0 Al 23 Marc 1 Electric	ELEVATI BOVE PER ch 2002	ON NA MINANT DATE 3 May 200 2 Deviation	12		
PERMA LOG MI DRILLI DATE AO RUNNI LOG TY DEPTH- BEM LO TOP LOO RECORI	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER PE DRILLER LOGGER GGED INTE GGED INTE DED BY	FROM FROM	ROUND LEVEI ROUND LEVEI GROUND LE 23 March 2002 1 Natural Gamm 371 ft. 372 ft. 372 ft. 240 ft. B. Goff	0. .VEI 2	.0 Al 23 Marc 1 Electric 372 ft.	ELEVATI BOVE PER ch 2002	ON NA MINANT DATE 3 May 200 2 Deviation N. Davis	i2 Log		
PERMA LOG MI DRILLI DATE AG RUNNI LOG 1Y DEPTII- DEPTII- BIM LO TOP LOG RECORI WITNES	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER PE DRILLER LOGGER GGED INTE GGED INTE DED BY	FROM FROM	ROUND LEVEI ROUND LEVEI GROUND LE 23 March 2002 1 Natural Gamm 371 ft. 372 ft. 372 ft. 240 ft. B. Goff Clay Wright	0. .VEI 2	.0 Al 23 Marc 1 Electric 372 ft. 272 ft	ELEVATI BOVE PER ch 2002	ON NA MINANT DATE 3 May 200 2 Deviation N. Davis Clay Wrig	12 Log		
PERMA LOG MI DRILLI DATE AO RUNNT LOG TY DEPTH-I BEM LO TOP LOO RECORI WITNES PROBE	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER PE DRILLER LOGGER GGED INTE GGED INTE DED BY NED BY TYPE, S/N	FROM FROM	ROUND LEVEI ROUND LEVEI GROUND LEVEI 23 March 2002 1 Natural Gamm 371 ft. 372 ft. 372 ft. 240 ft. B. Goff Clay Wright RABPE	0. .VEI 2	.0 Al 23 Marc 1 Electric 372 ft. 272 ft EPF	ELEVATH BOVE PER th 2002 Log	ON NA MINANT DATE 3 May 200 2 Deviation N. Davis Clay Wrig 2PDA-100	12 Log		
PERMA LOG MI DRILLI DATE AO RUNNT LOG TY DEPTH-I BEM LO TOP LOO RECORI WITNES PROBE	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER PE DRILLER LOGGER GGED INTE GGED INTE DED BY NED BY	FROM FROM	ROUND LEVEI ROUND LEVEI GROUND LE 23 March 2002 1 Natural Gamm 371 ft. 372 ft. 372 ft. 240 ft. B. Goff Clay Wright	0. .VEI 2	.0 Al 23 Marc 1 Electric 372 ft. 272 ft	ELEVATH BOVE PER th 2002 Log	ON NA MINANT DATE 3 May 200 2 Deviation N. Davis Clay Wrig	12 Log		
PERMA LOG MI DRILLI DATE AO RUN NU LOG 1Y DEPTH- DEPTH- BIM LO TOP LOO RECORI WITNES PROBE LOGGIN A.S.D.E.	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER PE DRILLER LOGGER GGED INTE GGED INTE DED BY NED BY TYPE, S/N	FROM FROM	ROUND LEVEI ROUND LEVEI GROUND LE 23 March 2002 1 Natural Gamm 371 ft. 372 ft. 372 ft. 240 ft. B. Goff Clay Wright RABPE 25 ft/min	0. .VEI 2	.0 Al 23 Marc 1 Electric 372 ft. 272 ft EPI 25 ft/mi	ELEVATH BOVE PER th 2002 Log	ON NA MINANT DATE 3 May 200 2 Deviation N. Davis Clay Wrig 2PDA-100 20 ft/min	12 Log		
PERMA LOG MI DRILLI DATE AO RUNNI LOG TY DEPTH- BEM LO TOP LOO RECORI WITNES PROBE LOGGIN A.S.D.E. SAMPLE	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER PE DRILLER LOGGER GGED INTE DED BY SED BY SED BY TYPE, S/N NG SPEED	FROM FROM	ROUND LEVEI ROUND LEVEI GROUND LE 23 March 2002 1 Natural Gamm 371 ft. 372 ft. 372 ft. 372 ft. 240 ft. B. Goff Clay Wright RABPE 25 ft/min 0.9 ft	0. .VEI 2	.0 Al 23 Marc 1 Electric 372 ft. 272 ft. 272 ft. EPI 25 ft/mi 0.9 ft	ELEVATH BOVE PER: th 2002 Log	ON NA MINANT DATE 3 May 200 2 Deviation Deviation N. Davis Clay Wrig 2PDA-100 20 ft/min 0.5 ft	12 Log		
PERMA LOG MI DRILLI DATE AO RUNNI LOG TY DEPTH- BEM LO TOP LOO RECORI WITNES PROBE LOGGIN A.S.D.E. SAMPLE	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER PE DRILLER LOGGER GGED INTE GGED INTE DED BY SED BY TYPE, S/N NG SPEED INTERVAL OLE RECO	FROM FROM	ROUND LEVEI ROUND LEVEI GROUND LE 23 March 2002 1 Natural Gamm 371 ft. 372 ft. 372 ft. 240 ft. B. Goff Clay Wright RABPF 25 ft/min 0.9 ft 0.1 ft	0. .VEI 2	.0 Al 23 Marc 1 Electric 372 ft. 272 ft. 272 ft. EPI 25 ft/mi 0.9 ft	ELEVATH BOVE PER: th 2002 Log	ON NA MINANT DATE 3 May 200 2 Deviation 2 N. Davis Clay Wrig 2PDA-100 20 ft/min 0.5 ft 0.5 ft	12 Log	M	TO
PERMA LOG MI DRILLI DATE AG RUNNI LOG 1Y DEPTH- BIM LO TOP LOG RECORI WITNES PROBE LOGGIN A.S.D.E. SAMPLE BOREH	NENT DAT EAS. FROM NG MEAS. CQUIRED MBER PE DRILLER LOGGER GGED INTE GGED INTE DED BY SED BY TYPE, S/N NG SPEED INTERVAL OLE RECO	FROM FROM ERVAL	ROUND LEVEI ROUND LEVEI GROUND LE 23 March 2002 1 Natural Gamm 371 ft. 372 ft. 372 ft. 372 ft. 372 ft. 240 ft. B. Goff Clay Wright RABPF 25 ft/min 0.9 ft 0.1 ft	VEI 2	.0 Al 23 Marc 1 Electric 372 ft. 272 ft. 272 ft. EPI 25 ft/mi 0.9 ft	ELEVATH BOVE PER ch 2002 Log	ON NA MINANT DATE 3 May 200 2 Deviation 2 N. Davis Clay Wrig 2PDA-100 20 ft/min 0.5 ft 0.5 ft 0.5 ft	12 1 eg pht 00	M	TO 270





PTX07-1R01

Contractor: S.M. Stoller

Contract #: 3589-102

OPTIX #:

Included Documents

___Drilling Log ___Draft ___Final

_X_Installation Log

_X_Lithologic Logs ___Draft _X_Final

_X_Geophysical Logs

____Neutron

____Gamma

____e-log

___Bond Log

____Deviation log

____State Well Report

Page 1 of 2

APEX SURFICE & MAPPINE

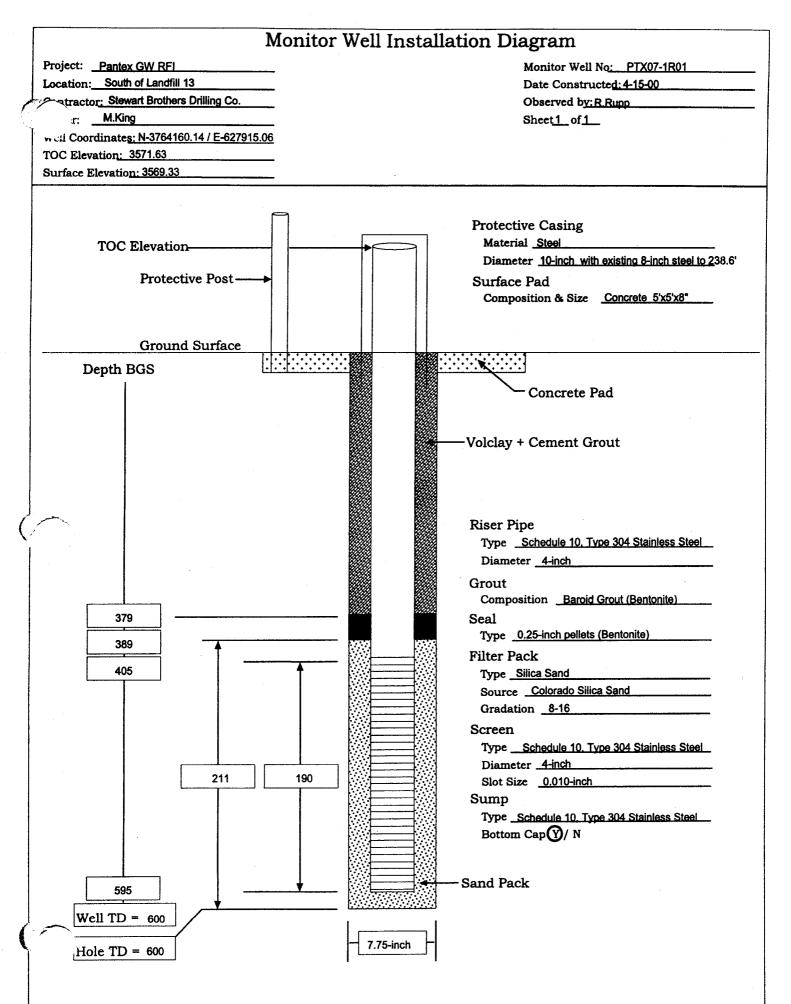
Forme (806) 353-7231 Fax (806) 353-7232

ja

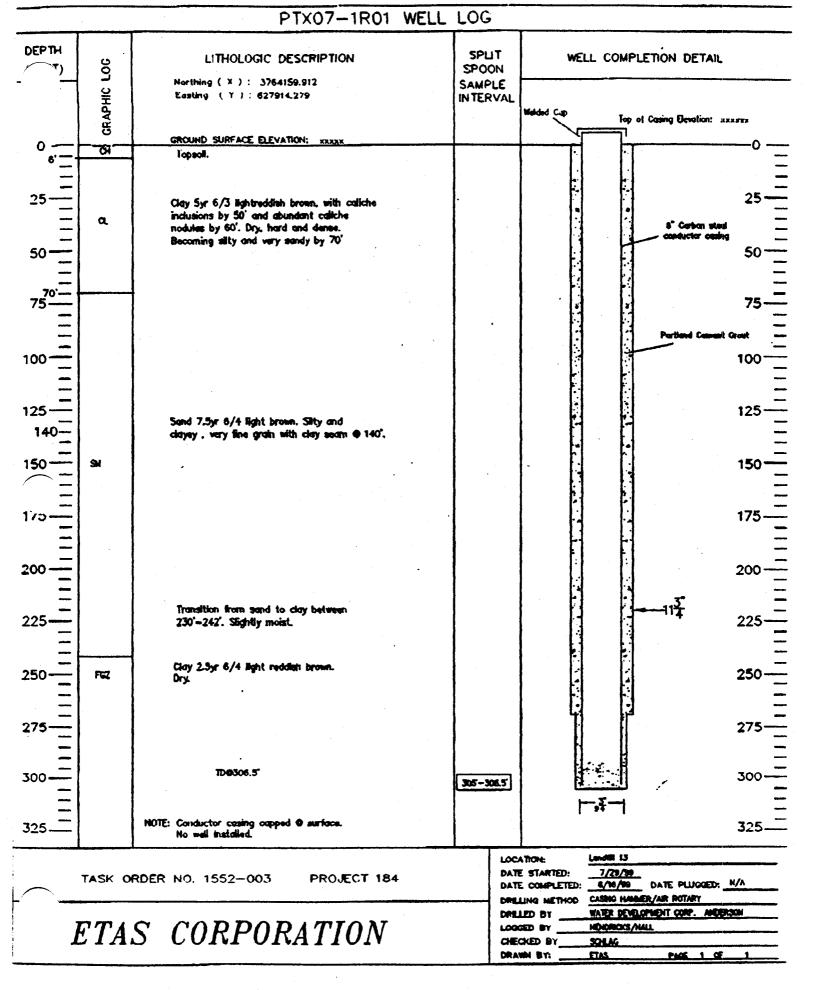
1619 S KENTUCKY E-540 AMARILLO, TX 79102-2202

October 01, 1999

ETAS ATTN: Donny Ives P.O. BOX 202 GORE, OK 74435 (918)489-5511 ex 13 email: ellisj@ipa.net fax: 477-3320 email: donives@arn.net


COORDINATE LIST (for 99171P4)

TOPOGRAPHIC SURVEY OF MONITOR WELLS EAST OF PLANT, NORTH PLYA, & LAND FILL USDOE PANTER PLANT, CARSON COUNTY, TEXAS


10hg	RORTHING	ELSTING	RLEVATION	DESCRIPTION
PTX06-1043		*******	3519.01	NATURAL GROUND
PTX06-1044			3539,33	NATURAL GROUND
PTX06-9919	3759671.683	644633.944	3534.9	NATURAL GROUND
PTX07-1R01	3764159.912	627914.279		CASSING
PTX07-1R02	3764319.890	627899.756		CASSING
PTX07-1R03	3764501.985 3764501.800	627666:079 627664.391	3569.45 3571.96 3568.82	BRASS CAP TOP OF CASSING NATURAL GROUND
PTXC7-1R04	3764680.499 3764680.613	627976.896 627975.246	3569.65 3571.91 3568.92	BRASS CAP TOP OF CASSING NATURAL GROUND
PTX07-1R05	3764138.695 3764138. 779	627712.633 627711.011	3568.55 3570.32 3567.97	BRASS CAP TOP OF CASSING NATURAL GROUND

Sincerely,

James W. Adams APEX Surveying & Mapping

PHONE NO. : 972 818 3827

Drilling Contractor: Stewart	/J. Moran /T. Hall Brothers Drilling) - 04/16/00 ARCH 7 7/8" Mud Rotary ' ' 0-260' The conductor casi was installed by Water De subcontractor to ETAS Co	orp. in August, 1999. Refer to X07-1R01 and PTX07-1R02	3571.63' -1R01 o ETAS	5.06
Drilling Contractor: Stewart	Brothers Drilling) - 04/16/00 ARCH 7 7/8" Mud Rotary) 0 0-260' The conductor casi was installed by Water De subcontractor to ETAS Co Corporation Well Logs PT	Total Depth of Borehole: Depth to Water: Well Type: TOC Elevation: Description Ing for Ogallala Well PTX07 velopment Corp., drilling orp. in August, 1999. Refer to 'X07-1R01 and PTX07-1R02	600' BGS 438.15' BTOC Monitoring Wel 3571.63' -1R01 o ETAS	04/25/00 l, 4" Stainless Ste Sample
Dates Drilled: 03/11/00 Borehole Type: 11 3/4" / Ground Elevation: 3569.33' Completion (1) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	0 - 04/16/00 ARCH 7 7/8" Mud Rotary 0 0 0-260' The conductor casi was installed by Water De subcontractor to ETAS Co Corporation Well Logs PT	Depth to Water: Well Type: TOC Elevation: Description ing for Ogallala Well PTX07 velopment Corp., drilling orp. in August, 1999. Refer to `X07-1R01 and PTX07-1R02	438.15' BTOC (Monitoring Wel 3571.63' -1R01 o ETAS	Il, 4" Stainless Ste
Borehole Type: 11 3/4" / Ground Elevation: 3569.33' Completion (1) Hdad 	ARCH 7 7/8" Mud Rotary 0 0-260' The conductor casi was installed by Water De subcontractor to ETAS Co Corporation Well Logs PT	Well Type: TOC Elevation: Description ing for Ogallala Well PTX07 velopment Corp., drilling orp. in August, 1999. Refer to 'X07-1R01 and PTX07-1R02	Monitoring Wel 3571.63' -1R01 o ETAS	Il, 4" Stainless Ste
Ground Elevation: 3569.33' Completion (1) to food (1)	0-260' The conductor casi was installed by Water De subcontractor to ETAS Co Corporation Well Logs PT	TOC Elevation: Description ing for Ogallala Well PTX07 velopment Corp., drilling orp. in August, 1999. Refer to 'X07-1R01 and PTX07-1R02	3571.63' -1R01 o ETAS	Sample
Completion (1) Age of the second seco	0-260' The conductor casi was installed by Water De subcontractor to ETAS Co Corporation Well Logs PT	Description ing for Ogallala Well PTX07 velopment Corp., drilling orp. in August, 1999. Refer to `X07-1R01 and PTX07-1R02	-1R01 o ETAS	Sample Number
	0-260' The conductor casi was installed by Water De subcontractor to ETAS Co Corporation Well Logs PT	ing for Ogallala Well PTX07 velopment Corp., drilling rp. in August, 1999. Refer to 'X07-1R01 and PTX07-1R02	-1R01 o ETAS	Sample Number
	was installed by Water De subcontractor to ETAS Co Corporation Well Logs PT	velopment Corp., drilling orp. in August, 1999. Refer to X07-1R01 and PTX07-1R02	o ETAS	

Pantex GW RFI		Pantex Plant	(Landfill 13)		Α	marillo, Texa
Project Number:	3589-102		Client:	Mason &	Hanger Co	rporation
Geologist:	R. Rupp /J. Mo	oran /T. Hall	Northing: 3764160.14	Easting:	627915.06	
Drilling Contractor:	Stewart Brothe	rs Drilling	Total Depth of Borehole:	600' BGS		
Dates Drilled:	03/11/00 - 04/	16/00	Depth to Water:	438.15' B	TOC 04/2	5/00
Borehole Type:	11 3/4" ARCH	7 7/8" Mud Rotary	Well Type:	Monitorin	ng Well, 4"	Stainless Ste
Ground Elevation:	3569.33'		TOC Elevation:	3571.63'		
Depth (Ft.)	Lithology USCS]	Description		Sample	Sample Number

	ex GW RFI	2.502		t (Landfill 13)	N 0.33	Amarillo, Texa
	ct Number:	3589-1		Client:	Mason & Hange	-
Geolo	-	-	pp /J. Moran /T. Hall	Northing: 3764160.14	Easting: 62791	5.06
	ng Contractor:		rt Brothers Drilling	Total Depth of Borehole:	600' BGS	0.4/0.5/0.0
	Drilled:		00 - 04/16/00	Depth to Water:	438.15' BTOC	
	nole Type:		" ARCH 7 7/8" Mud Rotary	Well Type:		ll, 4" Stainless Stee
Grou	nd Elevation:	3569.3	3'	TOC Elevation:	3571.63'	
Comj	pletion (14)	Lithology	USCS	Description		Sample Number
			236-246' Cement inside o 246-255' Bentonite grout	of conductor casing	g	
	-26			te content decreasing, light br bangular, poorly graded, ver completely dry		
			GP subrnded, qtzose, residual	y, 1" dia. grading to 1/2" dia. bentonite in top 0.3' of recov		
\bigotimes			ML material 267-268 7' SILT sandy t	to SILTSTONE, v. fine sand,	silt	
\bowtie	27	0	matrix, fractured calcic sil		SIIL	
\bigotimes		9.1.6.1.9	268.7-269' SAND, silty, t	trace clay, lt. brn (7.5YR 6/4)), v. fine	
\times				269-274' NO RECOVERY		
\times				plas., v. stiff, mst, 1/4" gravel		PTX07-1R01-2-02 Permeability Apal
\times				n to brn (7.5YR $6/4-5/4$), find	e to v.	Permeability Anal
$\sim N$	$K \times T$		inne, subinded, med. dense	e, mst to dmp, silty @ 278'		PTX07-1R01-2-02 Capillary Moistu

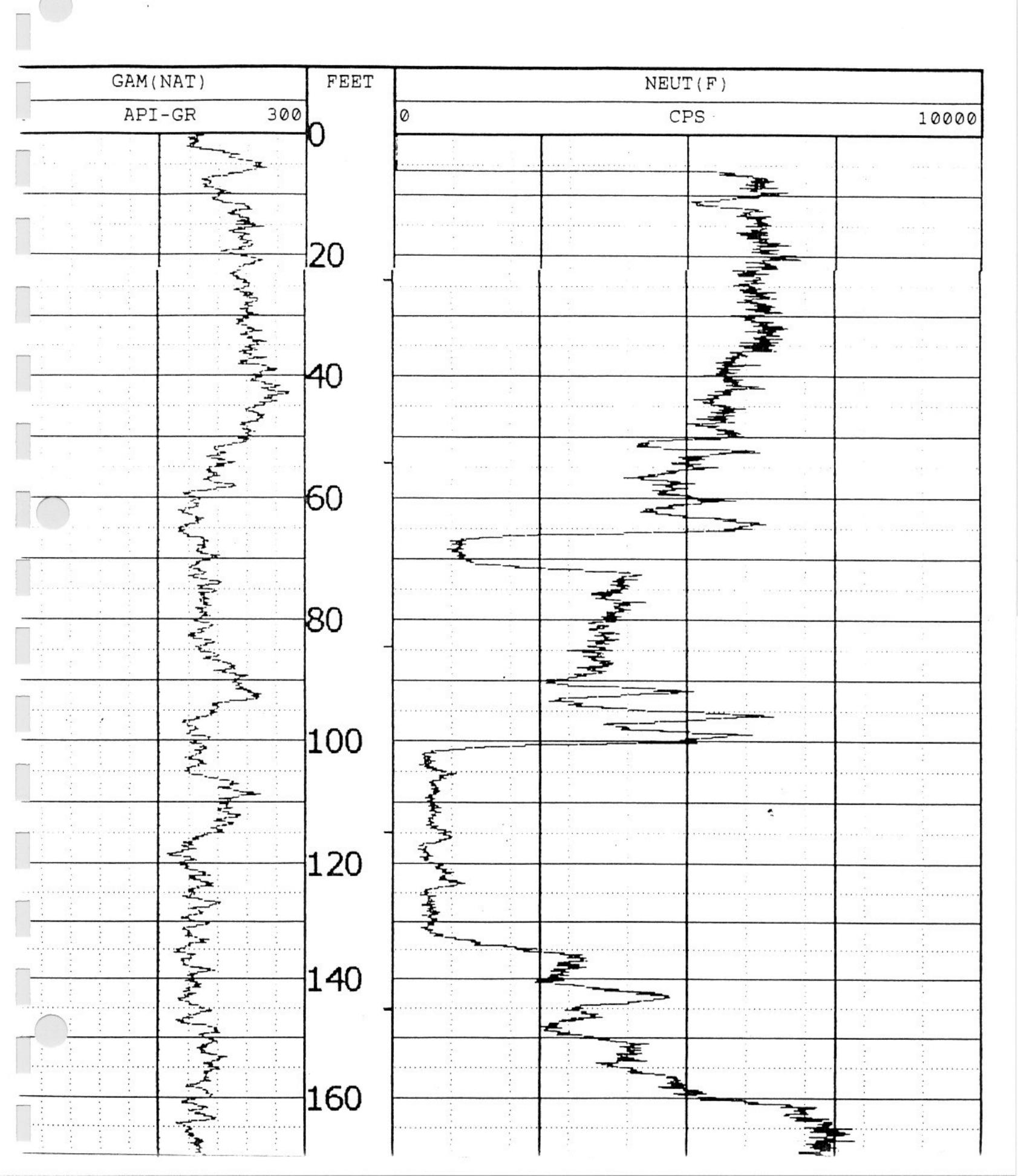
Pantex GW RFI	2.500.100	Pantex Plant	(Landfill 13)		Amarillo, Te
Project Number:	3589-102		Client:		nger Corporation
Geologist:		J. Moran /T. Hall	Northing: 3764160.14	Easting: 627	/915.06
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	600' BGS	
Dates Drilled:		- 04/16/00	Depth to Water:	438.15' BTO	
Borehole Type:	11 3/4" A	RCH 7 7/8" Mud Rotary	Well Type:		Vell, 4" Stainless St
Ground Elevation:	3569.33'		TOC Elevation:	3571.63'	
Completion Debth (Ft.)	Lithology USCS]	Description		Sample Sample Numbe
	CL CL CL CL CL CL CL CL CL CL CL CL CL C	stiff-hard, mst-dmp, dissen calcic mottling, 2" cemente 285-286.5' CLAY, sandy, 5/6), low plasticity, medium disseminated FeO2 stainin, MnO2, sand % increasing 286.5-350' SAND, silty, 7 6/4), nonplastic, 80% very medium, subangular to sub medium dense, friable, dar	brn (7.5YR 5/6), med-high p ninated FeO2 staining, scatte ed sandy zones @ 280.5, 282 30% sand, strong brown (7. m stiff to stiff, moist to damp g, some calcic mottling, prev with depth 0% sand, light reddish brow fine sand, 15-20% fine sand orounded, poorly graded, loo np to moist, generally drier v ughout as nodes, no large int	ered 2, 284 5YR 0, valent n (5YR , trace se to vith	PTX07-1R01-2- Permeability An PTX07-1R01-2- Permeability An PTX07-1R01-2- Permeability An PTX07-1R01-2- Permeability An PTX07-1R01-2- Permeability An PTX07-1R01-2- Permeability An PTX07-1R01-2- Permeability An
S.M. STOLL	ER COR	PORATION			Page 5

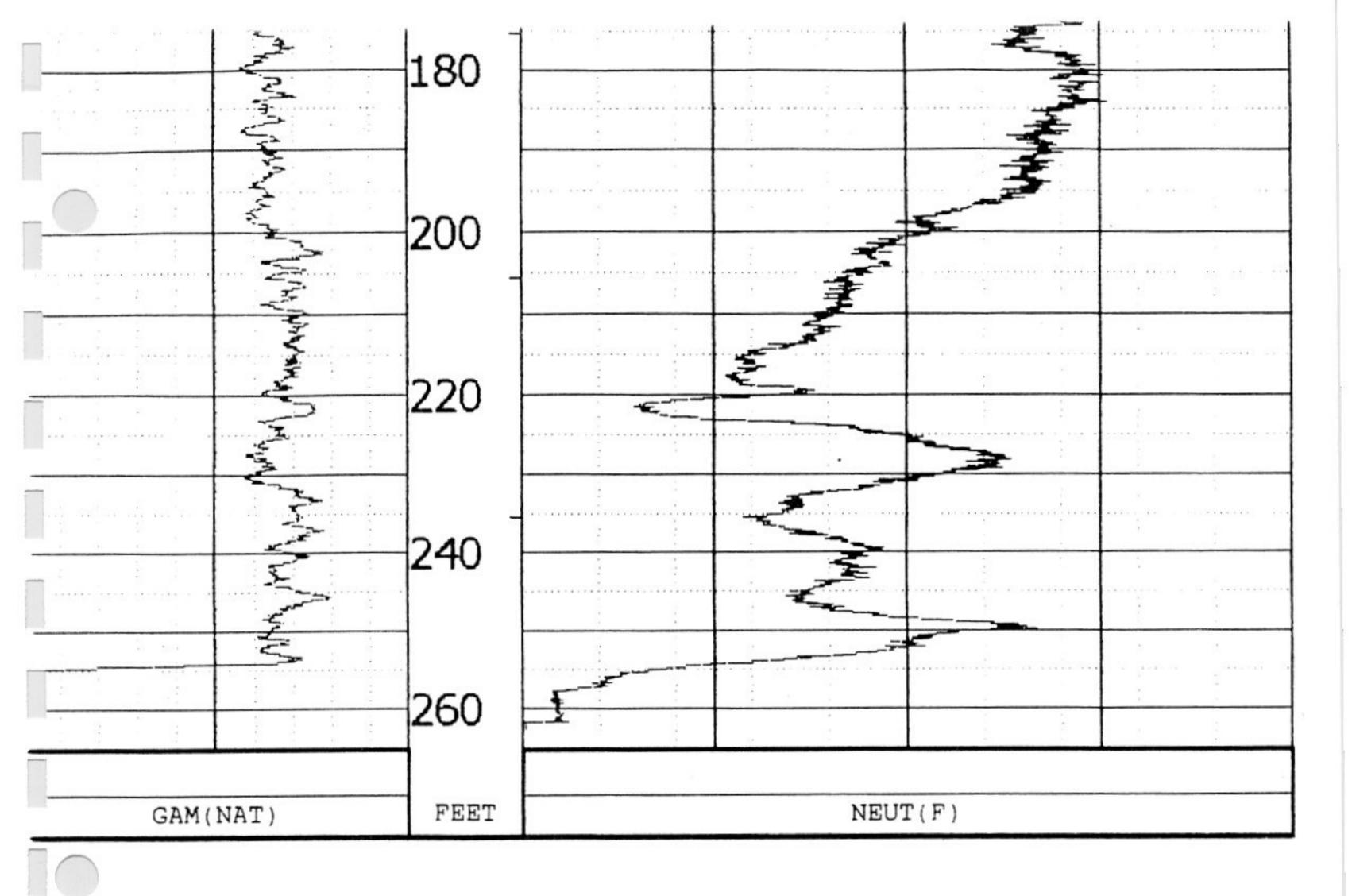
Pantex GW RFI		Pantex Plant	(Landfill 13)		Amarillo, Tex
Project Number:	3589-102		Client:	Mason & Har	nger Corporation
Geologist:	R. Rupp /	J. Moran /T. Hall	Northing: 3764160.14	Easting: 627	/915.06
Drilling Contractor:	Stewart B	rothers Drilling	Total Depth of Borehole:	600' BGS	
Dates Drilled:	03/11/00	- 04/16/00	Depth to Water:	438.15' BTO	C 04/25/00
Borehole Type:	11 3/4" A	RCH 7 7/8" Mud Rotary	Well Type:	Monitoring W	/ell, 4" Stainless Ste
Ground Elevation:	3569.33'		TOC Elevation:	3571.63'	
Completion Debth Deb	Lithology	350-400' SAND, silty (20'	Description % silt), pink (7.5YR 7/3) to 1 very fine to medium grain.	ight	Sample Number
	0 0	subangular to subrounded	very fine to medium grain, , light brown (7.5YR 6/4), ve ar, graded	ery fine	
S.M. STOLLI	ER COR	PORATION			Page 6

Pantex GW RFI	2500 100	Pantex Plant	(Landfill 13)		Amarillo, Tex
Project Number:	3589-102		Client:		nger Corporation
Geologist:		J. Moran /T. Hall	Northing: 3764160.14	Easting: 62	/915.06
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	600' BGS	
Dates Drilled:		- 04/16/00	Depth to Water:	438.15' BTO	
Borehole Type:	11 3/4" A	RCH 7 7/8" Mud Rotary	Well Type:		Vell, 4" Stainless Ste
Ground Elevation:	3569.33'		TOC Elevation:	3571.63'	
Depth (Ft.)	Lithology USCS]	Description		Sample Number
	SP	grain, subangular to subrou	dish brown (5YR 6/4) fine to inded, well graded		
		coarse grain, subangular, v	vell graded		
S.M. STOLL	ER COR	PORATION			Page 7

Pantex GW RFI		Pantay Plant	(Landfill 13)		Amarillo, Tex
Project Number:	3589-102		Client:	Mason & Ha	nger Corporation
Geologist:		J. Moran /T. Hall	Northing: 3764160.14	Easting: 62	
Drilling Contractor:		rothers Drilling	Total Depth of Borehole:	600' BGS	/ /13.00
Dates Drilled:		- 04/16/00	Depth to Water:	438.15' BTO	C 04/25/00
Borehole Type:	11 3/4" Al		Well Type:		C 04/25/00 Vell, 4" Stainless Ste
Ground Elevation:	3569.33'	KCH / //o Muu Kotary	TOC Elevation:	3571.63'	ven, 4 Stanness Ste
	3309.33			5571.05	
Completion Lit. Debth	Lithology USCS]	Description		Sample Number
	SW		silty, pink (7.5YR 7/4), fine well graded, with 10% small		
	SW- GW	yellowish brown (10YR 6/ gravel, medium to coarse g	7, 80% gravel 20% sand, ligh 4), well graded angular to su grain subrounded sand	bangular	
S.M. STOLL		PORATION			Page 8

Pantex GW RFI			t (Landfill 13)		Amarillo, Tex
Project Number:	3589-1		Client:		nger Corporation
Geologist:		p /J. Moran /T. Hall	Northing: 3764160.14	Easting: 627	915.06
Drilling Contractor:		Brothers Drilling	Total Depth of Borehole:	600' BGS	
Dates Drilled:	03/11/0	0 - 04/16/00	Depth to Water:	438.15' BTOO	C 04/25/00
Borehole Type:		ARCH 7 7/8" Mud Rotary	Well Type:		ell, 4" Stainless Ste
Ground Elevation:	3569.33	3'	TOC Elevation:	3571.63'	
Depth (Ft.)	Lithology	nscs	Description		Sample Number
570-		560-580' SAND, light bro subangular, well graded, v W- SP 570' light brown, fine gra		⁷ coarse,	
		580-595' SAND, silty, cla 8/2), very fine to fine grain	ayey, 20% clay, pinkish white n	e (7.5YR	
			brown to dark reddish brown very stiff to hard, damp to m		
		Refer to ETAS Well Logs completion details surface from surface to 260' BGS. cemented from surface to Mud Rotary drilling was u from 260' to 600'. Continu borehole from 263' to 330 304, stainless steel casing steel screen were used in v 600'); 190' screen, 0.010" (+2 - 405'); Filter Pack, 8/ above screen 16' (389 - 60 above sand 10' (379 - 389'		R02 for is 11 3/4" s nods. ehole n the 0, Type Stainless 595 - 7' Casing ckness ckness ckness - 379');	





COMPANY	: ETAS : PTX-07-1R03		OTHER SERVIC	ES:	
LOCATION/FIELD	: Pantex				
COUNTY	: Carson				
STATE	: TX				
SECTION	:	TOWNSHIP	:	RANGE	:
ATE	: 08/31/99	PERMANENT DATUM	:		
2PTH DRILLER	: 258			KB	;
LOG BOTTOM	: 263.00	LOG MEASURED FROM	1: T.O.C.	DF	2
LOC TOP	. 130	DEL MEASURED EDON	1. CI	CI	

LOG TOP : -1.30	DRL MEASURED FROM	: G.L.	GL	:
CASING DIAMETER : 6 CASING TYPE : P.V.C. CASING THICKNESS: .2	FIELD OFFICE	: 9607 : TULSA : Federwisch		
BIT SIZE : 9.825 MAGNETIC DECL. : 8 MATRIX DENSITY : 2.71 NEUTRON MATRIX : sandstone	RM TEMPERATURE	: WATER : 0 : 0 : 54	FILE TYPE	: ORIGINAL : 9072A -1: 20000

ALL SERVICES PROVIDED SUBJECT TO STANDARD TERMS AND CONDITIONS

	TOOL CALIBRA TOOL 9072A SERIAL NUMBE	TION PTX-07-1R0	3 08/31/99 11:55		
	DATE	TIME	SENSOR	STANDARD	RESPONSE
1	Jun07,99 Jun07,99	16:21:56 16:21:56	GAM(NAT) GAM(NAT)	Default [APLGR] Default [APLGR]	Default [CPS] Default [CPS]
2	Jun07,99	16:21:56 16:21:56	VOLTAGE	Default [MV]	Default [CPS]
3	Jun07,99 Jun07,99	16:21:56 16:21:56	CURRENT	Default [UA] Default [UA]	Default [CPS] Default [CPS]
4	Jun07,99 Jun07,99	16:21:56 16:21:56	NEUT(N) NEUT(F)	10520.000 [CPS] 397.000 [CPS]	

.

2

3**4**

.

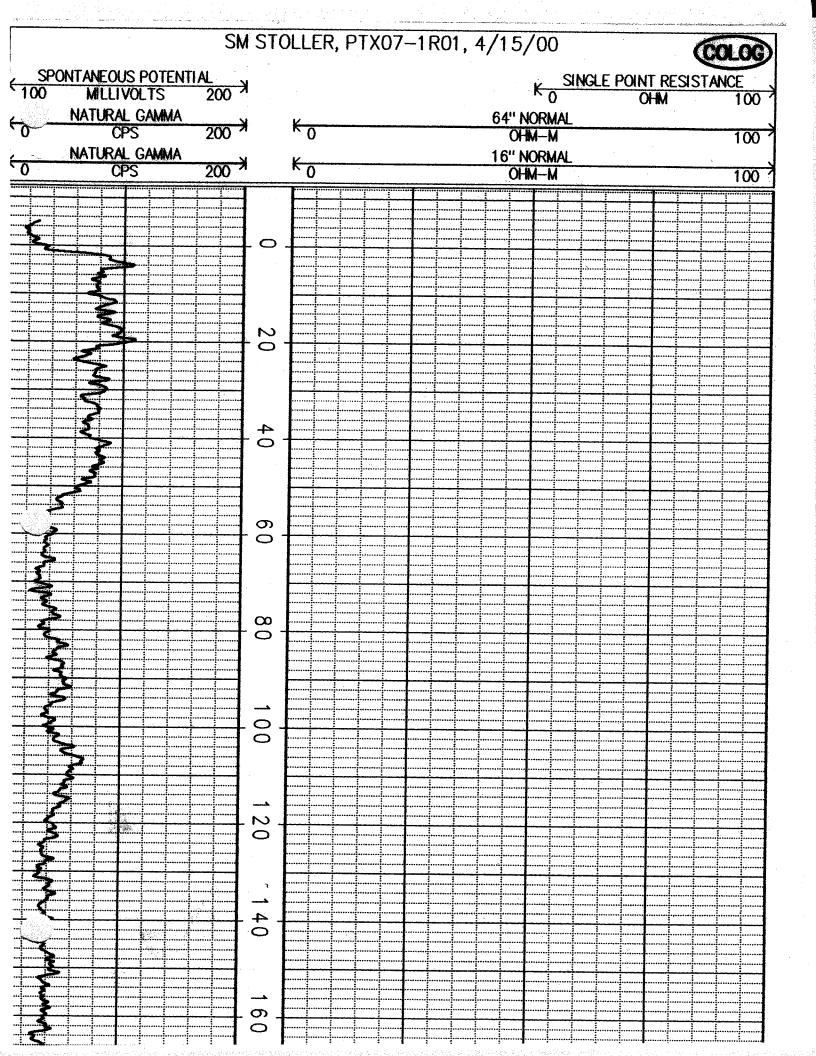
SOUR JE, S/N	SANPL F INTERNAL	ASDE.	LOGGING SPEED	NODULE TYPE, S/N	PROBE TYPE, S/N	TIME SINCE CIRC.	Rm at TEMP	FLUID TYPE	FLUID LEVEL	WI TNESSED BY	RECORDED BY	TOP LOGGED INTERVAL	BTW LOGGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	LOG TYPE	RUN NUMBER	DATE ACQUIRED	DRILL MEAS. FROM:	LOG MEAS. FROM: Ground Surface	PERMANENT DAT	COM: WELL FLD: ST:	SM ST PTX07 PANTE TX C	'—1 R0 X	1	3		ELEC.	- Control	
N None	L 0.1"	0.7	15 ft/min		N RABPE 2171	<u> </u>	N/A	Surface	70'	Ford	Davis	WAL Surface	RVAL 597	599'	600'	Ganna		4/15/00	M: Ground Surface	: Ground Surface	PERMANENT DATUM: Ground Surface	SEC 1	LOCATION: NA	STATE: TX	FIELD: PA	WELL: PT	COMPANY: SM	TRIC LOG	No.	Y
None	0.1	0.7	15 ft/min	UM 1524	EPF1567							252'	568'			Electric		4/15/00		0.0 FT ABOVE PERM. DATUM	ELEVATION: NA	TWP RGE		COUNTY:	PANTEX	PTX07-1R01	SM STOLLER	G	17301 West Calfax, Suite 265, PHONE: (303) 279–0171	Division of Layne
																				. DATUM			OTHER SERVICES:	CARSON					65, Golden Colorado 80401 FAX: (303) 278–01 35	COLOG Division of Layne Christensen Company

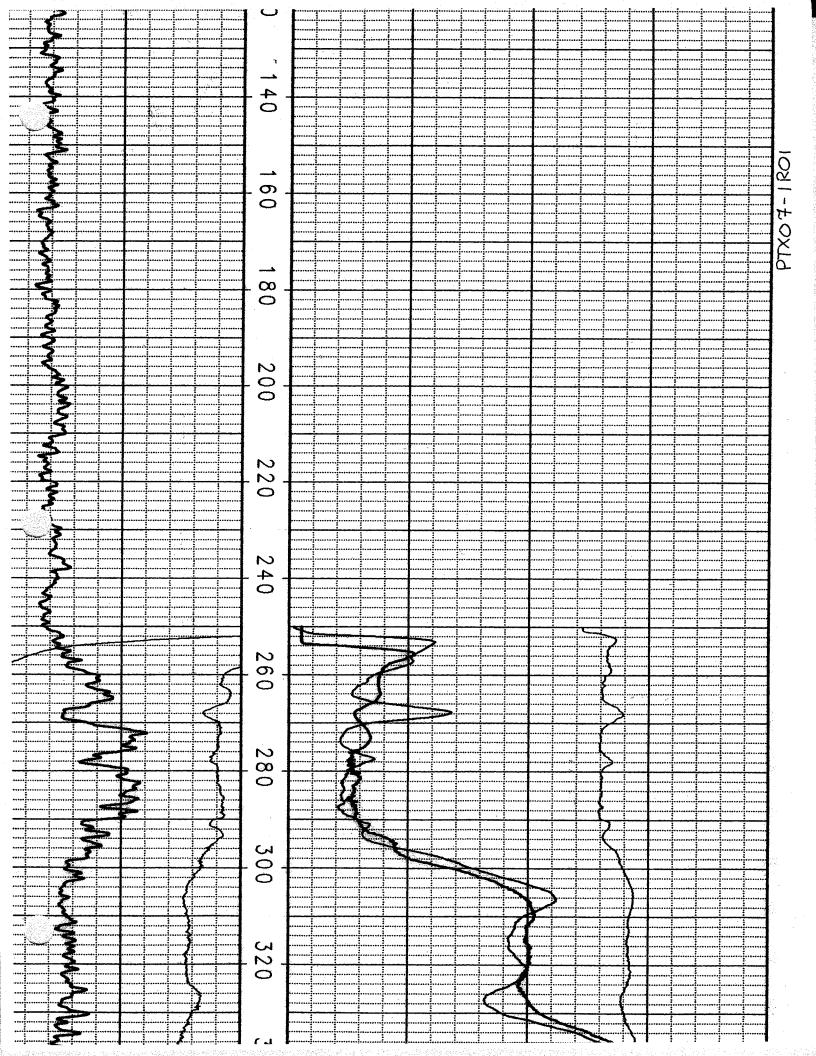
BOREHOLE RE	CORD		CASING RECORD							
BIT SIZE	FROM	TO	SIZE/WGT	FROM	TO					
11 3/4"	Surface	254'	Sump	595'	600'					
7 7/8"	405	595'	Screen	470'	845'					
			Riser	Surface	405'					
	1	1								

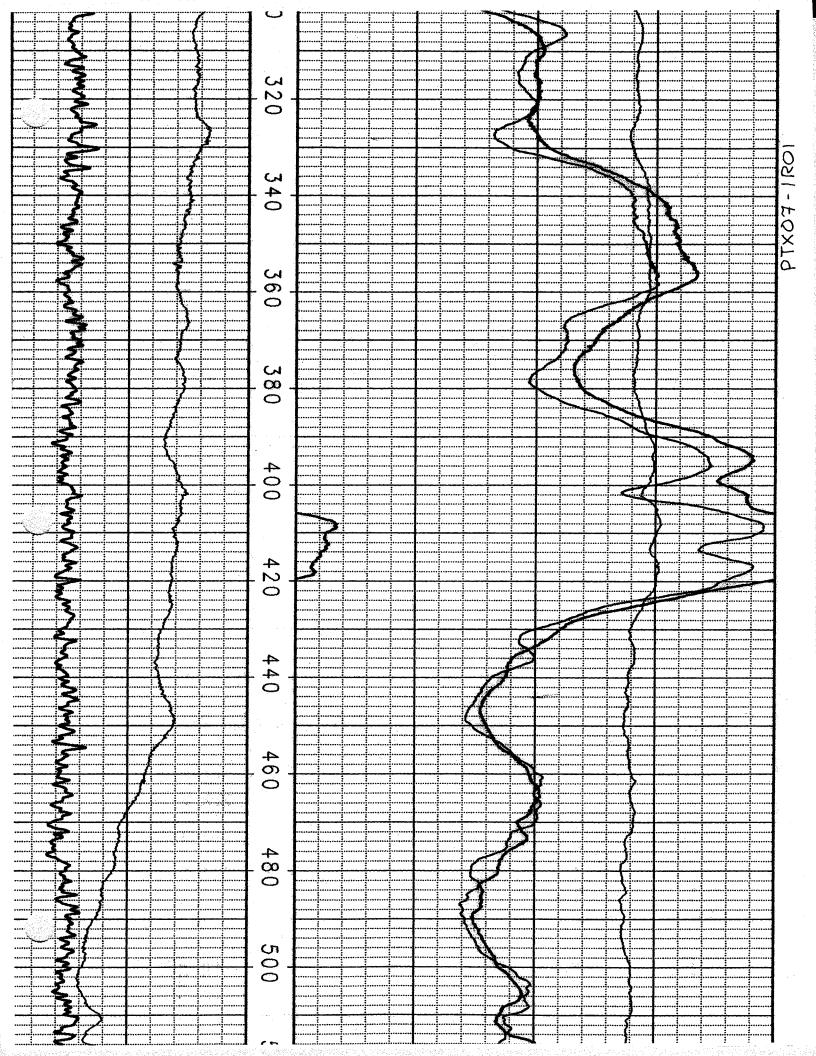
COMMENTS:

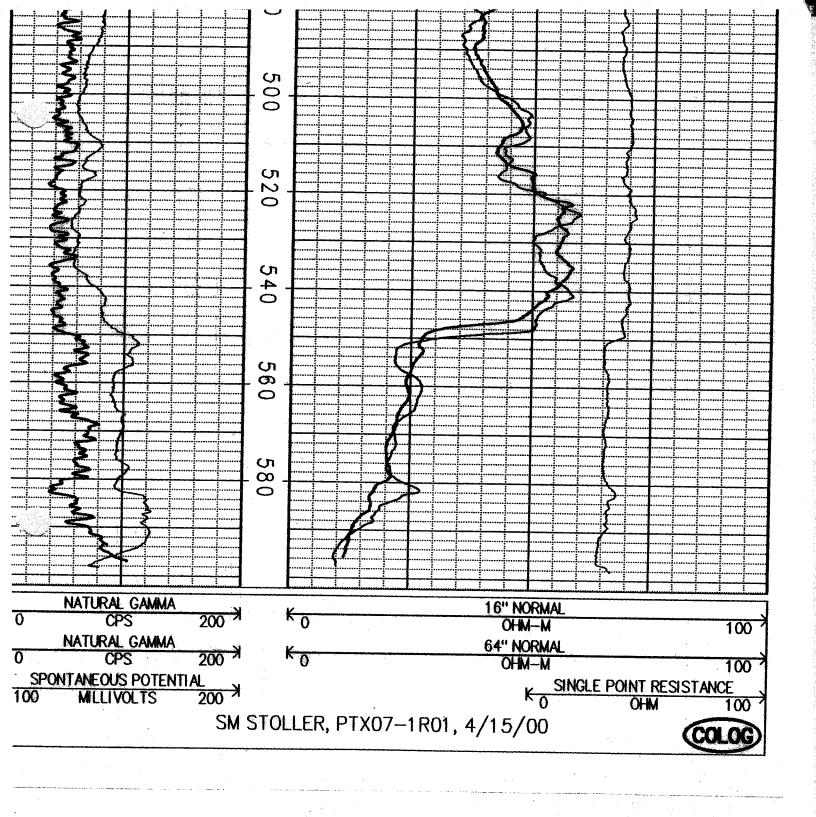
Drill Type: ARCH 0-260' Mud Rotary 260-600'

8" Conductor Casing Set Surface to 254'


COMMENTS:


4" Type 304 Stainless Steel Casing & Screen Screen Slot 0.010


Borehole Logged Open Hole from 252-599'


NA - NOT AVAILABLE, N/A - NOT APPLICABLE

DIGITAL FILES: 1R01, dat, 1R01.HDP, 1R01.PLP

